Citation: Qiang Zeng, Zhigang Liu, Ting Niu, Chuan He, Ying Qu, Zhiyong Qian. Application of nanotechnology in CAR-T-cell immunotherapy[J]. Chinese Chemical Letters, ;2023, 34(3): 107747. doi: 10.1016/j.cclet.2022.107747 shu

Application of nanotechnology in CAR-T-cell immunotherapy

    * Corresponding authors.
    E-mail addresses: quying1988@126.com (Y. Qu), zhiyongqian@scu.edu.cn (Z. Qian).
    1 These authors contributed equally to this work.
  • Received Date: 9 June 2022
    Revised Date: 9 August 2022
    Accepted Date: 12 August 2022
    Available Online: 14 August 2022

Figures(7)

  • It is cellular immunotherapy for the tumor that the in vitro modified immunocytes from patients or donors are reinfused into patients to kill tumor cells. Chimeric antigen receptor T cell (CAR-T) therapy, one of the most successful and representative tumor cellular immunotherapies, is now the weapon for cancer after extensive research. Although CAR-T immunotherapy achieves success in treating relapsed/refractory hematological tumors, its drawbacks, including the poor effect in solid tumors, cytokine release syndrome (CRS) or CAR-T-related encephalopathy syndrome (CRES), on-target, off-tumor effect, and high cost, cannot be overlooked. Nanotechnology is advantageous in the construction of CARs, the transfection of T cells, the expansion, delivery, and antitumor effect of CAR-T cells, and the reduction of CAR-T therapy-associated toxicities. Currently, introducing nanotechnology into CAR-T immunotherapy has already been performed in numerous studies with highly promising results. In this review, we summarized the nanotechnologies used in CAR-T immunotherapy and discussed the challenges and directions of CAR-T immunotherapy combined with nanotechnologies in the future.
  • Precise tumor targeting and on-demand drug release show great potentials in cancer therapy, which have been achieved by the continuously emerging smart prodrugs activated by the specific stimuli [1]. Most of the reported activatable prodrugs (>80%) are sensitive to a single trigger, including the tumor microenvironments (TMEs) like pH [2], glutathione (GSH) [3,4], reactive oxygen species (ROS) [5,6] and enzyme [7], or the external triggers like light, ultrasound, heat, and magnetic field [8,9]. However, in most of the cases, the nonspecific drug accumulation or activation in normal tissues is inevitable because some TMEs are not “specific” enough to sensitively differentiate tumor and normal tissues [10]. Applying “logic gate” involving multiple triggers into the molecular structures can remarkably magnify the specific tumor targeting and attenuate the undesired toxicity via the introduction of multistage “locks” and sophisticating the “unlock” conditions [11]. More than two stimuli co-govern the “on and off” of the drug, exhibiting “OR gate” or “AND gate” features [12]. Most of the reported prodrugs with logic gates are “OR gates”, that is, drugs can be partially activated by either stimulus [13,14]. Even though sometimes the tumor targeting and anti-cancer efficacy can be magnified upon the combination of multiple stimuli, the partial activation feature of the “OR gate” determines the toxicity induced by single stimulus cannot be thoroughly avoided [15]. Compared to “OR gate”, “AND gate” endows the prodrug with the “only” activation upon the co-existence of all the stimuli [16,17], which was first reported in the design of a boron dipyrromethene responsive to both Na+ and H+ ions by Akkaya [18]. However, due to the molecule synthesis and design challenging, the “AND gate” is infrequent among numerous prodrugs.

    Among the stimuli, a combination of external stimulus and internal stimulus owns advanced strengths due to the tumor-specific and spatio-temporal control features. Ultrasound (US) as a mechanical force has been applied into the cancer treatment as an external stimulus, called sonodynamic therapy (SDT) [19]. Sonosensitizers bearing macrocyclic structures like porphyrin and phthalocyanine, can be activated under low-intensity US irradiation to produce highly toxic ROS through the sonoluminescence mechanism [20,21]. Compared to other treatments, SDT owns the advantages of spatio-temporal control, noninvasiveness, minor energy attenuation, and deep tissue-penetration [22,23]. However, the US-triggered “AND gate” prodrug has been rarely reported due to the following challenges. First, unlike the pro-chemodrug which the drug activation is based on the transformation or exposure of specific functional groups upon the triggers, it is hard to inhibit the sonosensitizers’ toxicity upon US trigger via simple change of functional groups [24,25]. As the toxicity of sonosensitizers is mainly originated from the US's energy and sonoluminescence, Förster resonance energy transfer (FRET) effect which has been widely applied in the design of dyes, is a promising strategy to suppress the toxicity from the “only” US irradiation [26]. Second, killing of the tumor cells for SDT greatly relies on the ROS (singlet oxygen (1O2) and oxygen-based radicals (OH)) produced by the US-irradiated sonosensitizers. Limited by the tolerate dosage and intracellular uptake level of the sonosensitizers, as well as the oxidative ability and life time of the ROS, the anticancer efficacy for SDT cannot reach as good as that for chemotherapy or radiotherapy [27,28]. Therefore, stronger ROS agents or toxic agents are extremely needed to boost the cytotoxicity.

    Considering the above-mentioned two issues in the design of “AND gate” SDT prodrugs, we specially design two monomers including a meso‑carboxyl-porphyrin-based sonosensitizer (5,10,15,20-tetrakis(carboxyl)porphyrin, TCP) and a croconium (thiophenyl-croconium (2,5-bis[(2-(2-(2-hydroxyethoxy)ethoxy)ethyl-4-carboxylate-piperidylamino)thiophenyl]-croconium, CR), as well as their polymers (pTCP-CR) to solve all the listed obstacles in a US and enzyme co-activated system. 5,10,15,20-Tetrakis(carboxyl)porphyrin (TCP) was selected since it can release ROS and carbon monoxide (CO) with US irradiation [29]. To further improve the toxicity of the ROS generated by SDT, sulfate radicals (SO4•−) with stronger oxidation capability are introduced into the molecule design. SO4•− has an oxidation potential of 2.5–3.1 eV, which is similar to that of OH (2.80 eV), but the half-life (SO4•−, 30 µs) is 30 times versus OH, which means that it has stronger cytotoxicity due to longer diffusion distance and leads to more effective oxidation reactions [30]. Recently, it has been revealed that SO4•− can be produced by sulfate ions (SO42−) and OH, which is a mild method appliable in biomedical field [31]. Therefore, a specific CR dye bearing thiophene group is designed as a SO42− precursor since sulfur-containing dye owns the potential to release SO42− upon ROS treatment [32]. Third, the absorbance of the CR usually covers the emission of most porphyrin-based sonosensitizers upon US irradiation. Thus, CR can act as a quencher to lock the undesired US-induced ROS generated due to the FRET effect once it is connected with porphyrin via suitable linkers [26].

    With the features of meso‑carboxyl porphyrin and thiophene-croconium at hand, TCP and CR are designed and polymerized into a polymeric prodrug (pTCP-CR) with cross-linked network structure via ester linkers (Scheme 1). Through self-assembly in water, it is prepared into nanoparticles (pTCP-CR NPs) (Scheme S2 in Supporting information) [33]. As shown in Scheme 1, activation of pTCP-CR NPs requires the presence of both carboxylesterase (CEs) and US. Under “only CEs” activation, pTCP-CR NPs cleave into TCP and CR monomers with low cytotoxicity. Under “only US” activation, ROS generation by TCP is quenched by CR, and CO generation is blocked by ester linkers. Only with the co-existence of CEs and US, TCP and CR release as monomers, enabling ROS and CO generation. ROS from TCP further decompose CR into SO42− and more toxic SO4•−, enhancing cytotoxicity. This enzyme and US co-triggered “AND gate” design enables precise spatio-temporal control over the release of anticancer agents. The efficacy of pTCP-CR NPs as a smart decomposable polysonosensitizer is demonstrated through in vitro experiments using cell lines with varying CEs expression levels and in vivo SDT efficacy on mice with hepatocellular carcinoma (HCC).

    Scheme 1

    Scheme 1.  Schematic illustration of the “AND gate” logic in the design of pTCP-CR NPs for the releasing of CO, ROS and SO4•− under the co-triggers of US and CEs.

    Although the instability and bleachability of squarylium dyes and CR dyes in the presence of metal ions or light have been reported [34], the phenomenon that CR dye can be degraded by ROS and transformed into active agents has not been reported. As sulfur-containing dyes owned the potentials to be converted to SO42− after being treated by ROS [32], CR bearing thiophenol group was selected as the special monomer for the releasing of surfur-based radicals. CR was synthesized by the nucleophilic substitution, alkali saponification/acid hydrolysis, condensation processes with croconic acid as shown in Scheme S2. All the intermediates and finally compounds were fully characterized (Figs. S1–S8 in Supporting information). It has been demonstrated before that US could trigger the porphyrin derivatives to generate OH, similar with the porphyrin-based photodynamic therapy mechanism [35]. We then evaluated whether the ROS generated by the US and TCP would lead to the decomposition of CR into SO42− as well as more active SO4•− radicals (Fig. 1a). Adding OH to a phosphate buffer saline (PBS) solution of CR led to a significant reduction in CR absorption in the near-infrared (NIR) region (around 700 nm) (Fig. 1b). 1H nuclear magnetic resonance spectroscopy (1H NMR) and high resolution mass spectrometry (HRMS) analyses confirmed CR decomposition after OH treatment for 20 and 50 min, with CR molecules breaking down into low molecular weight compounds (Figs. S9 and S10 in Supporting information). Additionally, we assessed if OH generated by TCP could decompose CR. As anticipated, CR absorption in the NIR region decreased after US treatment of a mixed solution of TCP and CR in PBS (Fig. S11 in Supporting information), while minimal change occurred in the CR + US group and the CR+TCP group (Fig. S11). This suggested CR decomposition relied on ROS from TCP and US combination. Furthermore, high performance high performance (HPIC) was utilized to determine SO42− concentration in various CR solutions (only CR group, CR + US group, CR + TCP + US group, and deionized water group). Results showed a significantly higher SO42− concentration in the CR + TCP + US group (3.88 mg/L) compared to control groups (0.5–0.7 mg/L) (Fig. 1d, Fig. S12 and Table S1 in Supporting information).

    Figure 1

    Figure 1.  (a) The ROS-induced CR decomposition and release of SO4•−. (b) Absorption spectra of a 50 µmol/L solution of CR after reaction with OH. (c) The degradation efficiency of MB by OH and SO4•− produced by different experimental groups. (d) The concentration of SO42− in H2O, CR, CR with US irradiation and CR + TCP with US irradiation. (e) EPR spectra of produced OH and SO4•− radicals from H2O by the CR, CR with US irradiation and CR + TCP with US irradiation. Data are means ± SD (n = 3). ***P < 0.001.

    It has been reported that SO42− can be efficiently converted into SO4•− by OH [36]. Electron paramagnetic resonance (EPR) analyses were used to examine the SO4•− radicals that are derived from both CR and TCP under US treatment (Fig. 1a). Obvious sulfate anion (DMPO-SO4•−, labeled by red star) signals were observed only in the CR + TCP + US treatment group (Fig. 1e). The EPR spectra supported that the OH produced by TCP under US irradiation can effectively convert SO42− into SO4•−. Since the degradation of methylene blue (MB) could indirectly reflect the oxidative ability of OH and SO4•−, the capability of OH and SO4•− were compared using different combination of CR, TCP and US [37]. The results indicated that CR can effectively degrade MB in the presence of TCP and US, with up to 84.5% of MB being degraded, indicating that CR can produce OH and SO4•− under the combined treatment of TCP and US (Fig. 1c and Fig. S13 in Supporting information).

    Considering the advanced features of TCP and CR including the generation of CO, 1O2 and SO4•−, a polymerized TCP and CR (pTCP-CR) with cross-linked network structure connected by flexible ester linkers was designed and synthesized using our previously reported polycondensation method (Scheme S3 in Supporting information) [21,38]. As controls, polymerized TCPP and CR (pTCPP-CR) which could not release CO, and polymerized TCP with hexaethylene glycol (pTCP-HG) which did not generate SO4•− were also synthesized for comparisons. Their chemical structures were characterized by 1H NMR spectroscopy (Figs. S14–S16 in Supporting information). Their molecular weights (MWs) were calculated to be around 6900 (pTCP-CR), 9200 (pTCPP-CR) and 6100 (pTCP-HG) g/mol by gel permeation chromatography (GPC) (Fig. S17 in Supporting information). pTCP-CR, pTCPP-CR and pTCP-HG were prepared into nanoparticles (pTCP-CR NPs, pTCPP-CR NPs and pTCP NPs) in PBS by the self-assembly of hydrophilic and hydrophobic units [39,40]. These NPs showed unimodal size distributions with the average hydrodynamic diameters of 79.5 ± 2.8 nm (pTCP-CR NPs), 187.3 ± 3.3 nm (pTCPP-CR NPs) and 232.5 ± 6.2 nm (pTCP-HG NPs) measured by dynamic light scattering (DLS) (Fig. S18 in Supporting information). A spherical morphology of pTCP-CR NPs was observed with scanning electron microscopy (SEM) (Fig. S19 in Supporting information). After co-incubation with CEs (20 U/mL), the size of pTCP-CR NPs increased to over 1000 nm due to ester linker cleavage, causing nanoparticle structure destruction. These NPs contain three anti-cancer agents: CO, 1O2, and SO4•−, making them a prodrug. pTCP-CR NPs degrade into TCP and CR monomers when interacting with cancer cells overexpressing CEs but remain stable against normal tissues with limited CEs expression. TCP's emission (600–750 nm) overlaps with CR's absorption (600–800 nm), enabling the FRET effect (Figs. 2a, c and d) [41]. Therefore, the CR moiety in pTCP-CR NPs structure had the potential to act as a quencher, which would fully quench the fluorescence emission and ROS generation of TCP segment due to the presence of FRET process. However, the FRET effect of pTCP-CR NPs was inhibited in the monomeric state after CEs treatment (Fig. 2c and Figs. S22–S24 in Supporting information). The distance between the energy donor (TCP) and energy acceptor (CR) was an important factor affecting FRET effect [42]. The intermolecular interaction between TCP unit and CR unit is simulated. The intermolecular distance in the polymer mode (<10 Å) is much lower than that in the monomer mode (>15 Å) (Fig. S20 in Supporting information). In addition, due to the cleavage of pTCP-CR NPs by esterase, the change of FRET effect was time-dependent. In the polymer state, all the three active agents including CO, 1O2 and SO4•− were inactivated due to the quenching effect of CR on TCP.

    Figure 2

    Figure 2.  (a) Schematic illustration of the FRET effect between the TCP and CR. (b) Absorbance intensity change of pTCP-CR NPs in response to 5 min US treatment with or without CEs. (c) Fluorescence spectra and intensity change of CR, TCP, pTCP-CR NPs and pTCP-CR NPs with 20 U/mL CEs in aqueous solution (excitation wavelength: 525 nm) and ultraviolet–visible spectroscopy (UV–vis) spectra of CR in H2O (black dashed line). (d) Time-dependent fluorescence spectra of DCFH indicating US-induced ROS generation by CR, pTCP-CR NPs, pTCPP-CR NPs, pTCP-CR NPs + CEs and pTCPP-CR NPs + CEs. (e) US trigger CO release of pTCP-CR NPs with and without CEs as a function of time.

    As a result, all the active agents were double-locked into pTCP-CR NPs, which could be only unlocked by the simultaneous existence of US and CEs (Scheme S4 in Supporting information). As shown in Fig. 2b, pTCP-CR NPs is processed by both US and CEs, both the TCP absorbance at 300–450 nm and CR absorbance at 600–1000 nm dramatically decreased. This indicates that both TCP and CR are decomposed after CEs/US dual processing. As a control, pTCP-CR NPs showed strong stability under only US or CEs irradiation (Fig. S25 in Supporting information). Subsequently, the ROS generation ability of CR, TCP + CR, pTCP-CR NPs and pTCPP-CR NPs in water upon different treatment conditions was evaluated. 1,3-Diphenylisobenzofuran (DPBF) and 2′,7′-dichlorodihyrofluorescein (DCFH) were used as 1O2 and ROS analytical reagent [43]. For CEs/US-co-treated pTCP-CR NPs and pTCPP-CR NPs, the absorption of DPBF (420 nm) decreased significantly with the prolongation of US treatment time, indicating the 1O2 generation upon US irradiation. As controls, if pTCP-CR NPs and pTCPP-CR NPs were only irradiation by US without CEs treatment, the absorption of DPBF did not change and no generation of 1O2 (Fig. S26 in Supporting information). Such results were in consistent with the fluorescence results that FRET effect inhibited the generation of 1O2 from TCP unit. Apart from DPBF, DCFH as a fluorescent probe, was also selected to demonstrate it. Compared with the only US triggered group, CEs/US co-triggered pTCP-CR NPs or pTCPP-CR NPs showed notable stronger fluorescence intensity, revealing the “on and off” of ROS was fully determined by the co-existence of CEs and US (Fig. 2d and Fig. S27 in Supporting information).

    The CEs/US co-triggered CO release ability of pTCP-CR NPs was quantified by hemoglobin method, 9-(diethylamino)−5H-benzo[a]phenoxazin-5-one palladium complex (1-Ac) CO fluorescence probe method and CO gas sensor method. UV spectra indicated conversion of Hb-Fe(Ⅱ) to Hb-Fe(CO) after incubating CEs-treated pTCP-CR NPs with hemoglobin under US treatment. Fluorescence intensity of CEs-treated pTCP-CR NPs with 1-Ac increased significantly under US treatment, confirming CO release (Fig. S28 in Supporting information). CO gas sensor method quantified CO release at 280 mmol CO/mol TCP after 40 min of US treatment. No CO release was observed in pTCP-CR NPs treated only with US irradiation (Fig. 2e). Similar results were observed with pTCP-HG NPs (Fig. S28). Additionally, SO42− release from pTCP-CR NPs under CEs/US dual activation was significantly higher compared to other groups (Fig. S29 in Supporting information). In summary, the co-existence of CEs and US triggered the generation of CO, 1O2, and SO4•−.

    Subsequently, we evaluated the in vitro release of ROS and CO from the double-blocked pTCP-CR NPs upon CEs/US triggers. It was known that the CEs expression in liver tumors was much higher than normal tissues [44]. CEs-positive hepatoma cells (HepG2) and CEs-negative cells (293T and LO2) were selected as the models to demonstrate the in vitro anticancer efficacy [45]. After incubation with pTCP-CR NPs (20 µmol/L porphyrin) for 4 h, bright fluorescence showed internalization in HepG2 cells, confirmed by colocalization with Mito-Tracker Green, indicating effective enrichment in mitochondria (Fig. 3a). Cellular uptake of pTCP-CR NPs was higher than free TCP in both HepG2 and 293T cells, suggesting improved internalization due to NPs formation [46]. Similar results were observed with pTCPP-CR NPs (Fig. S30 in Supporting information).

    Figure 3

    Figure 3.  (a) Fluorescence images of cells with ROS probe DCFH-DA after 4 h of treatment with pTCP-CR NPs with or without US. (b) Intracellular ROS levels in various cells after pTCP-CR NPs, pTCPP-CR NPs, or pTCP-HG NPs with US. (c) CLSM images of cells stained with 1-Ac probe for CO detection after treatment with pTCP-CR NPs and pTCP-HG NPs with US. (d) Intracellular CO release from NPs with and without US in different cells. (e) Cell viabilities of cells incubated with pTCP-CR NPs at varying concentrations with US treatment. (f) Ratio and (g) CLSM images of JC-1 monomer to aggregate in mitochondria after pTCP-CR NPs treatment with or without US. Data are means ± SD (n = 4). ***P < 0.001. Scale bar: 50 µm.

    DCFH-diacetate (DA) and 1-Ac were furthermore used to detect the intracellular ROS and CO. In HepG2 cells, both pTCP-CR NPs and pTCPP-CR NPs showed green fluorescence upon US irradiation, while fluorescence dropped significantly in 293T and LO2 with or without US (Fig. 3a, Figs. S31 and S32 in Supporting information). Sole US treatment did not induce green fluorescence. The US-triggered ROS generation of pTCP-HG NPs was not influenced by cell type, blurring the tumor-normal cell distinction (Fig. S32). Adding CEs inhibitor bis-p-nitrophenyl phosphate (BNPP) to HepG2 cells reduced green fluorescence in pTCP-CR NPs + US and pTCPP-CR NPs + US groups, but not in pTCP-HG NPs + US group (Fig. 3b and Fig. S32). This aligns with ROS generation tuned by CEs and US co-existence, targeting toxicity to tumor cells under US. Similarly, intracellular CO release upon US showed CEs/US dependency. HepG2 cells incubated with pTCP-CR NPs and pTCP-HG NPs displayed intracellular CO production after US, evidenced by strong red fluorescence using 1-Ac (Figs. 3c and d, Fig. S33 in Supporting information). No CO was detected in 293T cells or HepG2 cells treated with BNPP. Thus, pTCP-CR NPs specifically generate ROS and CO only with CEs and US co-existence, targeting high CEs tumor cells under US.

    The MTT assay evaluated the toxicity of pTCP-CR NPs, pTCPP-CR NPs, and pTCP-HG NPs on cancer cells. All NPs showed low cytotoxicity without US irradiation, indicating their safety (Fig. 3e and Fig. S34 Supporting information). Upon US irradiation, HepG2 cells treated with pTCP-CR NPs and pTCPP-CR NPs exhibited significantly higher cytotoxicity (Fig. 3f and Fig. S35 in Supporting information). Pre-treatment of HepG2 cells with BNPP decreased therapeutic efficiency, consistent with results in cells with limited CEs expression. At 25 µmol/L concentration (porphyrin equivalent), cell mortality was significantly higher in the pTCP-CR NPs + US group (81.37% ± 3.27%) compared to pTCPP-CR NPs + US (59.77% ± 1.35%) due to CO gas therapy from the TCP moiety (Fig. 3f). Additionally, mortality was higher in the pTCP-CR NPs + US group than pTCP-HG NPs + US (64.36% ± 2.25%) due to more efficient oxidative toxicity of SO4•− from CR (Fig. S36 in Supporting information). These results demonstrate the contribution of both SDT and GT therapy to cell death, activated only by CEs and US. CO and ROS can induce mitochondrial dysfunction and lead to cell apoptosis by decreasing mitochondrial membrane potential (MMP). To assess the therapeutic effect, MMP reduction was measured using 5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolo carbocyanine iodide (JC-1) dye. Following US-triggered treatment, HepG2 cells showed a significant decrease in MMP, shifting JC-1 dye fluorescence from red to green, indicating mitochondrial dysfunction (Fig. 3g). The green/red fluorescence intensity ratio, indicative of mitochondrial damage, was highest in HepG2 cells treated with pTCP-CR NPs and US, demonstrating the most effective mitochondrial damage compared to other cell lines (Figs. S36–S38 in Supporting information).

    The in vivo synergistic anti-cancer therapy was furthermore evaluated using mice bearing H22 tumors. All animal experimental procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Dalian Medical University. The approval number of animal experiments is AEE22049. Initially, pTCP-CR NPs served as an in vivo fluorescence imaging agent to assess drug accumulation and retention. After intravenous injection into mice, fluorescence signals were recorded over time. Results showed discernible signals at the tumor site 2 h post-injection, peaking at 8 h. Minimal signals were observed in mice injected with free CR. Major organs and tumors were harvested 24 h post-injection for ex vivo fluorescence imaging (Fig. 4a). We evaluated the combined therapeutic efficacy of pTCP-CR NPs, pTCPP-CR NPs and pTCP-HG NPs in H22 tumor-bearing mice. Mice were divided into seven groups: PBS only, NPs only, NPs with US, with detailed administration in Fig. 4b, monitoring tumor sizes and body weights daily. Tumors in untreated and NPs-treated mice grew rapidly, while those in groups receiving US showed some inhibition compared to PBS. Notably, group Ⅲ (pTCP-CR NPs + US) displayed the highest inhibition, releasing both CO and enhanced ROS upon US. Tumor images and hematoxylin-eosin staining (H&E) staining confirmed these findings. Mice treated with NPs and US showed no significant weight loss or organ damage, suggesting safety (Figs. 4ce, Figs. S39 and S40 in Supporting information).

    Figure 4

    Figure 4.  (a) In vivo and ex vivo fluorescence images of subcutaneous H22 tumor-bearing mice at different time points (2, 4, 6, 8, and 24 h) post-injection of CR or pTCP-CR NPs (5 mg/kg dose equivalence of CR), with excised organs and tumors at 8 h. (b) Scheme of in vivo tumor suppression experiment. (c) Time-dependent tumor-volume curves. (d) Body weight changes. (e) Digital graphs of dissected solid tumors on day 14. All data are means ± SD (n = 6). ***P < 0.001.

    In summary, a CEs and US co-triggered polysonosensitizer pTCP-CR NPs with “AND gate” logic was developed, in which TCP with ROS and CO generation ability was polymerized with CR with FRET quenching effect and SO4•− generation capability via ester linkers. Either CEs or US itself could not “unlock” pTCP-CR NPs with the releasing of active agents while the anti-cancer efficacy could only be activated upon the co-existence of CEs and US. Such design could avoid the nonspecific targeting and drug activation in the normal tissues via the combination of CEs as the internal trigger and US as an external trigger. A spatio-temporal control of the toxicity activation could also be achieved. Upon activation by two triggers, advanced anti-cancer agents beyond traditional ROS from SDT were simultaneously generated due to the smart design of TCP and CR monomers. TCP monomer can not only generate traditional ROS upon US irradiation, but also be decomposed into CO as therapeutic gas. CR monomer can not only quench the toxicity of TCP at polymer state due to FRET effect, but also be decomposed into SO4•− as more toxic ROS for toxicity boosting. Post SDT treatment, pTCP-CR NPs can be thoroughly decomposed into low-toxic molecules for the fast clearance, avoiding phototoxic side-ffect. Such “AND gate” logic design provided a promising strategy for the precise tumor treatment with limited side-effect.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Shuxin Liu: Writing – review & editing, Writing – original draft, Data curation. Jinjuan Ma: Data curation. Aiguo Wang: Writing – review & editing, Writing – original draft, Resources. Nan Zheng: Writing – review & editing, Writing – original draft, Project administration, Conceptualization.

    This work was supported by grants from the National Natural Science Foundation of China (No. 22375027), the Natural Science Foundation of Jiangsu Province (Nos. BK20221265, BK20211100), the Fundamental Research Funds for the Central Universities (No. DUT23YG133), and the Research Funds from Liaoning Cancer Hospital (No. 2024ZLKF-35). The authors acknowledge the assistance of DUT Instrumental Analysis Center.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2024.110032.


    1. [1]

      P. Vyas, S.E. Jacobsen, Cell Stem Cell 8 (2011) 242–244.  doi: 10.1016/j.stem.2011.02.015

    2. [2]

      C. Sordo-Bahamonde, M. Vitale, S. Lorenzo-Herrero, A. López-Soto, S. Gonzalez, Cancers 12 (2020) 893.  doi: 10.3390/cancers12040893

    3. [3]

      J.N. Kochenderfer, S.A. Rosenberg, Nat. Rev. Clin. Oncol. 10 (2013) 267–276.  doi: 10.1038/nrclinonc.2013.46

    4. [4]

      C.H. June, M. Sadelain, New Engl. J. Med. 379 (2018) 64–73.  doi: 10.1056/nejmra1706169

    5. [5]

      M.V. Maus, Nature 543 (2017) 48–49.  doi: 10.1038/nature21506

    6. [6]

      M.V. Maus, C.H. June, Clin. Cancer Res. 22 (2016) 1875–1884.  doi: 10.1158/1078-0432.CCR-15-1433

    7. [7]

      S. Stoiber, B.L. Cadilha, M.R. Benmebarek, et al., Cells 8 (2019) 472.  doi: 10.3390/cells8050472

    8. [8]

      Z. Walsh, Y. Yang, M.E. Kohler, Immunol. Rev. 290 (2019) 100–113.  doi: 10.1111/imr.12794

    9. [9]

      M.C. Burger, C. Zhang, P.N. Harter, et al., Front. Immunol. 10 (2019) 2683.  doi: 10.3389/fimmu.2019.02683

    10. [10]

      Y. Hu, Z.G. Tian, C. Zhang, Acta Pharmacol. Sin. 39 (2018) 167–176.  doi: 10.1038/aps.2017.125

    11. [11]

      Z. Eshhar, T. Waks, G. Gross, D.G. Schindler, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 720–724.  doi: 10.1073/pnas.90.2.720

    12. [12]

      D. Moritz, W. Wels, J. Mattern, B. Groner, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 4318–4322.  doi: 10.1073/pnas.91.10.4318

    13. [13]

      I. Stancovski, D.G. Schindler, T. Waks, et al., J. Immunol. 151 (1993) 6577–6582.  doi: 10.4049/jimmunol.151.11.6577

    14. [14]

      C. Imai, K. Mihara, M. Andreansky, et al., Leukemia 18 (2004) 676–684.  doi: 10.1038/sj.leu.2403302

    15. [15]

      A.A. Hombach, J. Heiders, M. Foppe, M. Chmielewski, H. Abken, Oncoimmunology 1 (2012) 458–466.  doi: 10.4161/onci.19855

    16. [16]

      M. Chmielewski, A.A. Hombach, H. Abken, Immunol. Rev. 257 (2014) 83–90.  doi: 10.1111/imr.12125

    17. [17]

      V. Hoyos, B. Savoldo, C. Quintarelli, et al., Leukemia 24 (2010) 1160–1170.  doi: 10.1038/leu.2010.75

    18. [18]

      B. Hu, J. Ren, Y. Luo, et al., Cell Rep. 20 (2017) 3025–3033.  doi: 10.1016/j.celrep.2017.09.002

    19. [19]

      M.C. O'Leary, X. Lu, Y. Huang, et al., Clin. Cancer Res. 25 (2019) 1142–1146.  doi: 10.1158/1078-0432.ccr-18-2035

    20. [20]

      N. Bouchkouj, Y.L. Kasamon, R.A. de Claro, et al., Clin. Cancer Res. 25 (2019) 1702–1708.  doi: 10.1158/1078-0432.ccr-18-2743

    21. [21]

      C.H. June, R.S. O'Connor, O.U. Kawalekar, S. Ghassemi, M.C. Milone, Science 359 (2018) 1361–1365.  doi: 10.1126/science.aar6711

    22. [22]

      A. Schmidts, M.V. Maus, Front. Immunol. 9 (2018) 2593.  doi: 10.3389/fimmu.2018.02593

    23. [23]

      K. Newick, S. O'Brien, E. Moon, S.M. Albelda, Annu. Rev. Med. 68 (2017) 139–152.  doi: 10.1146/annurev-med-062315-120245

    24. [24]

      S. Rafiq, C.S. Hackett, R.J. Brentjens, Nat. Rev. Clin. Oncol. 17 (2020) 147–167.  doi: 10.1038/s41571-019-0297-y

    25. [25]

      T. Schioppa, B. Uranchimeg, A. Saccani, et al., J. Exp. Med. 198 (2003) 1391–1402.  doi: 10.1084/jem.20030267

    26. [26]

      G.W. Tormoen, M.R. Crittenden, M.J. Gough, Adv. Radiat. Oncol. 3 (2018) 520–526.  doi: 10.1016/j.adro.2018.08.018

    27. [27]

      S. Wilkie, S.E. Burbridge, L. Chiapero-Stanke, et al., J. Biol. Chem. 285 (2010) 25538–25544.  doi: 10.1074/jbc.M110.127951

    28. [28]

      E.I. Buchbinder, A. Desai, Am. J. Clin. Oncol. 39 (2016) 98–106.  doi: 10.1097/COC.0000000000000239

    29. [29]

      L. Labanieh, R.G. Majzner, C.L. Mackall, Nat. Biomed. Eng. 2 (2018) 377–391.  doi: 10.1038/s41551-018-0235-9

    30. [30]

      S.L. Buchan, L. Dou, M. Remer, et al., Immunity 49 (2018) 958–970 e957.  doi: 10.1016/j.immuni.2018.09.014

    31. [31]

      R. Parihar, C. Rivas, M. Huynh, et al., Cancer Immunol. Res. 7 (2019) 363–375.  doi: 10.1158/2326-6066.cir-18-0572

    32. [32]

      M. Ruella, M. Klichinsky, S.S. Kenderian, et al., Cancer Discov. 7 (2017) 1154–1167.  doi: 10.1158/2159-8290.CD-16-0850

    33. [33]

      S.A. Grupp, M. Kalos, D. Barrett, et al., New Engl. J. Med. 368 (2013) 1509–1518.  doi: 10.1056/NEJMoa1215134

    34. [34]

      J.C. Fitzgerald, S.L. Weiss, S.L. Maude, et al., Crit. Care Med. 45 (2017) e124–e131.  doi: 10.1097/CCM.0000000000002053

    35. [35]

      S.J. Schuster, J. Svoboda, E.A. Chong, et al., New Engl. J. Med. 377 (2017) 2545–2554.  doi: 10.1056/NEJMoa1708566

    36. [36]

      D.W. Lee, B.D. Santomasso, F.L. Locke, et al., Biol. Blood Marrow Transplant. 25 (2019) 625–638.  doi: 10.1016/j.bbmt.2018.12.758

    37. [37]

      H. Klingemann, Oncoimmunology 3 (2014) e28147.  doi: 10.4161/onci.28147

    38. [38]

      L.B. Kennedy, A.K.S. Salama, CA Cancer J. Clin. 70 (2020) 86–104.  doi: 10.3322/caac.21596

    39. [39]

      J. Gust, K.A. Hay, L.A. Hanafi, et al., Cancer Discov. 7 (2017) 1404–1419.  doi: 10.1158/2159-8290.CD-17-0698

    40. [40]

      B.D. Santomasso, J.H. Park, D. Salloum, et al., Cancer Discov. 8 (2018) 958–971.  doi: 10.1158/2159-8290.cd-17-1319

    41. [41]

      K.R. Parker, D. Migliorini, E. Perkey, et al., Cell 183 (2020) 126–142 e117.  doi: 10.1016/j.cell.2020.08.022

    42. [42]

      J.N. Brudno, J.N. Kochenderfer, Blood Rev. 34 (2019) 45–55.  doi: 10.1016/j.blre.2018.11.002

    43. [43]

      M. Namuduri, R.J. Brentjens, Expert Rev. Hematol. 9 (2016) 511–513.  doi: 10.1080/17474086.2016.1183479

    44. [44]

      S.L. Maude, N. Frey, P.A. Shaw, et al., New Engl. J. Med. 371 (2014) 1507–1517.  doi: 10.1056/NEJMoa1407222

    45. [45]

      D. Kalyane, N. Raval, R. Maheshwari, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 98 (2019) 1252–1276.  doi: 10.1016/j.msec.2019.01.066

    46. [46]

      J. Wu, J. Pers. Med. 11 (2021) 771.  doi: 10.3390/jpm11080771

    47. [47]

      M. Zhao, D. van Straten, M.L.D. Broekman, V. Préat, R.M. Schiffelers, Theranostics 10 (2020) 1355–1372.  doi: 10.7150/thno.38147

    48. [48]

      C. Hamers-Casterman, T. Atarhouch, S. Muyldermans, et al., Nature 363 (1993) 446–448.  doi: 10.1038/363446a0

    49. [49]

      P. Safarzadeh Kozani, A. Naseri, S.M.J. Mirarefin, et al., Biomark. Res. 10 (2022) 24.  doi: 10.1186/s40364-022-00371-7

    50. [50]

      J.R. Ingram, F.I. Schmidt, H.L. Ploegh, Annu. Rev. Immunol. 36 (2018) 695–715.  doi: 10.1146/annurev-immunol-042617-053327

    51. [51]

      H. Revets, P. De Baetselier, S. Muyldermans, Expert Opin. Biol. Ther. 5 (2005) 111–124.  doi: 10.1517/14712598.5.1.111

    52. [52]

      S. Muyldermans, Annu. Rev. Biochem. 82 (2013) 775–797.  doi: 10.1146/annurev-biochem-063011-092449

    53. [53]

      J. Jayaraman, M.P. Mellody, A.J. Hou, et al., EBioMedicine 8 (2020) 102931.  doi: 10.1016/j.ebiom.2020.102931

    54. [54]

      W. Sun, J. Xie, H. Lin, et al., Protein Expr. Purif. 83 (2012) 21–29.  doi: 10.1016/j.pep.2012.02.006

    55. [55]

      S. Muyldermans, J. Biotechnol. 74 (2001) 277–302.

    56. [56]

      B.M. Tijink, T. Laeremans, M. Budde, et al., Mol. Cancer Ther. 7 (2008) 2288–2297.  doi: 10.1158/1535-7163.MCT-07-2384

    57. [57]

      C. Bao, Q. Gao, L.L. Li, et al., Biomolecules 11 (2021) 238.  doi: 10.3390/biom11020238

    58. [58]

      M.M. Harmsen, H.J. De Haard, Appl. Microbiol. Biotechnol. 77 (2007) 13–22.  doi: 10.1007/s00253-007-1142-2

    59. [59]

      F.J. Iri-Sofla, F. Rahbarizadeh, D. Ahmadvand, M.J. Rasaee, Exp. Cell Res. 317 (2011) 2630–2641.  doi: 10.1016/j.yexcr.2011.08.015

    60. [60]

      S. Khaleghi, F. Rahbarizadeh, D. Ahmadvand, M.J. Rasaee, P. Pognonec, Int. J. Hematol. 95 (2012) 434–444.  doi: 10.1007/s12185-012-1037-6

    61. [61]

      Z. Sharifzadeh, F. Rahbarizadeh, M.A. Shokrgozar, et al., Cancer Lett. 334 (2013) 237–244.  doi: 10.1016/j.canlet.2012.08.010

    62. [62]

      S.H. Bakhtiari, F. Rahbarizadeh, S. Hasannia, et al., Hybridoma (2005) 28 (2009) 85–92.  doi: 10.1089/hyb.2008.0079

    63. [63]

      N. Li, H. Fu, S.M. Hewitt, D.S. Dimitrov, M. Ho, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) E6623–e6631.  doi: 10.1073/pnas.1700536114

    64. [64]

      M. Hassani, F. Hajari Taheri, Z. Sharifzadeh, et al., J. Cell. Biochem. 120 (2019) 10787–10795.  doi: 10.1002/jcb.28370

    65. [65]

      Y.J. Xie, M. Dougan, N. Jailkhani, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 7624–7631.  doi: 10.1073/pnas.1817147116

    66. [66]

      F. Hajari Taheri, M. Hassani, Z. Sharifzadeh, et al., IUBMB Life 71 (2019) 1259–1267.  doi: 10.1002/iub.2019

    67. [67]

      F.R. Jamnani, F. Rahbarizadeh, M.A. Shokrgozar, et al., Biochim. Biophys. Acta 1840 (2014) 378–386.  doi: 10.1016/j.bbagen.2013.09.029

    68. [68]

      N. An, Y.N. Hou, Q.X. Zhang, et al., Mol. Pharm. 15 (2018) 4577–4588.  doi: 10.1021/acs.molpharmaceut.8b00584

    69. [69]

      J. Xu, L.J. Chen, S.S. Yang, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 9543–9551.  doi: 10.1073/pnas.1819745116

    70. [70]

      S. De Munter, A. Van Parys, L. Bral, et al., Int. J. Mol. Sci. 21 (2020) 833.  doi: 10.3390/ijms21030833

    71. [71]

      T. Zhang, T. Wang, F. You, et al., Transpl. Immunol. 71 (2022) 101538.  doi: 10.1016/j.trim.2022.101538

    72. [72]

      M. Zhang, D. Chen, X. Fu, et al., Clin. Cancer Res. (2022) 2830–2843.  doi: 10.1158/1078-0432.ccr-21-4097

    73. [73]

      D. Chen, F. You, S. Xiang, et al., Am. J. Cancer Res. 11 (2021) 5263–5281.

    74. [74]

      M.A. Nix, K. Mandal, H. Geng, et al., Cancer Discov. 11 (2021) 2032–2049.  doi: 10.1158/2159-8290.cd-20-0242

    75. [75]

      Z. Feng, X. He, X. Zhang, et al., Nat. Cancer (2022) 581–594.  doi: 10.1038/s43018-022-00344-7

    76. [76]

      F. Mo, S. Duan, X. Jiang, et al., Signal Transduct. Target. Ther. 6 (2021) 80.  doi: 10.1038/s41392-021-00462-1

    77. [77]

      L. Han, J. Zhou, K. Zhou, et al., J. Immunother. Cancer 8 (2020) e000927.  doi: 10.1136/jitc-2020-000927

    78. [78]

      S. De Munter, J. Ingels, G. Goetgeluk, et al., Int. J. Mol. Sci. 19 (2018) 403.  doi: 10.3390/ijms19020403

    79. [79]

      H. Wang, L. Wang, Y. Li, et al., Cancer Cell Int. 21 (2021) 450.  doi: 10.1186/s12935-021-02151-z

    80. [80]

      R.C. Larson, M.V. Maus, Nat. Rev. Cancer 21 (2021) 145–161.  doi: 10.1038/s41568-020-00323-z

    81. [81]

      S. Albert, C. Arndt, A. Feldmann, et al., Oncoimmunology 6 (2017) e1287246.  doi: 10.1080/2162402X.2017.1287246

    82. [82]

      S. Albert, C. Arndt, S. Koristka, et al., Oncotarget 9 (2018) 25597–25616.  doi: 10.18632/oncotarget.25390

    83. [83]

      K. L A.R.K. Kumar, Y. Shou, B. Chan, A. Tay, Adv. Mater. 33 (2021) e2007421.  doi: 10.1002/adma.202007421

    84. [84]

      B.L. Levine, J. Miskin, K. Wonnacott, C. Keir, Mol. Ther. Methods Clin. Dev. 4 (2017) 92–101.  doi: 10.1016/j.omtm.2016.12.006

    85. [85]

      V. Poletti, F. Mavilio, Mol. Ther. Methods Clin. Dev. 8 (2018) 31–41.  doi: 10.1016/j.omtm.2017.10.001

    86. [86]

      C.H. June, B.R. Blazar, J.L. Riley, Nat. Rev. Immunol. 9 (2009) 704–716.  doi: 10.1038/nri2635

    87. [87]

      P. Vormittag, R. Gunn, S. Ghorashian, F.S. Veraitch, Curr. Opin. Biotechnol. 53 (2018) 164–181.  doi: 10.1016/j.copbio.2018.01.025

    88. [88]

      H. Nakai, E. Montini, S. Fuess, et al., Nat. Genet. 34 (2003) 297–302.  doi: 10.1038/ng1179

    89. [89]

      A. Donsante, D.G. Miller, Y. Li, et al., Science 317 (2007) 477.  doi: 10.1126/science.1142658

    90. [90]

      A. Tay, N. Melosh, Adv. Ther. 2 (2019) 1900133.  doi: 10.1002/adtp.201900133

    91. [91]

      Y.C. Wu, T.H. Wu, D.L. Clemens, et al., Nat. Methods 12 (2015) 439–444.  doi: 10.1038/nmeth.3357

    92. [92]

      M.P. Stewart, A. Sharei, X. Ding, et al., Nature 538 (2016) 183–192.  doi: 10.1038/nature19764

    93. [93]

      S. Sun, V.B. Rao, M.G. Rossmann, Curr. Opin. Struct. Biol. 20 (2010) 114–120.  doi: 10.1016/j.sbi.2009.12.006

    94. [94]

      E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, EMBO J. 1 (1982) 841–845.  doi: 10.1002/j.1460-2075.1982.tb01257.x

    95. [95]

      T.Y. Tsong, Biophys. J. 60 (1991) 297–306.  doi: 10.1016/S0006-3495(91)82054-9

    96. [96]

      X. Xu, D. Gao, P. Wang, et al., Sci. Rep. 8 (2018) 11649.  doi: 10.1038/s41598-018-30227-w

    97. [97]

      J.T. Sengel, M.I. Wallace, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 5281–5286.  doi: 10.1073/pnas.1517437113

    98. [98]

      J.C. Weaver, Y.A. Chizmadzhev, Bioelectrochem. Bioenerg. 41 (1996) 135–160.  doi: 10.1016/S0302-4598(96)05062-3

    99. [99]

      D. Morita, N. Nishio, S. Saito, et al., Mol. Ther. Methods Clin. Dev. 8 (2018) 131–140.  doi: 10.1016/j.omtm.2017.12.003

    100. [100]

      S. Saito, Y. Nakazawa, A. Sueki, et al., Cytotherapy 16 (2014) 1257–1269.  doi: 10.1016/j.jcyt.2014.05.022

    101. [101]

      I. Querques, A. Mades, C. Zuliani, et al., Nat. Biotechnol. 37 (2019) 1502–1512.  doi: 10.1038/s41587-019-0291-z

    102. [102]

      Q. Gao, X. Dong, Q. Xu, et al., Cancer Med. 8 (2019) 4254–4264.  doi: 10.1002/cam4.2257

    103. [103]

      L. Mátés, M.K. Chuah, E. Belay, et al., Nat. Genet. 41 (2009) 753–761.  doi: 10.1038/ng.343

    104. [104]

      X. Xue, X. Huang, S.E. Nodland, et al., Blood 114 (2009) 1319–1330.  doi: 10.1182/blood-2009-03-210005

    105. [105]

      T.T. Smith, S.B. Stephan, H.F. Moffett, et al., Nat. Nanotechnol. 12 (2017) 813–820.  doi: 10.1038/nnano.2017.57

    106. [106]

      C.J. McKinlay, N.L. Benner, O.A. Haabeth, R.M. Waymouth, P.A. Wender, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E5859–E5866.

    107. [107]

      B. Mostaghaci, J. Susewind, G. Kickelbick, C.M. Lehr, B. Loretz, ACS Appl. Mater. Interfaces 7 (2015) 5124–5133.  doi: 10.1021/am507193a

    108. [108]

      L. Raes, S.C. De Smedt, K. Raemdonck, K. Braeckmans, Biotechnol. Adv. 49 (2021) 107760.  doi: 10.1016/j.biotechadv.2021.107760

    109. [109]

      B.R. Olden, Y. Cheng, J.L. Yu, S.H. Pun, J. Control. Release 282 (2018) 140–147.  doi: 10.1016/j.jconrel.2018.02.043

    110. [110]

      W.P. Verdurmen, R. Wallbrecher, S. Schmidt, et al., J. Control. Release 170 (2013) 83–91.  doi: 10.1016/j.jconrel.2013.05.001

    111. [111]

      S.A.B. Riedl, P. Kaiser, A. Raup, et al., Processes 6 (2018) 188.  doi: 10.3390/pr6100188

    112. [112]

      W. Nawaz, S. Xu, Y. Li, et al., Acta Biomater. 109 (2020) 21–36.  doi: 10.1016/j.actbio.2020.04.015

    113. [113]

      H. Yin, R.L. Kanasty, A.A. Eltoukhy, et al., Nat. Rev. Genet. 15 (2014) 541–555.  doi: 10.1038/nrg3763

    114. [114]

      Y. Song, J. Hormes, C.S. Kumar, Small 4 (2008) 698–711.  doi: 10.1002/smll.200701029

    115. [115]

      H. Dong, M. Zhu, J.A. Yoon, et al., J. Am. Chem. Soc. 130 (2008) 12852–12853.  doi: 10.1021/ja8038097

    116. [116]

      J. Xie, S. Peng, N. Brower, et al., Pure Appl. Chem. 78 (2006) 1003–1014.  doi: 10.1351/pac200678051003

    117. [117]

      O. Boussif, F. Lezoualc'h, M.A. Zanta, et al., Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 7297–7301.  doi: 10.1073/pnas.92.16.7297

    118. [118]

      J.J. Virgen-Ortíz, J.C.S. Dos Santos, Á. Berenguer-Murcia, et al., J. Mater. Chem. B 5 (2017) 7461–7490.  doi: 10.1039/C7TB01639E

    119. [119]

      J. Fan, Q. He, Z. Jin, W. Chen, W. Huang, RSC Adv. 8 (2018) 14975–14982.  doi: 10.1039/c8ra02133c

    120. [120]

      Q. Yu, M. Zhang, Y. Chen, et al., Int. J. Nanomed. 15 (2020) 483–495.  doi: 10.2147/ijn.s229858

    121. [121]

      I.A. Khalil, K. Kogure, H. Akita, H. Harashima, Pharmacol. Rev. 58 (2006) 32–45.  doi: 10.1124/pr.58.1.8

    122. [122]

      K.A. Mislick, J.D. Baldeschwieler, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 12349–12354.  doi: 10.1073/pnas.93.22.12349

    123. [123]

      A. Harizaj, M. Wels, L. Raes, et al., Adv. Funct. Mater. 31 (2021) 2102472.  doi: 10.1002/adfm.202102472

    124. [124]

      Y. Zhao, L. Huang, Adv. Genet. 88 (2014) 13–36.

    125. [125]

      D. Luo, W.M. Saltzman, Nat. Biotechnol. 18 (2000) 33–37.  doi: 10.1038/71889

    126. [126]

      A. Yen, Y. Cheng, M. Sylvestre, et al., Mol. Pharm. 15 (2018) 2268–2276.  doi: 10.1021/acs.molpharmaceut.8b00134

    127. [127]

      S. Warashina, T. Nakamura, Y. Sato, et al., J. Control. Release 225 (2016) 183–191.  doi: 10.1016/j.jconrel.2016.01.042

    128. [128]

      T. Nakamura, M. Kuroi, Y. Fujiwara, et al., Sci. Rep. 6 (2016) 37849.  doi: 10.1038/srep37849

    129. [129]

      Y. Sawalha, A.S. Advani, Int. J. Hematol. Oncol. 7 (2018) Ijh02.  doi: 10.2217/ijh-2017-0023

    130. [130]

      E. Samaridou, J. Heyes, P. Lutwyche, Adv. Drug. Deliv. Rev. 154-155 (2020) 37–63.  doi: 10.1016/j.addr.2020.06.002

    131. [131]

      X. Zhao, J. Chen, M. Qiu, et al., Angew Chem. Int. Ed. 59 (2020) 20083–20089.  doi: 10.1002/anie.202008082

    132. [132]

      M.M. Billingsley, N. Singh, P. Ravikumar, et al., Nano Lett. 20 (2020) 1578–1589.  doi: 10.1021/acs.nanolett.9b04246

    133. [133]

      M.M. Billingsley, A.G. Hamilton, D. Mai, et al., Nano Lett. (2021) 533–542.

    134. [134]

      H.F. Moffett, M.E. Coon, S. Radtke, et al., Nat. Commun. 8 (2017) 389.  doi: 10.1038/s41467-017-00505-8

    135. [135]

      K. Garber, Nat. Biotechnol. 36 (2018) 777–778.  doi: 10.1038/nbt0918-777

    136. [136]

      H. Pan, P. Zhang, D. Gao, et al., ACS Nano 8 (2014) 5468–5477.  doi: 10.1021/nn501028b

    137. [137]

      H. Pan, P. Li, G. Li, et al., Adv. Funct. Mater. 29 (2019) 1807528.  doi: 10.1002/adfm.201807528

    138. [138]

      A. Tay, N. Melosh, Small 17 (2021) e2103198.  doi: 10.1002/smll.202103198

    139. [139]

      L.H. Wang, D.C. Wu, H.X. Xu, Y.Z. You, Angew. Chem. Int. Ed. 55 (2016) 755–759.  doi: 10.1002/anie.201508695

    140. [140]

      Y. Zheng, Z.R. Li, R. Yue, et al., Am. J. Transl. Res. 11 (2019) 7126–7136.

    141. [141]

      R.P. Somerville, M.E. Dudley, Oncoimmunology 1 (2012) 1435–1437.  doi: 10.4161/onci.21206

    142. [142]

      R.P. Somerville, L. Devillier, M.R. Parkhurst, S.A. Rosenberg, M.E. Dudley, J. Transl. Med. 10 (2012) 69.  doi: 10.1186/1479-5876-10-69

    143. [143]

      B.L. Levine, Cancer Gene Ther. 22 (2015) 79–84.  doi: 10.1038/cgt.2015.5

    144. [144]

      D. Hollyman, J. Stefanski, M. Przybylowski, et al., J. Immunother. 32 (2009) 169–180.  doi: 10.1097/CJI.0b013e318194a6e8

    145. [145]

      A.D. Kaiser, M. Assenmacher, B. Schröder, et al., Cancer Gene Ther. 22 (2015) 72–78.  doi: 10.1038/cgt.2014.78

    146. [146]

      P. Bajgain, R. Mucharla, J. Wilson, et al., Mol. Ther. Methods Clin. Dev. 1 (2014) 14015.  doi: 10.1038/mtm.2014.15

    147. [147]

      J. Jin, M. Sabatino, R. Somerville, et al., J. Immunother. 35 (2012) 283–292.  doi: 10.1097/CJI.0b013e31824e801f

    148. [148]

      U. Mock, L. Nickolay, B. Philip, et al., Cytotherapy 18 (2016) 1002–1011.  doi: 10.1016/j.jcyt.2016.05.009

    149. [149]

      M. Apel, M. Bruening, M. Granzin, et al., Chem. Ing. Tech. 85 (2013) 103–110.  doi: 10.1002/cite.201200175

    150. [150]

      H. Lin, Q. Li, O. Wang, et al., Adv. Healthc. Mater. 7 (2018) e1701297.  doi: 10.1002/adhm.201701297

    151. [151]

      M.E. Coon, S.B. Stephan, V. Gupta, C.P. Kealey, M.T. Stephan, Nat. Biomed. Eng. 4 (2020) 195–206.

    152. [152]

      T.R. Fadel, F.A. Sharp, N. Vudattu, et al., Nat. Nanotechnol. 9 (2014) 639–647.  doi: 10.1038/nnano.2014.154

    153. [153]

      A.S. Cheung, D.K.Y. Zhang, S.T. Koshy, D.J. Mooney, Nat. Biotechnol. 36 (2018) 160–169.  doi: 10.1038/nbt.4047

    154. [154]

      Y. Wang, F. Luo, J. Yang, C. Zhao, Y. Chu, Front. Immunol. 8 (2017) 1934.  doi: 10.3389/fimmu.2017.01934

    155. [155]

      M. Binnewies, E.W. Roberts, K. Kersten, et al., Nat. Med. 24 (2018) 541–550.  doi: 10.1038/s41591-018-0014-x

    156. [156]

      W. Zou, Nat. Rev. Cancer 5 (2005) 263–274.  doi: 10.1038/nrc1586

    157. [157]

      J.R. Groom, A.D. Luster, Immunol. Cell Biol. 89 (2011) 207–215.  doi: 10.1038/icb.2010.158

    158. [158]

      E.M. Hanson, V.K. Clements, P. Sinha, D. Ilkovitch, S. Ostrand-Rosenberg, J. Immunol. 183 (2009) 937–944.  doi: 10.4049/jimmunol.0804253

    159. [159]

      C.Y. Slaney, M.H. Kershaw, P.K. Darcy, Cancer Res. 74 (2014) 7168–7174.  doi: 10.1158/0008-5472.CAN-14-2458

    160. [160]

      A. Ohta, E. Gorelik, S.J. Prasad, et al., Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 13132–13137.  doi: 10.1073/pnas.0605251103

    161. [161]

      C. Cekic, J. Linden, Cancer Res. 74 (2014) 7239–7249.  doi: 10.1158/0008-5472.CAN-13-3581

    162. [162]

      P.A. Beavis, M.A. Henderson, L. Giuffrida, et al., J. Clin. Invest. 127 (2017) 929–941.  doi: 10.1172/JCI89455

    163. [163]

      J. Li, W. Li, K. Huang, et al., J. Hematol. Oncol. 11 (2018) 22.  doi: 10.1504/ijhpcn.2018.10025202

    164. [164]

      R.G. Majzner, S. Heitzeneder, C.L. Mackall, Cancer Cell 31 (2017) 476–485.  doi: 10.1016/j.ccell.2017.03.002

    165. [165]

      C.J. Turtle, L.A. Hanafi, C. Berger, et al., J. Clin. Invest. 126 (2016) 2123–2138.  doi: 10.1172/JCI85309

    166. [166]

      R. Gardner, D. Wu, S. Cherian, et al., Blood 127 (2016) 2406–2410.  doi: 10.1182/blood-2015-08-665547

    167. [167]

      E. Jacoby, S.M. Nguyen, T.J. Fountaine, et al., Nat. Commun. 7 (2016) 12320.  doi: 10.1038/ncomms12320

    168. [168]

      R.G. Majzner, C.L. Mackall, Cancer Discov. 8 (2018) 1219–1226.  doi: 10.1158/2159-8290.cd-18-0442

    169. [169]

      S.L. Maude, D.T. Teachey, S.R. Rheingold, et al., J. Clin. Oncol. 34 (2016) 3011.  doi: 10.1200/JCO.2016.34.15_suppl.3011

    170. [170]

      S.L. Maude, T.W. Laetsch, J. Buechner, et al., New Engl. J. Med. 378 (2018) 439–448.  doi: 10.1056/nejmoa1709866

    171. [171]

      R. Gardner, O. Finney, H. Smithers, et al., Blood 128 (2016) 219.  doi: 10.1182/blood.v128.22.219.219

    172. [172]

      D.W. Lee, M. Stetler-Stevenson, C.M. Yuan, et al., Blood 128 (2016) 218.  doi: 10.1182/blood.V128.22.218.218

    173. [173]

      T.J. Fry, N.N. Shah, R.J. Orentas, et al., Nat. Med. 24 (2018) 20–28.  doi: 10.1038/nm.4441

    174. [174]

      A.R. Pyzer, D. Stroopinsky, H. Rajabi, et al., Blood 129 (2017) 1791–1801.  doi: 10.1182/blood-2016-07-730614

    175. [175]

      R. Jitschin, D. Saul, M. Braun, et al., J. Immunother. Cancer 6 (2018) 116.  doi: 10.1186/s40425-018-0432-9

    176. [176]

      A.K. Park, Y. Fong, S.I. Kim, et al., Sci. Transl. Med. 12 (2020) eaaz1863.  doi: 10.1126/scitranslmed.aaz1863

    177. [177]

      N. Nishio, G. Dotti, Oncoimmunology 4 (2015) e988098.  doi: 10.4161/21505594.2014.988098

    178. [178]

      E.K. Moon, L.S. Wang, K. Bekdache, et al., Oncoimmunology 7 (2018) e1395997.  doi: 10.1080/2162402X.2017.1395997

    179. [179]

      A. Aalipour, F. Le Boeuf, M. Tang, et al., Mol. Ther. Oncolytics 17 (2020) 232–240.  doi: 10.1016/j.omto.2020.03.018

    180. [180]

      J. Ren, X. Liu, C. Fang, et al., Clin. Cancer Res. 23 (2017) 2255–2266.  doi: 10.1158/1078-0432.CCR-16-1300

    181. [181]

      J.R. Hamilton, C.A. Tsuchida, D.N. Nguyen, et al., Cell Rep. 35 (2021) 109207.  doi: 10.1016/j.celrep.2021.109207

    182. [182]

      M. Hale, B. Lee, Y. Honaker, et al., Mol. Ther. Methods Clin. Dev. 4 (2017) 192–203.  doi: 10.1016/j.omtm.2016.12.008

    183. [183]

      J. Eyquem, J. Mansilla-Soto, T. Giavridis, et al., Nature 543 (2017) 113–117.  doi: 10.1038/nature21405

    184. [184]

      L.J. Rupp, K. Schumann, K.T. Roybal, et al., Sci. Rep. 7 (2017) 737.  doi: 10.1038/s41598-017-00462-8

    185. [185]

      T. Nakazawa, A. Natsume, F. Nishimura, et al., Cells 9 (2020) 998.  doi: 10.3390/cells9040998

    186. [186]

      K. Reinhard, B. Rengstl, P. Oehm, et al., Science 367 (2020) 446–453.  doi: 10.1126/science.aay5967

    187. [187]

      M.N. Garas, S.V. Tillib, O.V. Zubkova, et al., Acta Nat. 6 (2014) 95–105.  doi: 10.32607/20758251-2014-6-2-95-105

    188. [188]

      Y. Zhai, W. Ran, J. Su, et al., Adv. Mater. (2018) e1802378.

    189. [189]

      G.B. Kim, V. Aragon-Sanabria, L. Randolph, et al., Bioact. Mater. 5 (2020) 624–635.  doi: 10.1016/j.bioactmat.2020.04.011

    190. [190]

      V. de Turris, M. Cardoso Trabuco, G. Peruzzi, et al., Nanoscale 9 (2017) 647–655.  doi: 10.1039/C6NR07129E

    191. [191]

      C.T. Jiang, K.G. Chen, A. Liu, et al., Nat. Commun. 12 (2021) 1359.  doi: 10.1038/s41467-021-21497-6

    192. [192]

      X. Huang, J.Z. Williams, R. Chang, et al., Nat. Nanotechnol. 16 (2021) 214–223.  doi: 10.1038/s41565-020-00813-z

    193. [193]

      L. Ma, T. Dichwalkar, J.Y.H. Chang, et al., Science 365 (2019) 162–168.  doi: 10.1126/science.aav8692

    194. [194]

      D. Schmid, C.G. Park, C.A. Hartl, et al., Nat. Commun. 8 (2017) 1747.  doi: 10.1038/s41467-017-01830-8

    195. [195]

      F. Zhang, S.B. Stephan, C.I. Ene, et al., Cancer Res. 78 (2018) 3718–3730.  doi: 10.1158/0008-5472.can-18-0306

    196. [196]

      N. Siriwon, Y.J. Kim, E. Siegler, et al., Cancer Immunol. Res. 6 (2018) 812–824.  doi: 10.1158/2326-6066.cir-17-0502

    197. [197]

      C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu, Nano Lett. 16 (2016) 2334–2340.  doi: 10.1021/acs.nanolett.5b05030

    198. [198]

      C. Wang, W. Sun, Y. Ye, et al., Nat. Biomed. Eng. 1 (2017) 0011.  doi: 10.1038/s41551-016-0011

    199. [199]

      S. Han, W. Wang, S. Wang, et al., Theranostics 11 (2021) 2892–2916.  doi: 10.7150/thno.50928

    200. [200]

      W. Ou, R.K. Thapa, L. Jiang, et al., J. Control. Release 281 (2018) 84–96.  doi: 10.1016/j.jconrel.2018.05.018

    201. [201]

      Q. Liu, D. Zhang, H. Qian, et al., Int. J. Nanomed. 15 (2020) 3669–3680.  doi: 10.2147/ijn.s249174

    202. [202]

      J. Li, D.J. Mooney, Nat. Rev. Mater. 1 (2016) 16071.  doi: 10.1038/natrevmats.2016.71

    203. [203]

      S.W. Jung, S.H. Oh, I.S. Lee, J.H. Byun, J.H. Lee, Tissue Eng. Regen. Med. 16 (2019) 479–490.  doi: 10.1007/s13770-019-00206-x

    204. [204]

      Y. Ando, E.L. Siegler, H.P. Ta, et al., Adv. Healthc. Mater. 8 (2019) e1900001.  doi: 10.1002/adhm.201900001

    205. [205]

      Y. Hori, A.M. Winans, C.C. Huang, E.M. Horrigan, D.J. Irvine, Biomaterials 29 (2008) 3671–3682.  doi: 10.1016/j.biomaterials.2008.05.033

    206. [206]

      K. Wang, Y. Chen, S. Ahn, et al., Nat. Cancer 1 (2020) 990–997.  doi: 10.1038/s43018-020-00119-y

    207. [207]

      Y. Dong, S. Li, X. Li, X. Wang, Int. J. Biol. Macromol. 190 (2021) 693–699.  doi: 10.1016/j.ijbiomac.2021.09.037

    208. [208]

      Y. Cao, Y. Zhou, Z. Chen, et al., Adv. Healthc. Mater. 10 (2021) e2100814.  doi: 10.1002/adhm.202100814

    209. [209]

      C. Liu, P. Leon-Plata, M. Zaroudi, et al., ACS Appl. Bio. Mater. 3 (2020) 7357–7362.  doi: 10.1021/acsabm.0c00992

    210. [210]

      E.A. Ogunnaike, A. Valdivia, M. Yazdimamaghani, et al., Sci. Adv. 7 (2021) eabg5841.  doi: 10.1126/sciadv.abg5841

    211. [211]

      X. Dong, A. Yang, Y. Bai, D. Kong, F. Lv, Biomaterials 230 (2020) 119659.  doi: 10.1016/j.biomaterials.2019.119659

    212. [212]

      A.F. Atik, C.M. Suryadevara, R.M. Schweller, et al., J. Clin. Neurosci. 56 (2018) 163–168.  doi: 10.1016/j.jocn.2018.06.005

    213. [213]

      Q. Hu, H. Li, E. Archibong, et al., Nat. Biomed. Eng. 5 (2021) 1038–1047.  doi: 10.1038/s41551-021-00712-1

    214. [214]

      Z. Luo, Z. Liu, Z. Liang, et al., ACS Appl. Mater. Interfaces 12 (2020) 56712–56722.  doi: 10.1021/acsami.0c15239

    215. [215]

      T. Shang, X. Yu, S. Han, B. Yang, Biomater. Sci. 8 (2020) 5241–5259.  doi: 10.1039/d0bm01158d

    216. [216]

      X. Xu, T. Li, S. Shen, et al., Theranostics 9 (2019) 7889–7905.  doi: 10.7150/thno.38583

    217. [217]

      R. Ahmad, J. Fu, N. He, S. Li, J. Nanosci. Nanotechnol. 16 (2016) 67–80.  doi: 10.1166/jnn.2016.10770

    218. [218]

      Y. Huang, G. Zeng, Q. Xin, et al., MedComm 1 (2020) 202–210.  doi: 10.1002/mco2.28

    219. [219]

      T. Yata, Y. Takahashi, M. Tan, et al., Biomaterials 146 (2017) 136–145.  doi: 10.1016/j.biomaterials.2017.09.014

    220. [220]

      J. Nam, S. Son, L.J. Ochyl, et al., Nat. Commun. 9 (2018) 1074.  doi: 10.1038/s41467-018-03473-9

    221. [221]

      A.L. Oei, L.E. Vriend, J. Crezee, N.A. Franken, P.M. Krawczyk, Radiat. Oncol. 10 (2015) 165.  doi: 10.1186/s13014-015-0462-0

    222. [222]

      S. Wang, Q. Zhang, X.F. Luo, et al., Biomaterials 35 (2014) 9473–9483.  doi: 10.1016/j.biomaterials.2014.07.064

    223. [223]

      H. Yang, H. He, Z. Tong, et al., J. Colloid Interface Sci. 565 (2020) 186–196.  doi: 10.1016/j.jcis.2020.01.026

    224. [224]

      Z. Liao, W. Zhang, Z. Qiao, et al., J. Colloid Interface Sci. 562 (2020) 81–90.  doi: 10.1016/j.jcis.2019.11.055

    225. [225]

      X. Zhang, J. Tang, C. Li, et al., Bioact. Mater. 6 (2021) 472–489.  doi: 10.1016/j.bioactmat.2020.08.024

    226. [226]

      F. Zhang, G. Lu, X. Wen, et al., J. Control. Release 326 (2020) 131–139.  doi: 10.1016/j.jconrel.2020.06.015

    227. [227]

      Q. Yang, J. Peng, K. Shi, et al., J. Control. Release 308 (2019) 29–43.  doi: 10.1016/j.jconrel.2019.06.031

    228. [228]

      X. Yi, Q.Y. Duan, F.G. Wu, Research 2021 (2021) 9816594.

    229. [229]

      I.C. Miller, A. Zamat, L.K. Sun, et al., Nat. Biomed. Eng. (2021) 1348–1359.  doi: 10.1038/s41551-021-00781-2

    230. [230]

      W. Ma, D. Zhu, J. Li, et al., Theranostics 10 (2020) 1281–1295.  doi: 10.7150/thno.40291

    231. [231]

      Q. Chen, Q. Hu, E. Dukhovlinova, et al., Adv. Mater. 31 (2019) e1900192.  doi: 10.1002/adma.201900192

    232. [232]

      L. Zhu, J. Liu, G. Zhou, et al., Small (2021) e2102624.

    233. [233]

      Z. Chen, H. Pan, Y. Luo, et al., Small 17 (2021) e2007494.  doi: 10.1002/smll.202007494

    234. [234]

      H.J. Jackson, S. Rafiq, R.J. Brentjens, Nat. Rev. Clin. Oncol. 13 (2016) 370–383.  doi: 10.1038/nrclinonc.2016.36

    235. [235]

      S.S. Neelapu, S. Tummala, P. Kebriaei, et al., Nat. Rev. Clin. Oncol. 15 (2018) 47–62.  doi: 10.1038/nrclinonc.2017.148

    236. [236]

      B. Wolf, S. Zimmermann, C. Arber, et al., Drug Saf. 42 (2019) 315–334.  doi: 10.1007/s40264-018-0779-3

    237. [237]

      M. Norelli, B. Camisa, G. Barbiera, et al., Nat. Med. 24 (2018) 739–748.  doi: 10.1038/s41591-018-0036-4

    238. [238]

      T. Giavridis, S.J.C. van der Stegen, J. Eyquem, et al., Nat. Med. 24 (2018) 731–738.  doi: 10.1038/s41591-018-0041-7

    239. [239]

      Y. Liu, Y. Fang, X. Chen, et al., Sci. Immunol. 5 (2020) eaax7969.  doi: 10.1126/sciimmunol.aax7969

    240. [240]

      A. Taraseviciute, V. Tkachev, R. Ponce, et al., Cancer Discov. 8 (2018) 750–763.  doi: 10.1158/2159-8290.cd-17-1368

    241. [241]

      S.J. Schuster, J. Svoboda, E.A. Chong, et al., New Engl. J. Med. 377 (2017) 2545–2554.  doi: 10.1056/NEJMoa1708566

    242. [242]

      S.L. Maude, N. Frey, P.A. Shaw, et al., New Engl. J. Med. 371 (2014) 1507–1517.  doi: 10.1056/NEJMoa1407222

    243. [243]

      M.L. Davila, I. Riviere, X. Wang, et al., Sci. Transl. Med. 6 (2014) 224 ra25.

    244. [244]

      C.J. Turtle, K.A. Hay, J. Gust, et al., J. Clin. Oncol. 35 (2017) 3020.  doi: 10.1200/JCO.2017.35.15_suppl.3020

    245. [245]

      D.W. Lee, R. Gardner, D.L. Porter, et al., Blood 124 (2014) 188–195.  doi: 10.1182/blood-2014-05-552729

    246. [246]

      C.J. Turtle, L.A. Hanafi, C. Berger, et al., J. Clin. Invest. 126 (2016) 2123–2138.  doi: 10.1172/JCI85309

    247. [247]

      J.N. Brudno, J.N. Kochenderfer, Blood Rev. 34 (2019) 45–55.  doi: 10.1016/j.blre.2018.11.002

    248. [248]

      T. Giavridis, S.J.C. van der Stegen, J. Eyquem, et al., Nat. Med. 24 (2018) 731–738.  doi: 10.1038/s41591-018-0041-7

    249. [249]

      R.M. Sterner, R. Sakemura, M.J. Cox, et al., Blood 133 (2019) 697–709.  doi: 10.1182/blood-2018-10-881722

    250. [250]

      A. Shetty, R. Hanson, P. Korsten, et al., Drug Des. Devel. Ther. 8 (2014) 349–364.

    251. [251]

      M. Hong, J.D. Clubb, Y.Y. Chen, Cancer Cell 38 (2020) 473–488.  doi: 10.1016/j.ccell.2020.07.005

    252. [252]

      E.W. Weber, R.C. Lynn, K.R. Parker, et al., bioRxiv (2020), https://doi.org/10.1101/2020.01.26.920496.  doi: 10.1101/2020.01.26.920496

    253. [253]

      A. Juillerat, A. Marechal, J.M. Filhol, et al., Sci. Rep. 7 (2017) 39833.  doi: 10.1038/srep39833

    254. [254]

      M. Casucci, L. Falcone, B. Camisa, et al., Front. Immunol. 9 (2018) 507.  doi: 10.3389/fimmu.2018.00507

    255. [255]

      A. Di Stasi, S.K. Tey, G. Dotti, et al., New Engl. J. Med. 365 (2011) 1673–1683.  doi: 10.1056/NEJMoa1106152

    256. [256]

      K.C. Straathof, M.A. Pulè, P. Yotnda, et al., Blood 105 (2005) 4247–4254.  doi: 10.1182/blood-2004-11-4564

    257. [257]

      B. Kwong, S.A. Gai, J. Elkhader, K.D. Wittrup, D.J. Irvine, Cancer Res. 73 (2013) 1547–1558.

    258. [258]

      Y. Zheng, L. Tang, L. Mabardi, S. Kumari, D.J. Irvine, ACS Nano 11 (2017) 3089–3100.  doi: 10.1021/acsnano.7b00078

    259. [259]

      Y.Q. Xie, H. Arik, L. Wei, et al., Biomater. Sci. 7 (2019) 1345–1357.  doi: 10.1039/c8bm01556b

    260. [260]

      L. Tang, Y. Zheng, M.B. Melo, et al., Nat. Biotechnol. 36 (2018) 707–716.  doi: 10.1038/nbt.4181

    261. [261]

      Y. Zhang, N. Li, H. Suh, D.J. Irvine, Nat. Commun. 9 (2018) 6.  doi: 10.1038/s41467-017-02251-3

    262. [262]

      T.T. Smith, H.F. Moffett, S.B. Stephan, et al., J. Clin. Invest. 127 (2017) 2176–2191.  doi: 10.1172/JCI87624

    263. [263]

      S.B. Stephan, A.M. Taber, I. Jileaeva, et al., Nat. Biotechnol. 33 (2015) 97–101.  doi: 10.1038/nbt.3104

    264. [264]

      S.K. Härmälä, R. Butcher, C.H. Roberts, Methods Mol. Biol. 1654 (2017) 135–149.  doi: 10.1007/978-1-4939-7231-9_9

    265. [265]

      L.B. Pinheiro, V.A. Coleman, C.M. Hindson, et al., Anal. Chem. 84 (2012) 1003–1011.  doi: 10.1021/ac202578x

    266. [266]

      E.D. Nair-Gill, C.J. Shu, C.G. Radu, O.N. Witte, Immunol. Rev. 221 (2008) 214–228.  doi: 10.1111/j.1600-065X.2008.00585.x

    267. [267]

      E.T. Ahrens, J.W. Bulte, Nat. Rev. Immunol. 13 (2013) 755–763.  doi: 10.1038/nri3531

    268. [268]

      H. Singh, A.M. Najjar, S. Olivares, et al., Leukemia 23 (2009) 620–622.  doi: 10.1038/leu.2008.256

    269. [269]

      G. Dotti, M. Tian, B. Savoldo, et al., Mol. Imaging 8 (2009) 230–237.

    270. [270]

      J. Grimm, M.F. Kircher, R. Weissleder, Radiologe 47 (2007) 25–33.  doi: 10.1007/s00117-006-1449-5

    271. [271]

      R. Zhou, D.H. Thomas, H. Qiao, et al., J. Nucl. Med. 46 (2005) 816–822.

    272. [272]

      R.G. Blasberg, J. Gelovani, Mol. Imaging 1 (2002) 280–300.  doi: 10.1162/153535002760235472

    273. [273]

      V. Ponomarev, M. Doubrovin, I. Serganova, et al., Eur. J. Nucl. Med. Mol. Imaging 31 (2004) 740–751.  doi: 10.1007/s00259-003-1441-5

    274. [274]

      B.A. Tannous, J. Grimm, K.F. Perry, et al., Nat. Methods 3 (2006) 391–396.  doi: 10.1038/nmeth875

    275. [275]

      R. Weissleder, A. Moore, U. Mahmood, et al., Nat. Med. 6 (2000) 351–355.  doi: 10.1038/73219

    276. [276]

      D.B. Kohn, M. Sadelain, J.C. Glorioso, Nat. Rev. Cancer 3 (2003) 477–488.  doi: 10.1038/nrc1122

    277. [277]

      P. Bhatnagar, Z. Li, Y. Choi, et al., Integr. Biol. (Camb) 5 (2013) 231–238.  doi: 10.1039/c2ib20093g

    278. [278]

      H. Li, L. Diaz, D. Lee, et al., Radiol. Med. 119 (2014) 269–276.  doi: 10.1007/s11547-013-0335-2

    279. [279]

      N. Emami-Shahri, J. Foster, R. Kashani, et al., Nat. Commun. 9 (2018) 1081.  doi: 10.1038/s41467-018-03524-1

    280. [280]

      F. Chapelin, S. Gao, H. Okada, et al., Sci. Rep. 7 (2017) 17748.  doi: 10.1038/s41598-017-17669-4

    281. [281]

      D.V. Hingorani, F. Chapelin, E. Stares, et al., Magn. Reson. Med. 83 (2020) 974–987.  doi: 10.1002/mrm.27988

    282. [282]

      L. Liu, Q. Ye, Y. Wu, et al., Nanomedicine 8 (2012) 1345–1354.  doi: 10.1016/j.nano.2012.02.017

    283. [283]

      A. Kulkarni, P. Rao, S. Natarajan, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E2104–2113.  doi: 10.1073/pnas.1510959113

    284. [284]

      M. Horie, K. Nishio, K. Fujita, et al., Chem. Res. Toxicol. 22 (2009) 543–553.  doi: 10.1021/tx800289z

    285. [285]

      P. Chandran, J.E. Riviere, N.A. Monteiro-Riviere, Nanotoxicology 11 (2017) 507–519.  doi: 10.1080/17435390.2017.1314036

    286. [286]

      E. Preedia Babu, A. Subastri, A. Suyavaran, et al., Sci. Rep. 7 (2017) 4203.  doi: 10.1038/s41598-017-04440-y

    287. [287]

      H. Huang, W. Lai, M. Cui, et al., Sci. Rep. 6 (2016) 25518.  doi: 10.1038/srep25518

    288. [288]

      T. Wang, X. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 129–136.  doi: 10.1021/am503865g

    289. [289]

      H.L. Karlsson, P. Cronholm, Y. Hedberg, et al., Toxicology 313 (2013) 59–69.  doi: 10.1016/j.tox.2013.07.012

    290. [290]

      X. He, W.G. Aker, H.M. Hwang, Nanotoxicology 8 (Suppl. 1) (2014) 185–195.  doi: 10.3109/17435390.2013.874050

    291. [291]

      A. Alalaiwe, G. Roberts, P. Carpinone, J. Munson, S. Roberts, Drug Deliv. 24 (2017) 591–598.  doi: 10.1080/10717544.2017.1282554

    292. [292]

      Y. Chen, C. Ren, S. Ouyang, X. Hu, Q. Zhou, Environ. Sci. Technol. 49 (2015) 10147–10154.  doi: 10.1021/acs.est.5b02220

    293. [293]

      J.R. Velicogna, E.E. Ritchie, R.P. Scroggins, J.I. Princz, Nanotoxicology 10 (2016) 1144–1151.  doi: 10.1080/17435390.2016.1181807

    294. [294]

      S.M. Moghimi, A.C. Hunter, T.L. Andresen, Annu. Rev. Pharmacol. Toxicol. 52 (2012) 481–503.  doi: 10.1146/annurev-pharmtox-010611-134623

    295. [295]

      D.E. Owens 3rd, N.A. Peppas, Int. J. Pharmacol. 307 (2006) 93–102.  doi: 10.1016/j.ijpharm.2005.10.010

    296. [296]

      S. Nie, Nanomedicine 5 (2010) 523–528.  doi: 10.2217/nnm.10.23

    297. [297]

      S.D. Li, L. Huang, Biochim. Biophys. Acta 1788 (2009) 2259–2266.  doi: 10.1016/j.bbamem.2009.06.022

    298. [298]

      L. Brannon-Peppas, J.O. Blanchette, Adv. Drug. Deliv. Rev. 56 (2004) 1649–1659.  doi: 10.1016/j.addr.2004.02.014

    299. [299]

      O. Veiseh, J.W. Gunn, M. Zhang, Adv. Drug. Deliv. Rev. 62 (2010) 284–304.  doi: 10.1016/j.addr.2009.11.002

    300. [300]

      H. Cao, Z. Dan, X. He, et al., ACS Nano 10 (2016) 7738–7748.  doi: 10.1021/acsnano.6b03148

    301. [301]

      H. Cao, B. Jiang, Y. Yang, et al., J. Colloid Interface Sci. 604 (2021) 596–603.  doi: 10.1016/j.jcis.2021.07.004

    302. [302]

      T. Kang, Q. Zhu, D. Wei, et al., ACS Nano 11 (2017) 1397–1411.  doi: 10.1021/acsnano.6b06477

    303. [303]

      Y. Guo, D. Wang, Q. Song, et al., ACS Nano 9 (2015) 6918–6933.  doi: 10.1021/acsnano.5b01042

    304. [304]

      D. Gao, X. Guo, X. Zhang, et al., Mater. Today Bio 5 (2020) 100035.  doi: 10.1016/j.mtbio.2019.100035

    305. [305]

      X. Yu, H. Zheng, M.T.V. Chan, W.K.K. Wu, Environ. Sci. Pollut. Res. Int. 25 (2018) 20569–20574.  doi: 10.1007/s11356-018-2426-z

    306. [306]

      H.S. Hwang, H. Shin, J. Han, K. Na, J. Pharm. Investig. 48 (2018) 143–151.  doi: 10.1007/s40005-017-0377-x

    307. [307]

      X. Xu, H. Lu, R. Lee, Front. Bioeng. Biotechnol. 8 (2020) 488.  doi: 10.3389/fbioe.2020.00488

    308. [308]

      G. Lan, K. Ni, Z. Xu, et al., J. Am. Chem. Soc. 140 (2018) 5670–5673.  doi: 10.1021/jacs.8b01072

    309. [309]

      D.W. Zheng, F. Gao, Q. Cheng, et al., Nat. Commun. 11 (2020) 1985.  doi: 10.1038/s41467-020-15927-0

    310. [310]

      Y. Wang, Y.X. Lin, S.L. Qiao, et al., Biomaterials 112 (2017) 153–163.  doi: 10.3901/JME.2017.05.153

    1. [1]

      P. Vyas, S.E. Jacobsen, Cell Stem Cell 8 (2011) 242–244.  doi: 10.1016/j.stem.2011.02.015

    2. [2]

      C. Sordo-Bahamonde, M. Vitale, S. Lorenzo-Herrero, A. López-Soto, S. Gonzalez, Cancers 12 (2020) 893.  doi: 10.3390/cancers12040893

    3. [3]

      J.N. Kochenderfer, S.A. Rosenberg, Nat. Rev. Clin. Oncol. 10 (2013) 267–276.  doi: 10.1038/nrclinonc.2013.46

    4. [4]

      C.H. June, M. Sadelain, New Engl. J. Med. 379 (2018) 64–73.  doi: 10.1056/nejmra1706169

    5. [5]

      M.V. Maus, Nature 543 (2017) 48–49.  doi: 10.1038/nature21506

    6. [6]

      M.V. Maus, C.H. June, Clin. Cancer Res. 22 (2016) 1875–1884.  doi: 10.1158/1078-0432.CCR-15-1433

    7. [7]

      S. Stoiber, B.L. Cadilha, M.R. Benmebarek, et al., Cells 8 (2019) 472.  doi: 10.3390/cells8050472

    8. [8]

      Z. Walsh, Y. Yang, M.E. Kohler, Immunol. Rev. 290 (2019) 100–113.  doi: 10.1111/imr.12794

    9. [9]

      M.C. Burger, C. Zhang, P.N. Harter, et al., Front. Immunol. 10 (2019) 2683.  doi: 10.3389/fimmu.2019.02683

    10. [10]

      Y. Hu, Z.G. Tian, C. Zhang, Acta Pharmacol. Sin. 39 (2018) 167–176.  doi: 10.1038/aps.2017.125

    11. [11]

      Z. Eshhar, T. Waks, G. Gross, D.G. Schindler, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 720–724.  doi: 10.1073/pnas.90.2.720

    12. [12]

      D. Moritz, W. Wels, J. Mattern, B. Groner, Proc. Natl. Acad. Sci. U. S. A. 91 (1994) 4318–4322.  doi: 10.1073/pnas.91.10.4318

    13. [13]

      I. Stancovski, D.G. Schindler, T. Waks, et al., J. Immunol. 151 (1993) 6577–6582.  doi: 10.4049/jimmunol.151.11.6577

    14. [14]

      C. Imai, K. Mihara, M. Andreansky, et al., Leukemia 18 (2004) 676–684.  doi: 10.1038/sj.leu.2403302

    15. [15]

      A.A. Hombach, J. Heiders, M. Foppe, M. Chmielewski, H. Abken, Oncoimmunology 1 (2012) 458–466.  doi: 10.4161/onci.19855

    16. [16]

      M. Chmielewski, A.A. Hombach, H. Abken, Immunol. Rev. 257 (2014) 83–90.  doi: 10.1111/imr.12125

    17. [17]

      V. Hoyos, B. Savoldo, C. Quintarelli, et al., Leukemia 24 (2010) 1160–1170.  doi: 10.1038/leu.2010.75

    18. [18]

      B. Hu, J. Ren, Y. Luo, et al., Cell Rep. 20 (2017) 3025–3033.  doi: 10.1016/j.celrep.2017.09.002

    19. [19]

      M.C. O'Leary, X. Lu, Y. Huang, et al., Clin. Cancer Res. 25 (2019) 1142–1146.  doi: 10.1158/1078-0432.ccr-18-2035

    20. [20]

      N. Bouchkouj, Y.L. Kasamon, R.A. de Claro, et al., Clin. Cancer Res. 25 (2019) 1702–1708.  doi: 10.1158/1078-0432.ccr-18-2743

    21. [21]

      C.H. June, R.S. O'Connor, O.U. Kawalekar, S. Ghassemi, M.C. Milone, Science 359 (2018) 1361–1365.  doi: 10.1126/science.aar6711

    22. [22]

      A. Schmidts, M.V. Maus, Front. Immunol. 9 (2018) 2593.  doi: 10.3389/fimmu.2018.02593

    23. [23]

      K. Newick, S. O'Brien, E. Moon, S.M. Albelda, Annu. Rev. Med. 68 (2017) 139–152.  doi: 10.1146/annurev-med-062315-120245

    24. [24]

      S. Rafiq, C.S. Hackett, R.J. Brentjens, Nat. Rev. Clin. Oncol. 17 (2020) 147–167.  doi: 10.1038/s41571-019-0297-y

    25. [25]

      T. Schioppa, B. Uranchimeg, A. Saccani, et al., J. Exp. Med. 198 (2003) 1391–1402.  doi: 10.1084/jem.20030267

    26. [26]

      G.W. Tormoen, M.R. Crittenden, M.J. Gough, Adv. Radiat. Oncol. 3 (2018) 520–526.  doi: 10.1016/j.adro.2018.08.018

    27. [27]

      S. Wilkie, S.E. Burbridge, L. Chiapero-Stanke, et al., J. Biol. Chem. 285 (2010) 25538–25544.  doi: 10.1074/jbc.M110.127951

    28. [28]

      E.I. Buchbinder, A. Desai, Am. J. Clin. Oncol. 39 (2016) 98–106.  doi: 10.1097/COC.0000000000000239

    29. [29]

      L. Labanieh, R.G. Majzner, C.L. Mackall, Nat. Biomed. Eng. 2 (2018) 377–391.  doi: 10.1038/s41551-018-0235-9

    30. [30]

      S.L. Buchan, L. Dou, M. Remer, et al., Immunity 49 (2018) 958–970 e957.  doi: 10.1016/j.immuni.2018.09.014

    31. [31]

      R. Parihar, C. Rivas, M. Huynh, et al., Cancer Immunol. Res. 7 (2019) 363–375.  doi: 10.1158/2326-6066.cir-18-0572

    32. [32]

      M. Ruella, M. Klichinsky, S.S. Kenderian, et al., Cancer Discov. 7 (2017) 1154–1167.  doi: 10.1158/2159-8290.CD-16-0850

    33. [33]

      S.A. Grupp, M. Kalos, D. Barrett, et al., New Engl. J. Med. 368 (2013) 1509–1518.  doi: 10.1056/NEJMoa1215134

    34. [34]

      J.C. Fitzgerald, S.L. Weiss, S.L. Maude, et al., Crit. Care Med. 45 (2017) e124–e131.  doi: 10.1097/CCM.0000000000002053

    35. [35]

      S.J. Schuster, J. Svoboda, E.A. Chong, et al., New Engl. J. Med. 377 (2017) 2545–2554.  doi: 10.1056/NEJMoa1708566

    36. [36]

      D.W. Lee, B.D. Santomasso, F.L. Locke, et al., Biol. Blood Marrow Transplant. 25 (2019) 625–638.  doi: 10.1016/j.bbmt.2018.12.758

    37. [37]

      H. Klingemann, Oncoimmunology 3 (2014) e28147.  doi: 10.4161/onci.28147

    38. [38]

      L.B. Kennedy, A.K.S. Salama, CA Cancer J. Clin. 70 (2020) 86–104.  doi: 10.3322/caac.21596

    39. [39]

      J. Gust, K.A. Hay, L.A. Hanafi, et al., Cancer Discov. 7 (2017) 1404–1419.  doi: 10.1158/2159-8290.CD-17-0698

    40. [40]

      B.D. Santomasso, J.H. Park, D. Salloum, et al., Cancer Discov. 8 (2018) 958–971.  doi: 10.1158/2159-8290.cd-17-1319

    41. [41]

      K.R. Parker, D. Migliorini, E. Perkey, et al., Cell 183 (2020) 126–142 e117.  doi: 10.1016/j.cell.2020.08.022

    42. [42]

      J.N. Brudno, J.N. Kochenderfer, Blood Rev. 34 (2019) 45–55.  doi: 10.1016/j.blre.2018.11.002

    43. [43]

      M. Namuduri, R.J. Brentjens, Expert Rev. Hematol. 9 (2016) 511–513.  doi: 10.1080/17474086.2016.1183479

    44. [44]

      S.L. Maude, N. Frey, P.A. Shaw, et al., New Engl. J. Med. 371 (2014) 1507–1517.  doi: 10.1056/NEJMoa1407222

    45. [45]

      D. Kalyane, N. Raval, R. Maheshwari, et al., Mater. Sci. Eng. C Mater. Biol. Appl. 98 (2019) 1252–1276.  doi: 10.1016/j.msec.2019.01.066

    46. [46]

      J. Wu, J. Pers. Med. 11 (2021) 771.  doi: 10.3390/jpm11080771

    47. [47]

      M. Zhao, D. van Straten, M.L.D. Broekman, V. Préat, R.M. Schiffelers, Theranostics 10 (2020) 1355–1372.  doi: 10.7150/thno.38147

    48. [48]

      C. Hamers-Casterman, T. Atarhouch, S. Muyldermans, et al., Nature 363 (1993) 446–448.  doi: 10.1038/363446a0

    49. [49]

      P. Safarzadeh Kozani, A. Naseri, S.M.J. Mirarefin, et al., Biomark. Res. 10 (2022) 24.  doi: 10.1186/s40364-022-00371-7

    50. [50]

      J.R. Ingram, F.I. Schmidt, H.L. Ploegh, Annu. Rev. Immunol. 36 (2018) 695–715.  doi: 10.1146/annurev-immunol-042617-053327

    51. [51]

      H. Revets, P. De Baetselier, S. Muyldermans, Expert Opin. Biol. Ther. 5 (2005) 111–124.  doi: 10.1517/14712598.5.1.111

    52. [52]

      S. Muyldermans, Annu. Rev. Biochem. 82 (2013) 775–797.  doi: 10.1146/annurev-biochem-063011-092449

    53. [53]

      J. Jayaraman, M.P. Mellody, A.J. Hou, et al., EBioMedicine 8 (2020) 102931.  doi: 10.1016/j.ebiom.2020.102931

    54. [54]

      W. Sun, J. Xie, H. Lin, et al., Protein Expr. Purif. 83 (2012) 21–29.  doi: 10.1016/j.pep.2012.02.006

    55. [55]

      S. Muyldermans, J. Biotechnol. 74 (2001) 277–302.

    56. [56]

      B.M. Tijink, T. Laeremans, M. Budde, et al., Mol. Cancer Ther. 7 (2008) 2288–2297.  doi: 10.1158/1535-7163.MCT-07-2384

    57. [57]

      C. Bao, Q. Gao, L.L. Li, et al., Biomolecules 11 (2021) 238.  doi: 10.3390/biom11020238

    58. [58]

      M.M. Harmsen, H.J. De Haard, Appl. Microbiol. Biotechnol. 77 (2007) 13–22.  doi: 10.1007/s00253-007-1142-2

    59. [59]

      F.J. Iri-Sofla, F. Rahbarizadeh, D. Ahmadvand, M.J. Rasaee, Exp. Cell Res. 317 (2011) 2630–2641.  doi: 10.1016/j.yexcr.2011.08.015

    60. [60]

      S. Khaleghi, F. Rahbarizadeh, D. Ahmadvand, M.J. Rasaee, P. Pognonec, Int. J. Hematol. 95 (2012) 434–444.  doi: 10.1007/s12185-012-1037-6

    61. [61]

      Z. Sharifzadeh, F. Rahbarizadeh, M.A. Shokrgozar, et al., Cancer Lett. 334 (2013) 237–244.  doi: 10.1016/j.canlet.2012.08.010

    62. [62]

      S.H. Bakhtiari, F. Rahbarizadeh, S. Hasannia, et al., Hybridoma (2005) 28 (2009) 85–92.  doi: 10.1089/hyb.2008.0079

    63. [63]

      N. Li, H. Fu, S.M. Hewitt, D.S. Dimitrov, M. Ho, Proc. Natl. Acad. Sci. U. S. A. 114 (2017) E6623–e6631.  doi: 10.1073/pnas.1700536114

    64. [64]

      M. Hassani, F. Hajari Taheri, Z. Sharifzadeh, et al., J. Cell. Biochem. 120 (2019) 10787–10795.  doi: 10.1002/jcb.28370

    65. [65]

      Y.J. Xie, M. Dougan, N. Jailkhani, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 7624–7631.  doi: 10.1073/pnas.1817147116

    66. [66]

      F. Hajari Taheri, M. Hassani, Z. Sharifzadeh, et al., IUBMB Life 71 (2019) 1259–1267.  doi: 10.1002/iub.2019

    67. [67]

      F.R. Jamnani, F. Rahbarizadeh, M.A. Shokrgozar, et al., Biochim. Biophys. Acta 1840 (2014) 378–386.  doi: 10.1016/j.bbagen.2013.09.029

    68. [68]

      N. An, Y.N. Hou, Q.X. Zhang, et al., Mol. Pharm. 15 (2018) 4577–4588.  doi: 10.1021/acs.molpharmaceut.8b00584

    69. [69]

      J. Xu, L.J. Chen, S.S. Yang, et al., Proc. Natl. Acad. Sci. U. S. A. 116 (2019) 9543–9551.  doi: 10.1073/pnas.1819745116

    70. [70]

      S. De Munter, A. Van Parys, L. Bral, et al., Int. J. Mol. Sci. 21 (2020) 833.  doi: 10.3390/ijms21030833

    71. [71]

      T. Zhang, T. Wang, F. You, et al., Transpl. Immunol. 71 (2022) 101538.  doi: 10.1016/j.trim.2022.101538

    72. [72]

      M. Zhang, D. Chen, X. Fu, et al., Clin. Cancer Res. (2022) 2830–2843.  doi: 10.1158/1078-0432.ccr-21-4097

    73. [73]

      D. Chen, F. You, S. Xiang, et al., Am. J. Cancer Res. 11 (2021) 5263–5281.

    74. [74]

      M.A. Nix, K. Mandal, H. Geng, et al., Cancer Discov. 11 (2021) 2032–2049.  doi: 10.1158/2159-8290.cd-20-0242

    75. [75]

      Z. Feng, X. He, X. Zhang, et al., Nat. Cancer (2022) 581–594.  doi: 10.1038/s43018-022-00344-7

    76. [76]

      F. Mo, S. Duan, X. Jiang, et al., Signal Transduct. Target. Ther. 6 (2021) 80.  doi: 10.1038/s41392-021-00462-1

    77. [77]

      L. Han, J. Zhou, K. Zhou, et al., J. Immunother. Cancer 8 (2020) e000927.  doi: 10.1136/jitc-2020-000927

    78. [78]

      S. De Munter, J. Ingels, G. Goetgeluk, et al., Int. J. Mol. Sci. 19 (2018) 403.  doi: 10.3390/ijms19020403

    79. [79]

      H. Wang, L. Wang, Y. Li, et al., Cancer Cell Int. 21 (2021) 450.  doi: 10.1186/s12935-021-02151-z

    80. [80]

      R.C. Larson, M.V. Maus, Nat. Rev. Cancer 21 (2021) 145–161.  doi: 10.1038/s41568-020-00323-z

    81. [81]

      S. Albert, C. Arndt, A. Feldmann, et al., Oncoimmunology 6 (2017) e1287246.  doi: 10.1080/2162402X.2017.1287246

    82. [82]

      S. Albert, C. Arndt, S. Koristka, et al., Oncotarget 9 (2018) 25597–25616.  doi: 10.18632/oncotarget.25390

    83. [83]

      K. L A.R.K. Kumar, Y. Shou, B. Chan, A. Tay, Adv. Mater. 33 (2021) e2007421.  doi: 10.1002/adma.202007421

    84. [84]

      B.L. Levine, J. Miskin, K. Wonnacott, C. Keir, Mol. Ther. Methods Clin. Dev. 4 (2017) 92–101.  doi: 10.1016/j.omtm.2016.12.006

    85. [85]

      V. Poletti, F. Mavilio, Mol. Ther. Methods Clin. Dev. 8 (2018) 31–41.  doi: 10.1016/j.omtm.2017.10.001

    86. [86]

      C.H. June, B.R. Blazar, J.L. Riley, Nat. Rev. Immunol. 9 (2009) 704–716.  doi: 10.1038/nri2635

    87. [87]

      P. Vormittag, R. Gunn, S. Ghorashian, F.S. Veraitch, Curr. Opin. Biotechnol. 53 (2018) 164–181.  doi: 10.1016/j.copbio.2018.01.025

    88. [88]

      H. Nakai, E. Montini, S. Fuess, et al., Nat. Genet. 34 (2003) 297–302.  doi: 10.1038/ng1179

    89. [89]

      A. Donsante, D.G. Miller, Y. Li, et al., Science 317 (2007) 477.  doi: 10.1126/science.1142658

    90. [90]

      A. Tay, N. Melosh, Adv. Ther. 2 (2019) 1900133.  doi: 10.1002/adtp.201900133

    91. [91]

      Y.C. Wu, T.H. Wu, D.L. Clemens, et al., Nat. Methods 12 (2015) 439–444.  doi: 10.1038/nmeth.3357

    92. [92]

      M.P. Stewart, A. Sharei, X. Ding, et al., Nature 538 (2016) 183–192.  doi: 10.1038/nature19764

    93. [93]

      S. Sun, V.B. Rao, M.G. Rossmann, Curr. Opin. Struct. Biol. 20 (2010) 114–120.  doi: 10.1016/j.sbi.2009.12.006

    94. [94]

      E. Neumann, M. Schaefer-Ridder, Y. Wang, P.H. Hofschneider, EMBO J. 1 (1982) 841–845.  doi: 10.1002/j.1460-2075.1982.tb01257.x

    95. [95]

      T.Y. Tsong, Biophys. J. 60 (1991) 297–306.  doi: 10.1016/S0006-3495(91)82054-9

    96. [96]

      X. Xu, D. Gao, P. Wang, et al., Sci. Rep. 8 (2018) 11649.  doi: 10.1038/s41598-018-30227-w

    97. [97]

      J.T. Sengel, M.I. Wallace, Proc. Natl. Acad. Sci. U. S. A. 113 (2016) 5281–5286.  doi: 10.1073/pnas.1517437113

    98. [98]

      J.C. Weaver, Y.A. Chizmadzhev, Bioelectrochem. Bioenerg. 41 (1996) 135–160.  doi: 10.1016/S0302-4598(96)05062-3

    99. [99]

      D. Morita, N. Nishio, S. Saito, et al., Mol. Ther. Methods Clin. Dev. 8 (2018) 131–140.  doi: 10.1016/j.omtm.2017.12.003

    100. [100]

      S. Saito, Y. Nakazawa, A. Sueki, et al., Cytotherapy 16 (2014) 1257–1269.  doi: 10.1016/j.jcyt.2014.05.022

    101. [101]

      I. Querques, A. Mades, C. Zuliani, et al., Nat. Biotechnol. 37 (2019) 1502–1512.  doi: 10.1038/s41587-019-0291-z

    102. [102]

      Q. Gao, X. Dong, Q. Xu, et al., Cancer Med. 8 (2019) 4254–4264.  doi: 10.1002/cam4.2257

    103. [103]

      L. Mátés, M.K. Chuah, E. Belay, et al., Nat. Genet. 41 (2009) 753–761.  doi: 10.1038/ng.343

    104. [104]

      X. Xue, X. Huang, S.E. Nodland, et al., Blood 114 (2009) 1319–1330.  doi: 10.1182/blood-2009-03-210005

    105. [105]

      T.T. Smith, S.B. Stephan, H.F. Moffett, et al., Nat. Nanotechnol. 12 (2017) 813–820.  doi: 10.1038/nnano.2017.57

    106. [106]

      C.J. McKinlay, N.L. Benner, O.A. Haabeth, R.M. Waymouth, P.A. Wender, Proc. Natl. Acad. Sci. U. S. A. 115 (2018) E5859–E5866.

    107. [107]

      B. Mostaghaci, J. Susewind, G. Kickelbick, C.M. Lehr, B. Loretz, ACS Appl. Mater. Interfaces 7 (2015) 5124–5133.  doi: 10.1021/am507193a

    108. [108]

      L. Raes, S.C. De Smedt, K. Raemdonck, K. Braeckmans, Biotechnol. Adv. 49 (2021) 107760.  doi: 10.1016/j.biotechadv.2021.107760

    109. [109]

      B.R. Olden, Y. Cheng, J.L. Yu, S.H. Pun, J. Control. Release 282 (2018) 140–147.  doi: 10.1016/j.jconrel.2018.02.043

    110. [110]

      W.P. Verdurmen, R. Wallbrecher, S. Schmidt, et al., J. Control. Release 170 (2013) 83–91.  doi: 10.1016/j.jconrel.2013.05.001

    111. [111]

      S.A.B. Riedl, P. Kaiser, A. Raup, et al., Processes 6 (2018) 188.  doi: 10.3390/pr6100188

    112. [112]

      W. Nawaz, S. Xu, Y. Li, et al., Acta Biomater. 109 (2020) 21–36.  doi: 10.1016/j.actbio.2020.04.015

    113. [113]

      H. Yin, R.L. Kanasty, A.A. Eltoukhy, et al., Nat. Rev. Genet. 15 (2014) 541–555.  doi: 10.1038/nrg3763

    114. [114]

      Y. Song, J. Hormes, C.S. Kumar, Small 4 (2008) 698–711.  doi: 10.1002/smll.200701029

    115. [115]

      H. Dong, M. Zhu, J.A. Yoon, et al., J. Am. Chem. Soc. 130 (2008) 12852–12853.  doi: 10.1021/ja8038097

    116. [116]

      J. Xie, S. Peng, N. Brower, et al., Pure Appl. Chem. 78 (2006) 1003–1014.  doi: 10.1351/pac200678051003

    117. [117]

      O. Boussif, F. Lezoualc'h, M.A. Zanta, et al., Proc. Natl. Acad. Sci. U. S. A. 92 (1995) 7297–7301.  doi: 10.1073/pnas.92.16.7297

    118. [118]

      J.J. Virgen-Ortíz, J.C.S. Dos Santos, Á. Berenguer-Murcia, et al., J. Mater. Chem. B 5 (2017) 7461–7490.  doi: 10.1039/C7TB01639E

    119. [119]

      J. Fan, Q. He, Z. Jin, W. Chen, W. Huang, RSC Adv. 8 (2018) 14975–14982.  doi: 10.1039/c8ra02133c

    120. [120]

      Q. Yu, M. Zhang, Y. Chen, et al., Int. J. Nanomed. 15 (2020) 483–495.  doi: 10.2147/ijn.s229858

    121. [121]

      I.A. Khalil, K. Kogure, H. Akita, H. Harashima, Pharmacol. Rev. 58 (2006) 32–45.  doi: 10.1124/pr.58.1.8

    122. [122]

      K.A. Mislick, J.D. Baldeschwieler, Proc. Natl. Acad. Sci. U. S. A. 93 (1996) 12349–12354.  doi: 10.1073/pnas.93.22.12349

    123. [123]

      A. Harizaj, M. Wels, L. Raes, et al., Adv. Funct. Mater. 31 (2021) 2102472.  doi: 10.1002/adfm.202102472

    124. [124]

      Y. Zhao, L. Huang, Adv. Genet. 88 (2014) 13–36.

    125. [125]

      D. Luo, W.M. Saltzman, Nat. Biotechnol. 18 (2000) 33–37.  doi: 10.1038/71889

    126. [126]

      A. Yen, Y. Cheng, M. Sylvestre, et al., Mol. Pharm. 15 (2018) 2268–2276.  doi: 10.1021/acs.molpharmaceut.8b00134

    127. [127]

      S. Warashina, T. Nakamura, Y. Sato, et al., J. Control. Release 225 (2016) 183–191.  doi: 10.1016/j.jconrel.2016.01.042

    128. [128]

      T. Nakamura, M. Kuroi, Y. Fujiwara, et al., Sci. Rep. 6 (2016) 37849.  doi: 10.1038/srep37849

    129. [129]

      Y. Sawalha, A.S. Advani, Int. J. Hematol. Oncol. 7 (2018) Ijh02.  doi: 10.2217/ijh-2017-0023

    130. [130]

      E. Samaridou, J. Heyes, P. Lutwyche, Adv. Drug. Deliv. Rev. 154-155 (2020) 37–63.  doi: 10.1016/j.addr.2020.06.002

    131. [131]

      X. Zhao, J. Chen, M. Qiu, et al., Angew Chem. Int. Ed. 59 (2020) 20083–20089.  doi: 10.1002/anie.202008082

    132. [132]

      M.M. Billingsley, N. Singh, P. Ravikumar, et al., Nano Lett. 20 (2020) 1578–1589.  doi: 10.1021/acs.nanolett.9b04246

    133. [133]

      M.M. Billingsley, A.G. Hamilton, D. Mai, et al., Nano Lett. (2021) 533–542.

    134. [134]

      H.F. Moffett, M.E. Coon, S. Radtke, et al., Nat. Commun. 8 (2017) 389.  doi: 10.1038/s41467-017-00505-8

    135. [135]

      K. Garber, Nat. Biotechnol. 36 (2018) 777–778.  doi: 10.1038/nbt0918-777

    136. [136]

      H. Pan, P. Zhang, D. Gao, et al., ACS Nano 8 (2014) 5468–5477.  doi: 10.1021/nn501028b

    137. [137]

      H. Pan, P. Li, G. Li, et al., Adv. Funct. Mater. 29 (2019) 1807528.  doi: 10.1002/adfm.201807528

    138. [138]

      A. Tay, N. Melosh, Small 17 (2021) e2103198.  doi: 10.1002/smll.202103198

    139. [139]

      L.H. Wang, D.C. Wu, H.X. Xu, Y.Z. You, Angew. Chem. Int. Ed. 55 (2016) 755–759.  doi: 10.1002/anie.201508695

    140. [140]

      Y. Zheng, Z.R. Li, R. Yue, et al., Am. J. Transl. Res. 11 (2019) 7126–7136.

    141. [141]

      R.P. Somerville, M.E. Dudley, Oncoimmunology 1 (2012) 1435–1437.  doi: 10.4161/onci.21206

    142. [142]

      R.P. Somerville, L. Devillier, M.R. Parkhurst, S.A. Rosenberg, M.E. Dudley, J. Transl. Med. 10 (2012) 69.  doi: 10.1186/1479-5876-10-69

    143. [143]

      B.L. Levine, Cancer Gene Ther. 22 (2015) 79–84.  doi: 10.1038/cgt.2015.5

    144. [144]

      D. Hollyman, J. Stefanski, M. Przybylowski, et al., J. Immunother. 32 (2009) 169–180.  doi: 10.1097/CJI.0b013e318194a6e8

    145. [145]

      A.D. Kaiser, M. Assenmacher, B. Schröder, et al., Cancer Gene Ther. 22 (2015) 72–78.  doi: 10.1038/cgt.2014.78

    146. [146]

      P. Bajgain, R. Mucharla, J. Wilson, et al., Mol. Ther. Methods Clin. Dev. 1 (2014) 14015.  doi: 10.1038/mtm.2014.15

    147. [147]

      J. Jin, M. Sabatino, R. Somerville, et al., J. Immunother. 35 (2012) 283–292.  doi: 10.1097/CJI.0b013e31824e801f

    148. [148]

      U. Mock, L. Nickolay, B. Philip, et al., Cytotherapy 18 (2016) 1002–1011.  doi: 10.1016/j.jcyt.2016.05.009

    149. [149]

      M. Apel, M. Bruening, M. Granzin, et al., Chem. Ing. Tech. 85 (2013) 103–110.  doi: 10.1002/cite.201200175

    150. [150]

      H. Lin, Q. Li, O. Wang, et al., Adv. Healthc. Mater. 7 (2018) e1701297.  doi: 10.1002/adhm.201701297

    151. [151]

      M.E. Coon, S.B. Stephan, V. Gupta, C.P. Kealey, M.T. Stephan, Nat. Biomed. Eng. 4 (2020) 195–206.

    152. [152]

      T.R. Fadel, F.A. Sharp, N. Vudattu, et al., Nat. Nanotechnol. 9 (2014) 639–647.  doi: 10.1038/nnano.2014.154

    153. [153]

      A.S. Cheung, D.K.Y. Zhang, S.T. Koshy, D.J. Mooney, Nat. Biotechnol. 36 (2018) 160–169.  doi: 10.1038/nbt.4047

    154. [154]

      Y. Wang, F. Luo, J. Yang, C. Zhao, Y. Chu, Front. Immunol. 8 (2017) 1934.  doi: 10.3389/fimmu.2017.01934

    155. [155]

      M. Binnewies, E.W. Roberts, K. Kersten, et al., Nat. Med. 24 (2018) 541–550.  doi: 10.1038/s41591-018-0014-x

    156. [156]

      W. Zou, Nat. Rev. Cancer 5 (2005) 263–274.  doi: 10.1038/nrc1586

    157. [157]

      J.R. Groom, A.D. Luster, Immunol. Cell Biol. 89 (2011) 207–215.  doi: 10.1038/icb.2010.158

    158. [158]

      E.M. Hanson, V.K. Clements, P. Sinha, D. Ilkovitch, S. Ostrand-Rosenberg, J. Immunol. 183 (2009) 937–944.  doi: 10.4049/jimmunol.0804253

    159. [159]

      C.Y. Slaney, M.H. Kershaw, P.K. Darcy, Cancer Res. 74 (2014) 7168–7174.  doi: 10.1158/0008-5472.CAN-14-2458

    160. [160]

      A. Ohta, E. Gorelik, S.J. Prasad, et al., Proc. Natl. Acad. Sci. U. S. A. 103 (2006) 13132–13137.  doi: 10.1073/pnas.0605251103

    161. [161]

      C. Cekic, J. Linden, Cancer Res. 74 (2014) 7239–7249.  doi: 10.1158/0008-5472.CAN-13-3581

    162. [162]

      P.A. Beavis, M.A. Henderson, L. Giuffrida, et al., J. Clin. Invest. 127 (2017) 929–941.  doi: 10.1172/JCI89455

    163. [163]

      J. Li, W. Li, K. Huang, et al., J. Hematol. Oncol. 11 (2018) 22.  doi: 10.1504/ijhpcn.2018.10025202

    164. [164]

      R.G. Majzner, S. Heitzeneder, C.L. Mackall, Cancer Cell 31 (2017) 476–485.  doi: 10.1016/j.ccell.2017.03.002

    165. [165]

      C.J. Turtle, L.A. Hanafi, C. Berger, et al., J. Clin. Invest. 126 (2016) 2123–2138.  doi: 10.1172/JCI85309

    166. [166]

      R. Gardner, D. Wu, S. Cherian, et al., Blood 127 (2016) 2406–2410.  doi: 10.1182/blood-2015-08-665547

    167. [167]

      E. Jacoby, S.M. Nguyen, T.J. Fountaine, et al., Nat. Commun. 7 (2016) 12320.  doi: 10.1038/ncomms12320

    168. [168]

      R.G. Majzner, C.L. Mackall, Cancer Discov. 8 (2018) 1219–1226.  doi: 10.1158/2159-8290.cd-18-0442

    169. [169]

      S.L. Maude, D.T. Teachey, S.R. Rheingold, et al., J. Clin. Oncol. 34 (2016) 3011.  doi: 10.1200/JCO.2016.34.15_suppl.3011

    170. [170]

      S.L. Maude, T.W. Laetsch, J. Buechner, et al., New Engl. J. Med. 378 (2018) 439–448.  doi: 10.1056/nejmoa1709866

    171. [171]

      R. Gardner, O. Finney, H. Smithers, et al., Blood 128 (2016) 219.  doi: 10.1182/blood.v128.22.219.219

    172. [172]

      D.W. Lee, M. Stetler-Stevenson, C.M. Yuan, et al., Blood 128 (2016) 218.  doi: 10.1182/blood.V128.22.218.218

    173. [173]

      T.J. Fry, N.N. Shah, R.J. Orentas, et al., Nat. Med. 24 (2018) 20–28.  doi: 10.1038/nm.4441

    174. [174]

      A.R. Pyzer, D. Stroopinsky, H. Rajabi, et al., Blood 129 (2017) 1791–1801.  doi: 10.1182/blood-2016-07-730614

    175. [175]

      R. Jitschin, D. Saul, M. Braun, et al., J. Immunother. Cancer 6 (2018) 116.  doi: 10.1186/s40425-018-0432-9

    176. [176]

      A.K. Park, Y. Fong, S.I. Kim, et al., Sci. Transl. Med. 12 (2020) eaaz1863.  doi: 10.1126/scitranslmed.aaz1863

    177. [177]

      N. Nishio, G. Dotti, Oncoimmunology 4 (2015) e988098.  doi: 10.4161/21505594.2014.988098

    178. [178]

      E.K. Moon, L.S. Wang, K. Bekdache, et al., Oncoimmunology 7 (2018) e1395997.  doi: 10.1080/2162402X.2017.1395997

    179. [179]

      A. Aalipour, F. Le Boeuf, M. Tang, et al., Mol. Ther. Oncolytics 17 (2020) 232–240.  doi: 10.1016/j.omto.2020.03.018

    180. [180]

      J. Ren, X. Liu, C. Fang, et al., Clin. Cancer Res. 23 (2017) 2255–2266.  doi: 10.1158/1078-0432.CCR-16-1300

    181. [181]

      J.R. Hamilton, C.A. Tsuchida, D.N. Nguyen, et al., Cell Rep. 35 (2021) 109207.  doi: 10.1016/j.celrep.2021.109207

    182. [182]

      M. Hale, B. Lee, Y. Honaker, et al., Mol. Ther. Methods Clin. Dev. 4 (2017) 192–203.  doi: 10.1016/j.omtm.2016.12.008

    183. [183]

      J. Eyquem, J. Mansilla-Soto, T. Giavridis, et al., Nature 543 (2017) 113–117.  doi: 10.1038/nature21405

    184. [184]

      L.J. Rupp, K. Schumann, K.T. Roybal, et al., Sci. Rep. 7 (2017) 737.  doi: 10.1038/s41598-017-00462-8

    185. [185]

      T. Nakazawa, A. Natsume, F. Nishimura, et al., Cells 9 (2020) 998.  doi: 10.3390/cells9040998

    186. [186]

      K. Reinhard, B. Rengstl, P. Oehm, et al., Science 367 (2020) 446–453.  doi: 10.1126/science.aay5967

    187. [187]

      M.N. Garas, S.V. Tillib, O.V. Zubkova, et al., Acta Nat. 6 (2014) 95–105.  doi: 10.32607/20758251-2014-6-2-95-105

    188. [188]

      Y. Zhai, W. Ran, J. Su, et al., Adv. Mater. (2018) e1802378.

    189. [189]

      G.B. Kim, V. Aragon-Sanabria, L. Randolph, et al., Bioact. Mater. 5 (2020) 624–635.  doi: 10.1016/j.bioactmat.2020.04.011

    190. [190]

      V. de Turris, M. Cardoso Trabuco, G. Peruzzi, et al., Nanoscale 9 (2017) 647–655.  doi: 10.1039/C6NR07129E

    191. [191]

      C.T. Jiang, K.G. Chen, A. Liu, et al., Nat. Commun. 12 (2021) 1359.  doi: 10.1038/s41467-021-21497-6

    192. [192]

      X. Huang, J.Z. Williams, R. Chang, et al., Nat. Nanotechnol. 16 (2021) 214–223.  doi: 10.1038/s41565-020-00813-z

    193. [193]

      L. Ma, T. Dichwalkar, J.Y.H. Chang, et al., Science 365 (2019) 162–168.  doi: 10.1126/science.aav8692

    194. [194]

      D. Schmid, C.G. Park, C.A. Hartl, et al., Nat. Commun. 8 (2017) 1747.  doi: 10.1038/s41467-017-01830-8

    195. [195]

      F. Zhang, S.B. Stephan, C.I. Ene, et al., Cancer Res. 78 (2018) 3718–3730.  doi: 10.1158/0008-5472.can-18-0306

    196. [196]

      N. Siriwon, Y.J. Kim, E. Siegler, et al., Cancer Immunol. Res. 6 (2018) 812–824.  doi: 10.1158/2326-6066.cir-17-0502

    197. [197]

      C. Wang, Y. Ye, G.M. Hochu, H. Sadeghifar, Z. Gu, Nano Lett. 16 (2016) 2334–2340.  doi: 10.1021/acs.nanolett.5b05030

    198. [198]

      C. Wang, W. Sun, Y. Ye, et al., Nat. Biomed. Eng. 1 (2017) 0011.  doi: 10.1038/s41551-016-0011

    199. [199]

      S. Han, W. Wang, S. Wang, et al., Theranostics 11 (2021) 2892–2916.  doi: 10.7150/thno.50928

    200. [200]

      W. Ou, R.K. Thapa, L. Jiang, et al., J. Control. Release 281 (2018) 84–96.  doi: 10.1016/j.jconrel.2018.05.018

    201. [201]

      Q. Liu, D. Zhang, H. Qian, et al., Int. J. Nanomed. 15 (2020) 3669–3680.  doi: 10.2147/ijn.s249174

    202. [202]

      J. Li, D.J. Mooney, Nat. Rev. Mater. 1 (2016) 16071.  doi: 10.1038/natrevmats.2016.71

    203. [203]

      S.W. Jung, S.H. Oh, I.S. Lee, J.H. Byun, J.H. Lee, Tissue Eng. Regen. Med. 16 (2019) 479–490.  doi: 10.1007/s13770-019-00206-x

    204. [204]

      Y. Ando, E.L. Siegler, H.P. Ta, et al., Adv. Healthc. Mater. 8 (2019) e1900001.  doi: 10.1002/adhm.201900001

    205. [205]

      Y. Hori, A.M. Winans, C.C. Huang, E.M. Horrigan, D.J. Irvine, Biomaterials 29 (2008) 3671–3682.  doi: 10.1016/j.biomaterials.2008.05.033

    206. [206]

      K. Wang, Y. Chen, S. Ahn, et al., Nat. Cancer 1 (2020) 990–997.  doi: 10.1038/s43018-020-00119-y

    207. [207]

      Y. Dong, S. Li, X. Li, X. Wang, Int. J. Biol. Macromol. 190 (2021) 693–699.  doi: 10.1016/j.ijbiomac.2021.09.037

    208. [208]

      Y. Cao, Y. Zhou, Z. Chen, et al., Adv. Healthc. Mater. 10 (2021) e2100814.  doi: 10.1002/adhm.202100814

    209. [209]

      C. Liu, P. Leon-Plata, M. Zaroudi, et al., ACS Appl. Bio. Mater. 3 (2020) 7357–7362.  doi: 10.1021/acsabm.0c00992

    210. [210]

      E.A. Ogunnaike, A. Valdivia, M. Yazdimamaghani, et al., Sci. Adv. 7 (2021) eabg5841.  doi: 10.1126/sciadv.abg5841

    211. [211]

      X. Dong, A. Yang, Y. Bai, D. Kong, F. Lv, Biomaterials 230 (2020) 119659.  doi: 10.1016/j.biomaterials.2019.119659

    212. [212]

      A.F. Atik, C.M. Suryadevara, R.M. Schweller, et al., J. Clin. Neurosci. 56 (2018) 163–168.  doi: 10.1016/j.jocn.2018.06.005

    213. [213]

      Q. Hu, H. Li, E. Archibong, et al., Nat. Biomed. Eng. 5 (2021) 1038–1047.  doi: 10.1038/s41551-021-00712-1

    214. [214]

      Z. Luo, Z. Liu, Z. Liang, et al., ACS Appl. Mater. Interfaces 12 (2020) 56712–56722.  doi: 10.1021/acsami.0c15239

    215. [215]

      T. Shang, X. Yu, S. Han, B. Yang, Biomater. Sci. 8 (2020) 5241–5259.  doi: 10.1039/d0bm01158d

    216. [216]

      X. Xu, T. Li, S. Shen, et al., Theranostics 9 (2019) 7889–7905.  doi: 10.7150/thno.38583

    217. [217]

      R. Ahmad, J. Fu, N. He, S. Li, J. Nanosci. Nanotechnol. 16 (2016) 67–80.  doi: 10.1166/jnn.2016.10770

    218. [218]

      Y. Huang, G. Zeng, Q. Xin, et al., MedComm 1 (2020) 202–210.  doi: 10.1002/mco2.28

    219. [219]

      T. Yata, Y. Takahashi, M. Tan, et al., Biomaterials 146 (2017) 136–145.  doi: 10.1016/j.biomaterials.2017.09.014

    220. [220]

      J. Nam, S. Son, L.J. Ochyl, et al., Nat. Commun. 9 (2018) 1074.  doi: 10.1038/s41467-018-03473-9

    221. [221]

      A.L. Oei, L.E. Vriend, J. Crezee, N.A. Franken, P.M. Krawczyk, Radiat. Oncol. 10 (2015) 165.  doi: 10.1186/s13014-015-0462-0

    222. [222]

      S. Wang, Q. Zhang, X.F. Luo, et al., Biomaterials 35 (2014) 9473–9483.  doi: 10.1016/j.biomaterials.2014.07.064

    223. [223]

      H. Yang, H. He, Z. Tong, et al., J. Colloid Interface Sci. 565 (2020) 186–196.  doi: 10.1016/j.jcis.2020.01.026

    224. [224]

      Z. Liao, W. Zhang, Z. Qiao, et al., J. Colloid Interface Sci. 562 (2020) 81–90.  doi: 10.1016/j.jcis.2019.11.055

    225. [225]

      X. Zhang, J. Tang, C. Li, et al., Bioact. Mater. 6 (2021) 472–489.  doi: 10.1016/j.bioactmat.2020.08.024

    226. [226]

      F. Zhang, G. Lu, X. Wen, et al., J. Control. Release 326 (2020) 131–139.  doi: 10.1016/j.jconrel.2020.06.015

    227. [227]

      Q. Yang, J. Peng, K. Shi, et al., J. Control. Release 308 (2019) 29–43.  doi: 10.1016/j.jconrel.2019.06.031

    228. [228]

      X. Yi, Q.Y. Duan, F.G. Wu, Research 2021 (2021) 9816594.

    229. [229]

      I.C. Miller, A. Zamat, L.K. Sun, et al., Nat. Biomed. Eng. (2021) 1348–1359.  doi: 10.1038/s41551-021-00781-2

    230. [230]

      W. Ma, D. Zhu, J. Li, et al., Theranostics 10 (2020) 1281–1295.  doi: 10.7150/thno.40291

    231. [231]

      Q. Chen, Q. Hu, E. Dukhovlinova, et al., Adv. Mater. 31 (2019) e1900192.  doi: 10.1002/adma.201900192

    232. [232]

      L. Zhu, J. Liu, G. Zhou, et al., Small (2021) e2102624.

    233. [233]

      Z. Chen, H. Pan, Y. Luo, et al., Small 17 (2021) e2007494.  doi: 10.1002/smll.202007494

    234. [234]

      H.J. Jackson, S. Rafiq, R.J. Brentjens, Nat. Rev. Clin. Oncol. 13 (2016) 370–383.  doi: 10.1038/nrclinonc.2016.36

    235. [235]

      S.S. Neelapu, S. Tummala, P. Kebriaei, et al., Nat. Rev. Clin. Oncol. 15 (2018) 47–62.  doi: 10.1038/nrclinonc.2017.148

    236. [236]

      B. Wolf, S. Zimmermann, C. Arber, et al., Drug Saf. 42 (2019) 315–334.  doi: 10.1007/s40264-018-0779-3

    237. [237]

      M. Norelli, B. Camisa, G. Barbiera, et al., Nat. Med. 24 (2018) 739–748.  doi: 10.1038/s41591-018-0036-4

    238. [238]

      T. Giavridis, S.J.C. van der Stegen, J. Eyquem, et al., Nat. Med. 24 (2018) 731–738.  doi: 10.1038/s41591-018-0041-7

    239. [239]

      Y. Liu, Y. Fang, X. Chen, et al., Sci. Immunol. 5 (2020) eaax7969.  doi: 10.1126/sciimmunol.aax7969

    240. [240]

      A. Taraseviciute, V. Tkachev, R. Ponce, et al., Cancer Discov. 8 (2018) 750–763.  doi: 10.1158/2159-8290.cd-17-1368

    241. [241]

      S.J. Schuster, J. Svoboda, E.A. Chong, et al., New Engl. J. Med. 377 (2017) 2545–2554.  doi: 10.1056/NEJMoa1708566

    242. [242]

      S.L. Maude, N. Frey, P.A. Shaw, et al., New Engl. J. Med. 371 (2014) 1507–1517.  doi: 10.1056/NEJMoa1407222

    243. [243]

      M.L. Davila, I. Riviere, X. Wang, et al., Sci. Transl. Med. 6 (2014) 224 ra25.

    244. [244]

      C.J. Turtle, K.A. Hay, J. Gust, et al., J. Clin. Oncol. 35 (2017) 3020.  doi: 10.1200/JCO.2017.35.15_suppl.3020

    245. [245]

      D.W. Lee, R. Gardner, D.L. Porter, et al., Blood 124 (2014) 188–195.  doi: 10.1182/blood-2014-05-552729

    246. [246]

      C.J. Turtle, L.A. Hanafi, C. Berger, et al., J. Clin. Invest. 126 (2016) 2123–2138.  doi: 10.1172/JCI85309

    247. [247]

      J.N. Brudno, J.N. Kochenderfer, Blood Rev. 34 (2019) 45–55.  doi: 10.1016/j.blre.2018.11.002

    248. [248]

      T. Giavridis, S.J.C. van der Stegen, J. Eyquem, et al., Nat. Med. 24 (2018) 731–738.  doi: 10.1038/s41591-018-0041-7

    249. [249]

      R.M. Sterner, R. Sakemura, M.J. Cox, et al., Blood 133 (2019) 697–709.  doi: 10.1182/blood-2018-10-881722

    250. [250]

      A. Shetty, R. Hanson, P. Korsten, et al., Drug Des. Devel. Ther. 8 (2014) 349–364.

    251. [251]

      M. Hong, J.D. Clubb, Y.Y. Chen, Cancer Cell 38 (2020) 473–488.  doi: 10.1016/j.ccell.2020.07.005

    252. [252]

      E.W. Weber, R.C. Lynn, K.R. Parker, et al., bioRxiv (2020), https://doi.org/10.1101/2020.01.26.920496.  doi: 10.1101/2020.01.26.920496

    253. [253]

      A. Juillerat, A. Marechal, J.M. Filhol, et al., Sci. Rep. 7 (2017) 39833.  doi: 10.1038/srep39833

    254. [254]

      M. Casucci, L. Falcone, B. Camisa, et al., Front. Immunol. 9 (2018) 507.  doi: 10.3389/fimmu.2018.00507

    255. [255]

      A. Di Stasi, S.K. Tey, G. Dotti, et al., New Engl. J. Med. 365 (2011) 1673–1683.  doi: 10.1056/NEJMoa1106152

    256. [256]

      K.C. Straathof, M.A. Pulè, P. Yotnda, et al., Blood 105 (2005) 4247–4254.  doi: 10.1182/blood-2004-11-4564

    257. [257]

      B. Kwong, S.A. Gai, J. Elkhader, K.D. Wittrup, D.J. Irvine, Cancer Res. 73 (2013) 1547–1558.

    258. [258]

      Y. Zheng, L. Tang, L. Mabardi, S. Kumari, D.J. Irvine, ACS Nano 11 (2017) 3089–3100.  doi: 10.1021/acsnano.7b00078

    259. [259]

      Y.Q. Xie, H. Arik, L. Wei, et al., Biomater. Sci. 7 (2019) 1345–1357.  doi: 10.1039/c8bm01556b

    260. [260]

      L. Tang, Y. Zheng, M.B. Melo, et al., Nat. Biotechnol. 36 (2018) 707–716.  doi: 10.1038/nbt.4181

    261. [261]

      Y. Zhang, N. Li, H. Suh, D.J. Irvine, Nat. Commun. 9 (2018) 6.  doi: 10.1038/s41467-017-02251-3

    262. [262]

      T.T. Smith, H.F. Moffett, S.B. Stephan, et al., J. Clin. Invest. 127 (2017) 2176–2191.  doi: 10.1172/JCI87624

    263. [263]

      S.B. Stephan, A.M. Taber, I. Jileaeva, et al., Nat. Biotechnol. 33 (2015) 97–101.  doi: 10.1038/nbt.3104

    264. [264]

      S.K. Härmälä, R. Butcher, C.H. Roberts, Methods Mol. Biol. 1654 (2017) 135–149.  doi: 10.1007/978-1-4939-7231-9_9

    265. [265]

      L.B. Pinheiro, V.A. Coleman, C.M. Hindson, et al., Anal. Chem. 84 (2012) 1003–1011.  doi: 10.1021/ac202578x

    266. [266]

      E.D. Nair-Gill, C.J. Shu, C.G. Radu, O.N. Witte, Immunol. Rev. 221 (2008) 214–228.  doi: 10.1111/j.1600-065X.2008.00585.x

    267. [267]

      E.T. Ahrens, J.W. Bulte, Nat. Rev. Immunol. 13 (2013) 755–763.  doi: 10.1038/nri3531

    268. [268]

      H. Singh, A.M. Najjar, S. Olivares, et al., Leukemia 23 (2009) 620–622.  doi: 10.1038/leu.2008.256

    269. [269]

      G. Dotti, M. Tian, B. Savoldo, et al., Mol. Imaging 8 (2009) 230–237.

    270. [270]

      J. Grimm, M.F. Kircher, R. Weissleder, Radiologe 47 (2007) 25–33.  doi: 10.1007/s00117-006-1449-5

    271. [271]

      R. Zhou, D.H. Thomas, H. Qiao, et al., J. Nucl. Med. 46 (2005) 816–822.

    272. [272]

      R.G. Blasberg, J. Gelovani, Mol. Imaging 1 (2002) 280–300.  doi: 10.1162/153535002760235472

    273. [273]

      V. Ponomarev, M. Doubrovin, I. Serganova, et al., Eur. J. Nucl. Med. Mol. Imaging 31 (2004) 740–751.  doi: 10.1007/s00259-003-1441-5

    274. [274]

      B.A. Tannous, J. Grimm, K.F. Perry, et al., Nat. Methods 3 (2006) 391–396.  doi: 10.1038/nmeth875

    275. [275]

      R. Weissleder, A. Moore, U. Mahmood, et al., Nat. Med. 6 (2000) 351–355.  doi: 10.1038/73219

    276. [276]

      D.B. Kohn, M. Sadelain, J.C. Glorioso, Nat. Rev. Cancer 3 (2003) 477–488.  doi: 10.1038/nrc1122

    277. [277]

      P. Bhatnagar, Z. Li, Y. Choi, et al., Integr. Biol. (Camb) 5 (2013) 231–238.  doi: 10.1039/c2ib20093g

    278. [278]

      H. Li, L. Diaz, D. Lee, et al., Radiol. Med. 119 (2014) 269–276.  doi: 10.1007/s11547-013-0335-2

    279. [279]

      N. Emami-Shahri, J. Foster, R. Kashani, et al., Nat. Commun. 9 (2018) 1081.  doi: 10.1038/s41467-018-03524-1

    280. [280]

      F. Chapelin, S. Gao, H. Okada, et al., Sci. Rep. 7 (2017) 17748.  doi: 10.1038/s41598-017-17669-4

    281. [281]

      D.V. Hingorani, F. Chapelin, E. Stares, et al., Magn. Reson. Med. 83 (2020) 974–987.  doi: 10.1002/mrm.27988

    282. [282]

      L. Liu, Q. Ye, Y. Wu, et al., Nanomedicine 8 (2012) 1345–1354.  doi: 10.1016/j.nano.2012.02.017

    283. [283]

      A. Kulkarni, P. Rao, S. Natarajan, et al., Proc. Natl. Acad. Sci. U. S. A. 113 (2016) E2104–2113.  doi: 10.1073/pnas.1510959113

    284. [284]

      M. Horie, K. Nishio, K. Fujita, et al., Chem. Res. Toxicol. 22 (2009) 543–553.  doi: 10.1021/tx800289z

    285. [285]

      P. Chandran, J.E. Riviere, N.A. Monteiro-Riviere, Nanotoxicology 11 (2017) 507–519.  doi: 10.1080/17435390.2017.1314036

    286. [286]

      E. Preedia Babu, A. Subastri, A. Suyavaran, et al., Sci. Rep. 7 (2017) 4203.  doi: 10.1038/s41598-017-04440-y

    287. [287]

      H. Huang, W. Lai, M. Cui, et al., Sci. Rep. 6 (2016) 25518.  doi: 10.1038/srep25518

    288. [288]

      T. Wang, X. Jiang, ACS Appl. Mater. Interfaces 7 (2015) 129–136.  doi: 10.1021/am503865g

    289. [289]

      H.L. Karlsson, P. Cronholm, Y. Hedberg, et al., Toxicology 313 (2013) 59–69.  doi: 10.1016/j.tox.2013.07.012

    290. [290]

      X. He, W.G. Aker, H.M. Hwang, Nanotoxicology 8 (Suppl. 1) (2014) 185–195.  doi: 10.3109/17435390.2013.874050

    291. [291]

      A. Alalaiwe, G. Roberts, P. Carpinone, J. Munson, S. Roberts, Drug Deliv. 24 (2017) 591–598.  doi: 10.1080/10717544.2017.1282554

    292. [292]

      Y. Chen, C. Ren, S. Ouyang, X. Hu, Q. Zhou, Environ. Sci. Technol. 49 (2015) 10147–10154.  doi: 10.1021/acs.est.5b02220

    293. [293]

      J.R. Velicogna, E.E. Ritchie, R.P. Scroggins, J.I. Princz, Nanotoxicology 10 (2016) 1144–1151.  doi: 10.1080/17435390.2016.1181807

    294. [294]

      S.M. Moghimi, A.C. Hunter, T.L. Andresen, Annu. Rev. Pharmacol. Toxicol. 52 (2012) 481–503.  doi: 10.1146/annurev-pharmtox-010611-134623

    295. [295]

      D.E. Owens 3rd, N.A. Peppas, Int. J. Pharmacol. 307 (2006) 93–102.  doi: 10.1016/j.ijpharm.2005.10.010

    296. [296]

      S. Nie, Nanomedicine 5 (2010) 523–528.  doi: 10.2217/nnm.10.23

    297. [297]

      S.D. Li, L. Huang, Biochim. Biophys. Acta 1788 (2009) 2259–2266.  doi: 10.1016/j.bbamem.2009.06.022

    298. [298]

      L. Brannon-Peppas, J.O. Blanchette, Adv. Drug. Deliv. Rev. 56 (2004) 1649–1659.  doi: 10.1016/j.addr.2004.02.014

    299. [299]

      O. Veiseh, J.W. Gunn, M. Zhang, Adv. Drug. Deliv. Rev. 62 (2010) 284–304.  doi: 10.1016/j.addr.2009.11.002

    300. [300]

      H. Cao, Z. Dan, X. He, et al., ACS Nano 10 (2016) 7738–7748.  doi: 10.1021/acsnano.6b03148

    301. [301]

      H. Cao, B. Jiang, Y. Yang, et al., J. Colloid Interface Sci. 604 (2021) 596–603.  doi: 10.1016/j.jcis.2021.07.004

    302. [302]

      T. Kang, Q. Zhu, D. Wei, et al., ACS Nano 11 (2017) 1397–1411.  doi: 10.1021/acsnano.6b06477

    303. [303]

      Y. Guo, D. Wang, Q. Song, et al., ACS Nano 9 (2015) 6918–6933.  doi: 10.1021/acsnano.5b01042

    304. [304]

      D. Gao, X. Guo, X. Zhang, et al., Mater. Today Bio 5 (2020) 100035.  doi: 10.1016/j.mtbio.2019.100035

    305. [305]

      X. Yu, H. Zheng, M.T.V. Chan, W.K.K. Wu, Environ. Sci. Pollut. Res. Int. 25 (2018) 20569–20574.  doi: 10.1007/s11356-018-2426-z

    306. [306]

      H.S. Hwang, H. Shin, J. Han, K. Na, J. Pharm. Investig. 48 (2018) 143–151.  doi: 10.1007/s40005-017-0377-x

    307. [307]

      X. Xu, H. Lu, R. Lee, Front. Bioeng. Biotechnol. 8 (2020) 488.  doi: 10.3389/fbioe.2020.00488

    308. [308]

      G. Lan, K. Ni, Z. Xu, et al., J. Am. Chem. Soc. 140 (2018) 5670–5673.  doi: 10.1021/jacs.8b01072

    309. [309]

      D.W. Zheng, F. Gao, Q. Cheng, et al., Nat. Commun. 11 (2020) 1985.  doi: 10.1038/s41467-020-15927-0

    310. [310]

      Y. Wang, Y.X. Lin, S.L. Qiao, et al., Biomaterials 112 (2017) 153–163.  doi: 10.3901/JME.2017.05.153

  • 加载中
    1. [1]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

    2. [2]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    3. [3]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    4. [4]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    5. [5]

      Linzhou YinXiaowen JiangMiao WangYiren YangZhonggui HeJin SunHuiyuan GaoMengchi Sun . Phytoconstituent-derived nano-medicines/vesicles providing a promising dawn for inflammatory bowel disease. Chinese Chemical Letters, 2025, 36(6): 110224-. doi: 10.1016/j.cclet.2024.110224

    6. [6]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    7. [7]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    8. [8]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    9. [9]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    10. [10]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    11. [11]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    12. [12]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    13. [13]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    14. [14]

      Yan GaoZi-Lin SongShuang YuXiu-Li ZhaoDa-Wei ChenMing-Xi Qiao . Enhanced ferroptosis by a nanoparticle mimicking hemoglobin coordinate pattern with self-supplying hydrogen peroxide. Chinese Chemical Letters, 2025, 36(5): 110097-. doi: 10.1016/j.cclet.2024.110097

    15. [15]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

    16. [16]

      Liangliang JiaYe HongXinyu HeYing ZhouLiujiao RenHongjun DuBin ZhaoBin QinZhe YangDi Gao . Fighting hypoxia to improve photodynamic therapy-driven immunotherapy: Alleviating, exploiting and disregarding. Chinese Chemical Letters, 2025, 36(2): 109957-. doi: 10.1016/j.cclet.2024.109957

    17. [17]

      Yuequan WangCongtian WuChengcheng FengQin ChenZhonggui HeShenwu ZhangCong LuoJin Sun . Spatiotemporally-controlled supramolecular hybrid nanoassembly enabling ferroptosis-augmented photodynamic immunotherapy of cancer. Chinese Chemical Letters, 2025, 36(3): 109902-. doi: 10.1016/j.cclet.2024.109902

    18. [18]

      Yanjun CaiYong JiangYu ChenErzhuo ChengYuan GuYuwei LiQianqian LiuJian ZhangJifang LiuShisong HanBin Yang . Amplifying STING activation and immunogenic cell death by metal-polyphenol coordinated nanomedicines for enhanced cancer immunotherapy. Chinese Chemical Letters, 2025, 36(5): 110437-. doi: 10.1016/j.cclet.2024.110437

    19. [19]

      Kun ChenHuimin LinXin PengZiying WuJingyue DaiYi SunYaxuan FengZiyi HuangZhiqiang YuMeng YuGuangyu YaoJigang WangIn situ synthesis of MnO2 micro/nano-adjuvants for enhanced immunotherapy of breast tumors. Chinese Chemical Letters, 2025, 36(5): 110045-. doi: 10.1016/j.cclet.2024.110045

    20. [20]

      Yang LiuJing LiangMengzhu ZhengHaoze SongLixia ChenHua Li . PD-L1/SHP2 dual PROTACs inhibit melanoma by enhancing T-cell killing activity. Chinese Chemical Letters, 2025, 36(6): 110317-. doi: 10.1016/j.cclet.2024.110317

Metrics
  • PDF Downloads(17)
  • Abstract views(1248)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return