Citation: Jingjing Li, Juanjuan Wei, Yixuan Gao, Qi Zhao, Jianghui Sun, Jin Ouyang, Na Na. Peptide-assembled siRNA nanomicelles confine MnOx-loaded silicages for synergistic chemical and gene-regulated cancer therapy[J]. Chinese Chemical Letters, ;2023, 34(4): 107662. doi: 10.1016/j.cclet.2022.07.005 shu

Peptide-assembled siRNA nanomicelles confine MnOx-loaded silicages for synergistic chemical and gene-regulated cancer therapy

    * Corresponding author.
    E-mail address: nana@bnu.edu.cn (N. Na).
  • Received Date: 30 March 2022
    Revised Date: 16 June 2022
    Accepted Date: 6 July 2022
    Available Online: 8 July 2022

Figures(5)

  • Chemodynamic therapy (CDT) is a promising therapeutic approach for in situ cancer treatment, but it is still hindered by inefficient single-modality treatment and the weak targeted delivery of reagents into mitochondria (the main site of intracellular ROS production). Herein, to obtain a multimodal strategy, peptide-assembled siRNA nanomicelles were prepared to confine ultrasmall MnO in small silica cages (silicages), which is convenient for synergistic chemical and gene-regulated cancer therapy. Given the free energy and versatility of small silicages, as well as the excellent Fenton-like activity of ultrasmall MnO, MnO-inside-loaded silicages (10 nm) were prepared for CDT delivery to mitochondria. Subsequently, to obtain a synergistic CDT and gene silencing treatment, the peptide-mediated assembly of siRNA and MnO-loaded silicages were employed to obtain silicage@MnO-siRNA nanomicelles (SMS NMs). After multiple modifications, sequential cancer cell-targeted delivery, GSH-controlled reagent release of siRNA and mitochondria-targeted delivery of MnO-loaded silicages were successfully achieved. Finally, by both in vitro and in vivo experiments, SMS NMs were confirmed to be effective for synergistic chemical and gene-regulated cancer therapy. Our findings expand the applications of silicages and initiate the development of multimodal CDT.
  • In recent decades, the Daphniphyllum alkaloids have drawn a lot of interest from our community due to their intriguing biological activity and fascinating cage-like structures [1-9]. The groups of Heathcock [10-13], Carreira [14], Li [15-19], Smith [20,21], Hanessian [22], Fukuyama/Yokoshima [23], Dixon [24,25], Zhai [26,27], Qiu [28,29], Gao [30], Sarpong [31,32], Li [33], Lu [34] and Li [35] successively reported their impressive synthesis of more than thirty Daphniphyllum alkaloids. Also, our group accomplished the total synthesis of ten Daphniphyllum alkaloids from six different subfamilies, including himalensine A, 10-deoxydaphnipaxianine A, daphlongamine E and calyciphylline R (calyciphylline A-type), dapholdhamine B (daphnezomine A-type), caldaphnidine O (bukittinggine-type), caldaphnidine J (yuzurimine-type), daphnezomine L methyl ester and calyciphylline K (daphnezomine L-type) and caldaphnidine D (secodaphniphylline-type) [36-41].

    Since Hirata's seminal discovery in 1966, nearly fifty yuzurimine-type (or macrodaphniphyllamine-type) alkaloids—or about one-sixth of all Daphniphyllum alkaloids now known—have been identified (Fig. 1). It is acknowledged that the individuals within this subfamily possess intricate and caged hexacyclic skeleton, thus presents significant synthetic challenge. In 2020, our group achieved the first total synthesis of a member within this subfamily, caldaphnidine J [39]. Later, Li reported their impressive total synthesis of five macrodaphniphyllamine-type alkaloids [19].

    Figure 1

    Figure 1.  Representative yuzurimine-type alkaloids.

    Based on the biosynthetic pathway of yuzurimine-type alkaloids [6,8], it is reasonable to assume that C14epi-deoxycalyciphylline H could be an actual member of the yuzurimine-type alkaloid subfamily, yet to be isolated. As our interests in natural product synthesis continues [42-44], we wish to describe here our endeavor towards the total synthesis of calyciphylline H [45] that led us to finally access one of its close derivatives, C14epi-deoxycalyciphylline H.

    As depicted in Scheme 1, the retrosynthetic analysis of calyciphylline H indicated that it could be derived from C14epi-deoxycalyciphylline H via C-14 epimerization and a Polonovski reaction [19]. Next, we envisioned that an enyne cycloisomerization of compound 1 would allow facile access to the key tetrahydropyrrole motif as well as the C3-C4 alkene motif in our target molecules. Next, it was envisaged that compound 1 could be synthesized from compound 2 via homologation and propargylation. One of the critical five-membered rings in compound 2 could be fabricated via a Prins reaction from aldehyde 3. This aldehyde compound was envisioned to be derived from the tetracyclic compound 4, which can be produced from tricycle 5 through our previously reported procedures [37-39].

    Scheme 1

    Scheme 1.  Retrosynthetic analysis.

    Our study commenced from known tricyclic compound 5, which was converted to vicinal diol 4 via a 7-step procedure involving ring-expansion and cyclopentane formation (Scheme 2) [37-39]. Then, under Ando's olefination conditions (p-TSA, CH(OMe)3; then Ac2O, 150 ℃) [46], alkene 6 was effectively derivatized from diol 4 in excellent yield (93%). Removal of the benzyl group in compound 6 suffered partial N-detosylation under sodium naphthalene conditions, hence, re-tosylation was necessary to provide a satisfactory yield of compound 7. A facile Dess-Martin oxidation of the primary hydroxyl group in compound 7 furnished aldehyde 3 in nearly quantitative yield. Next, under the acidic conditions (TfOH, 0 ℃), a Prins reaction was triggered between the aldehyde motif and the alkene motif in compound 3, fabricating alcohols 2a (56%) and 2b (38%). The absolute stereochemical configuration of 2a was unambiguously assigned via a single-crystal X-Ray diffraction (CCDC: 2258010), while that of 2b was assigned by its conversion to 2a via oxidation and reduction. At this point, a homologation was required for introducing the C-14 carboxylic acid ester moiety. To this end, a Dess-Martin oxidation of the mixture of 2a and 2b yielded the corresponding ketone compound, which unfortunately failed to react under various homologation conditions (Wittig, Peterson, MeLi, MeMgBr, Nysted, Van Leusen). Gratifyingly, treating it with Horner-Wadsworth-Emmons conditions (8, n-BuLi) [37-39,41] successfully gave homologated product 9. Following hydrolysis of the ketene dithioacetal moiety in compound 9 yielded compound 10 with an α-faced carboxylic acid ester at C-14. This outcome was attributed to its thermodynamically favored stereochemistry, which was assigned by a single-crystal XRD (CCDC: 2258012). Replacement of the N-tosyl group with the propargyl group afforded enyne compound 1 in 92% yield. Finally, a Pd-catalyzed enyne cycloisomerization [47] produced key tetrahydropyrrole motif as well as the C3-C4 alkene motif in the corresponding diene, which was further selectively hydrogenated (H2, Crabtree's catalyst) to yield C14epi-deoxycalyciphylline H. In addition, transformation of this compound to natural calyciphylline H is currently under investigation.

    Scheme 2

    Scheme 2.  Total synthesis of C14epi-deoxycalyciphylline H, a putative yuzurimine-type alkaloid and synthetic study towards the daphnezomine L-type alkaloid paxdaphnidine A.

    Next, our attention turned to a complex member of daphnezomine L-type alkaloids, paxdaphnidine A. It was envisioned that a SN2-substitution reaction using a cyanide anion may set the desired stereogenic configuration at C-14. Bearing this in mind, alcohol 2a was converted to its epimer, 2b, which was then sulfonylated to give compound 11. Heating this compound with NBu4CN in DMF produced nitrile 12 with the desired stereogenic outcome, which was also unambiguously confirmed by a single-crystal XRD (CCDC: 2258013). It should be noted that other attempts of this type of transformation gave lower yields (-OMs, NaCN, DMSO, 120 ℃, 41%; -OEs, NaCN, DMF or DMSO, 130 ℃, < 10%; -OTs, NaCN, DMF, 130 ℃, 43%; -OTs, NaCN, DMSO, 130 ℃, 26%). More experimental evidence further indicated the thermodynamical bias at C-14. When subjecting nitrile 12 to DIBAL-H (−78 ℃ to 0 ℃) followed by a Pinnick oxidation (0 ℃ to room temperature) and methylation, compound 10 with the undesired C-14 stereogenic center was produced as the main product. However, when the DIBAL-H reduction as well as the Pinnick oxidation was carefully performed at −78 ℃, compound 13 was successfully produced with the desired C-14 stereochemistry. Afterwards, detosylation and propargylation of compound 13 produced tertiary amine 14. Next, a Pd-catalyzed enyne cycloisomerization forged the tetrahydropyrrole ring. The so-afforded hexacyclic diene was then subjected to the von Braun reaction conditions (BrCN, K2CO3) [41,48,49] to cleave the C—N bond in a regioselective manner to give compound 15. This regioselectivity was likely dominated by the drastically different steric hindrances between three C—N bonds. The final-stage transformation of compound 15 to paxdaphnidine A, is still under investigation in our laboratory.

    In summary, the total synthesis of C14epi-deoxycalyciphylline H, a possible yuzurimine-type alkaloid family member and a close derivative of its natural congener calyciphylline H, was accomplished. Key cyclization methods, such as Prins reaction and enyne cycloisomerization paved the road to the target molecule. Synthesis towards a daphnezomine L-type alkaloid, paxdaphnidine A, was also studied, featuring a late-stage von Braun reaction. Our findings may benefit the research in this active field—Daphniphyllum alkaloid synthesis.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Financial support from the National Natural Science Foundation of China (Nos. 21971104 and 22271136), Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis (No. ZDSYS20190902093215877), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Innovative Program (No. 2019BT02Y335), Education Department of Guangdong Province, Key research projects in colleges and universities in Guangdong Province (No. 2021ZDZX2035), Shenzhen Nobel Prize Scientists Laboratory Project (No. C17783101) and Innovative Team of Universities in Guangdong Province (No. 2020KCXTD016) is greatly appreciated. We also thank SUSTech CRF NMR facility and Dr. Yang Yu (SUSTech) for HRMS analysis. We also thank Dr. X. Chang (SUSTech) for single crystal X-ray diffraction analysis.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108733.


    1. [1]

      S.E. Weinberg, N.S. Chandel, Nat. Chem. Biol. 11 (2015) 9–15.  doi: 10.1038/nchembio.1712

    2. [2]

      L.A. Sena, N.S. Chandel, Mol. Cell 48 (2012) 158–167.  doi: 10.1016/j.molcel.2012.09.025

    3. [3]

      G.S. Shadel, T.L. Horvath, Cell 163 (2015) 560–569.  doi: 10.1016/j.cell.2015.10.001

    4. [4]

      P.H.G.M. Willems, R. Rossignol, C.E.J. Dieteren, M.P. Murphy, W.J.H. Koopman, Cell Metab. 22 (2015) 207–218.  doi: 10.1016/j.cmet.2015.06.006

    5. [5]

      S.S. Sabharwal, P.T. Schumacker, Nat. Rev. Cancer 14 (2014) 709–721.  doi: 10.1038/nrc3803

    6. [6]

      B.C. Dickinson, C.J. Chang, Nat. Chem. Biol. 7 (2011) 504–511.  doi: 10.1038/nchembio.607

    7. [7]

      F. Jiang, C. Yang, B. Ding, et al., Chin. Chem. Lett. 33 (2022) 2959–2964.  doi: 10.1016/j.cclet.2021.12.096

    8. [8]

      N. Gong, X. Ma, X. Ye, et al., Nat. Nanotechnol. 14 (2019) 379–387.  doi: 10.1038/s41565-019-0373-6

    9. [9]

      X. Hu, F. Li, F. Xia, et al., J. Am. Chem. Soc. 142 (2020) 1636–1644.  doi: 10.1021/jacs.9b13586

    10. [10]

      B. Ma, S. Wang, F. Liu, et al., J. Am. Chem. Soc. 141 (2019) 849–857.  doi: 10.1021/jacs.8b08714

    11. [11]

      S. Wang, G. Yu, Z. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 14758–14763.  doi: 10.1002/anie.201908997

    12. [12]

      X. Li, R. Luo, X. Liang, Q. Wu, C. Gong, Chin. Chem. Lett. 33 (2022) 2213–2230.  doi: 10.1016/j.cclet.2021.11.048

    13. [13]

      Y. Liu, X. Ji, W.W.L. Tong, et al., Angew. Chem. Int. Ed. 57 (2018) 1510–1513.  doi: 10.1002/anie.201710144

    14. [14]

      M. Ye, Y. Gao, M. Liang, et al., Chin. Chem. Lett. 33 (2022) 4197–4202.  doi: 10.1016/j.cclet.2022.01.086

    15. [15]

      Z. Dong, L. Feng, Y. Chao, et al., Nano Lett. 19 (2019) 805–815.  doi: 10.1021/acs.nanolett.8b03905

    16. [16]

      N. Chen, W. Fu, J. Zhou, et al., Chin. Chem. Lett. 32 (2021) 2405–2410.  doi: 10.1016/j.cclet.2021.02.030

    17. [17]

      L.S. Lin, J. Song, L. Song, et al., Angew. Chem. Int. Ed. 57 (2018) 4902–4906.  doi: 10.1002/anie.201712027

    18. [18]

      Y. Wang, C. Zhang, H. Zhang, L. Feng, L. Liu, Chin. Chem. Lett. 33 (2022) 4605–4609.  doi: 10.1016/j.cclet.2022.03.076

    19. [19]

      W. Xuan, Y. Xia, T. Li, et al., J. Am. Chem. Soc. 142 (2020) 937–944.  doi: 10.1021/jacs.9b10755

    20. [20]

      Z. Cao, L. Zhang, K. Liang, et al., Adv. Sci. 5 (2018) 1801155.  doi: 10.1002/advs.201801155

    21. [21]

      C. Liu, D. Wang, S. Zhang, et al., ACS Nano 13 (2019) 4267–4277.  doi: 10.1021/acsnano.8b09387

    22. [22]

      P. Yu, X. Li, G. Cheng, et al., Chin. Chem. Lett. 32 (2021) 2127–2138.  doi: 10.1016/j.cclet.2021.02.015

    23. [23]

      L. Lin, S. Wang, H. Deng, et al., J. Am. Chem. Soc. 142 (2020) 15320–15330.  doi: 10.1021/jacs.0c05604

    24. [24]

      L. Shi, Y. Wang, C. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 9562–9572.  doi: 10.1002/anie.202014415

    25. [25]

      X. Chen, Y. Chen, C. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 21905–21910.  doi: 10.1002/anie.202107588

    26. [26]

      C. Liu, Y. Cao, Y. Cheng, et al., Nat. Commun. 11 (2020) 1735.  doi: 10.1038/s41467-020-15591-4

    27. [27]

      W. Zhen, Y. Liu, W. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 9491–9497.  doi: 10.1002/anie.201916142

    28. [28]

      X. Zhao, K. Guo, K. Zhang, et al., Adv. Mater. 34 (2022) 2108263.  doi: 10.1002/adma.202108263

    29. [29]

      Y. Wang, Y. Li, Z. Zhang, et al., Adv. Mater. 33 (2021) 2103748.  doi: 10.1002/adma.202103748

    30. [30]

      Y. Wang, Y. Song, G. Zhu, D. Zhang, X. Liu, Chin. Chem. Lett. 29 (2018) 1685–1688.  doi: 10.1016/j.cclet.2017.12.004

    31. [31]

      N.P. Aditya, S. Aditya, H. Yang, et al., Food Chem. 173 (2015) 7–13.  doi: 10.1016/j.foodchem.2014.09.131

    32. [32]

      K. Ma, Y. Gong, T. Aubert, et al., Nature 558 (2018) 577–580.  doi: 10.1038/s41586-018-0221-0

    33. [33]

      R. Zandi, D. Reguera, R.F. Bruinsma, W.M. Gelbart, J. Rudnick, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 15556.  doi: 10.1073/pnas.0405844101

    34. [34]

      Y. Yang, T.L. Willis, R.W. Button, et al., Nat. Commun. 10 (2019) 3759.  doi: 10.1038/s41467-019-11671-2

    35. [35]

      S.V. Patwardhan, F.S. Emami, R.J. Berry, et al., J. Am. Chem. Soc. 134 (2012) 6244–6256.  doi: 10.1021/ja211307u

    36. [36]

      K. Nagy-Smith, E. Moore, J. Schneider, R. Tycko, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 9816.  doi: 10.1073/pnas.1509313112

    37. [37]

      S. Guan, A. Munder, S. Hedtfeld, et al., Nat. Nanotechnol. 14 (2019) 287–297.  doi: 10.1038/s41565-018-0358-x

    38. [38]

      J. Sun, X. Cai, C. Wang, et al., J. Am. Chem. Soc. 143 (2021) 868–878.  doi: 10.1021/jacs.0c10517

    1. [1]

      S.E. Weinberg, N.S. Chandel, Nat. Chem. Biol. 11 (2015) 9–15.  doi: 10.1038/nchembio.1712

    2. [2]

      L.A. Sena, N.S. Chandel, Mol. Cell 48 (2012) 158–167.  doi: 10.1016/j.molcel.2012.09.025

    3. [3]

      G.S. Shadel, T.L. Horvath, Cell 163 (2015) 560–569.  doi: 10.1016/j.cell.2015.10.001

    4. [4]

      P.H.G.M. Willems, R. Rossignol, C.E.J. Dieteren, M.P. Murphy, W.J.H. Koopman, Cell Metab. 22 (2015) 207–218.  doi: 10.1016/j.cmet.2015.06.006

    5. [5]

      S.S. Sabharwal, P.T. Schumacker, Nat. Rev. Cancer 14 (2014) 709–721.  doi: 10.1038/nrc3803

    6. [6]

      B.C. Dickinson, C.J. Chang, Nat. Chem. Biol. 7 (2011) 504–511.  doi: 10.1038/nchembio.607

    7. [7]

      F. Jiang, C. Yang, B. Ding, et al., Chin. Chem. Lett. 33 (2022) 2959–2964.  doi: 10.1016/j.cclet.2021.12.096

    8. [8]

      N. Gong, X. Ma, X. Ye, et al., Nat. Nanotechnol. 14 (2019) 379–387.  doi: 10.1038/s41565-019-0373-6

    9. [9]

      X. Hu, F. Li, F. Xia, et al., J. Am. Chem. Soc. 142 (2020) 1636–1644.  doi: 10.1021/jacs.9b13586

    10. [10]

      B. Ma, S. Wang, F. Liu, et al., J. Am. Chem. Soc. 141 (2019) 849–857.  doi: 10.1021/jacs.8b08714

    11. [11]

      S. Wang, G. Yu, Z. Wang, et al., Angew. Chem. Int. Ed. 58 (2019) 14758–14763.  doi: 10.1002/anie.201908997

    12. [12]

      X. Li, R. Luo, X. Liang, Q. Wu, C. Gong, Chin. Chem. Lett. 33 (2022) 2213–2230.  doi: 10.1016/j.cclet.2021.11.048

    13. [13]

      Y. Liu, X. Ji, W.W.L. Tong, et al., Angew. Chem. Int. Ed. 57 (2018) 1510–1513.  doi: 10.1002/anie.201710144

    14. [14]

      M. Ye, Y. Gao, M. Liang, et al., Chin. Chem. Lett. 33 (2022) 4197–4202.  doi: 10.1016/j.cclet.2022.01.086

    15. [15]

      Z. Dong, L. Feng, Y. Chao, et al., Nano Lett. 19 (2019) 805–815.  doi: 10.1021/acs.nanolett.8b03905

    16. [16]

      N. Chen, W. Fu, J. Zhou, et al., Chin. Chem. Lett. 32 (2021) 2405–2410.  doi: 10.1016/j.cclet.2021.02.030

    17. [17]

      L.S. Lin, J. Song, L. Song, et al., Angew. Chem. Int. Ed. 57 (2018) 4902–4906.  doi: 10.1002/anie.201712027

    18. [18]

      Y. Wang, C. Zhang, H. Zhang, L. Feng, L. Liu, Chin. Chem. Lett. 33 (2022) 4605–4609.  doi: 10.1016/j.cclet.2022.03.076

    19. [19]

      W. Xuan, Y. Xia, T. Li, et al., J. Am. Chem. Soc. 142 (2020) 937–944.  doi: 10.1021/jacs.9b10755

    20. [20]

      Z. Cao, L. Zhang, K. Liang, et al., Adv. Sci. 5 (2018) 1801155.  doi: 10.1002/advs.201801155

    21. [21]

      C. Liu, D. Wang, S. Zhang, et al., ACS Nano 13 (2019) 4267–4277.  doi: 10.1021/acsnano.8b09387

    22. [22]

      P. Yu, X. Li, G. Cheng, et al., Chin. Chem. Lett. 32 (2021) 2127–2138.  doi: 10.1016/j.cclet.2021.02.015

    23. [23]

      L. Lin, S. Wang, H. Deng, et al., J. Am. Chem. Soc. 142 (2020) 15320–15330.  doi: 10.1021/jacs.0c05604

    24. [24]

      L. Shi, Y. Wang, C. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 9562–9572.  doi: 10.1002/anie.202014415

    25. [25]

      X. Chen, Y. Chen, C. Wang, et al., Angew. Chem. Int. Ed. 60 (2021) 21905–21910.  doi: 10.1002/anie.202107588

    26. [26]

      C. Liu, Y. Cao, Y. Cheng, et al., Nat. Commun. 11 (2020) 1735.  doi: 10.1038/s41467-020-15591-4

    27. [27]

      W. Zhen, Y. Liu, W. Wang, et al., Angew. Chem. Int. Ed. 59 (2020) 9491–9497.  doi: 10.1002/anie.201916142

    28. [28]

      X. Zhao, K. Guo, K. Zhang, et al., Adv. Mater. 34 (2022) 2108263.  doi: 10.1002/adma.202108263

    29. [29]

      Y. Wang, Y. Li, Z. Zhang, et al., Adv. Mater. 33 (2021) 2103748.  doi: 10.1002/adma.202103748

    30. [30]

      Y. Wang, Y. Song, G. Zhu, D. Zhang, X. Liu, Chin. Chem. Lett. 29 (2018) 1685–1688.  doi: 10.1016/j.cclet.2017.12.004

    31. [31]

      N.P. Aditya, S. Aditya, H. Yang, et al., Food Chem. 173 (2015) 7–13.  doi: 10.1016/j.foodchem.2014.09.131

    32. [32]

      K. Ma, Y. Gong, T. Aubert, et al., Nature 558 (2018) 577–580.  doi: 10.1038/s41586-018-0221-0

    33. [33]

      R. Zandi, D. Reguera, R.F. Bruinsma, W.M. Gelbart, J. Rudnick, Proc. Natl. Acad. Sci. U. S. A. 101 (2004) 15556.  doi: 10.1073/pnas.0405844101

    34. [34]

      Y. Yang, T.L. Willis, R.W. Button, et al., Nat. Commun. 10 (2019) 3759.  doi: 10.1038/s41467-019-11671-2

    35. [35]

      S.V. Patwardhan, F.S. Emami, R.J. Berry, et al., J. Am. Chem. Soc. 134 (2012) 6244–6256.  doi: 10.1021/ja211307u

    36. [36]

      K. Nagy-Smith, E. Moore, J. Schneider, R. Tycko, Proc. Natl. Acad. Sci. U. S. A. 112 (2015) 9816.  doi: 10.1073/pnas.1509313112

    37. [37]

      S. Guan, A. Munder, S. Hedtfeld, et al., Nat. Nanotechnol. 14 (2019) 287–297.  doi: 10.1038/s41565-018-0358-x

    38. [38]

      J. Sun, X. Cai, C. Wang, et al., J. Am. Chem. Soc. 143 (2021) 868–878.  doi: 10.1021/jacs.0c10517

  • 加载中
    1. [1]

      Yixin SunKeke YuXiuchun GuoLanlan ZongZhonggui HeXiaohui Pu . Three-in-one reduction and acid-ignited micelles amplify antitumor efficacy via precise synergistic delivery of paclitaxel and naringenin. Chinese Chemical Letters, 2025, 36(6): 110393-. doi: 10.1016/j.cclet.2024.110393

    2. [2]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    3. [3]

      Ziqin LiKai HaoLongwei XiangHuayu Tian . Cationic covalent organic framework nanocarriers integrating both efficient gene silencing and real-time gene detection. Chinese Chemical Letters, 2025, 36(4): 109943-. doi: 10.1016/j.cclet.2024.109943

    4. [4]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    5. [5]

      Mengmeng YuanXiwen HuNa LiLimin XuMengxi ZhuXing PeiRui LiLu SunYupeng ChenFei YuHuining He . Kidney targeted delivery of siRNA mediated by peptide-siRNA conjugate for the treatment of acute kidney injury. Chinese Chemical Letters, 2025, 36(6): 110251-. doi: 10.1016/j.cclet.2024.110251

    6. [6]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    7. [7]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    8. [8]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    9. [9]

      Kun-Heng LiHong-Yang ZhaoDan-Dan WangMing-Hui QiZi-Jian XuJia-Mi LiZhi-Li ZhangShi-Wen Huang . Mitochondria-targeted nano-AIEgens as a powerful inducer for evoking immunogenic cell death. Chinese Chemical Letters, 2024, 35(5): 108882-. doi: 10.1016/j.cclet.2023.108882

    10. [10]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    11. [11]

      Zhiyu YuXiang LuoCheng ZhangXin LuXiaohui LiPan LiaoZhongqiu LiuRong ZhangShengtao WangZhiqiang YuGuochao Liao . Mitochondria-targeted carrier-free nanoparticles based on dihydroartemisinin against hepatocellular carcinoma. Chinese Chemical Letters, 2024, 35(10): 109519-. doi: 10.1016/j.cclet.2024.109519

    12. [12]

      Wenjia WangXingyue HeXiaojie WangTiantian ZhaoOsamu MuraokaGenzoh TanabeWeijia XieTianjiao ZhouLei XingQingri JinHulin Jiang . Glutathione-depleted cyclodextrin pseudo-polyrotaxane nanoparticles for anti-inflammatory oxaliplatin (Ⅳ) prodrug delivery and enhanced colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108656-. doi: 10.1016/j.cclet.2023.108656

    13. [13]

      Boyuan LiuZixu LiuPing WangYu ZhangHaibing HeTian YinJingxin GouXing Tang . Nanomedicine-based targeting delivery systems for peritoneal cavity localized therapy: A promising treatment of ovarian cancer and its peritoneal metastasis. Chinese Chemical Letters, 2025, 36(6): 110229-. doi: 10.1016/j.cclet.2024.110229

    14. [14]

      Xueyan ZhangJicong ChenSongren HanShiyan DongHuan ZhangYuhong ManJie YangYe BiLesheng Teng . The size-switchable microspheres co-loaded with RANK siRNA and salmon calcitonin for osteoporosis therapy. Chinese Chemical Letters, 2024, 35(12): 109668-. doi: 10.1016/j.cclet.2024.109668

    15. [15]

      Ke GongJinghan LiaoJiangtao LinQuan WangZhihua WuLiting WangJiali ZhangYi DongYourong DuanJianhua Chen . Mitochondria-targeted nanoparticles overcome chemoresistance via downregulating BACH1/CD47 axis in ovarian carcinoma. Chinese Chemical Letters, 2024, 35(5): 108888-. doi: 10.1016/j.cclet.2023.108888

    16. [16]

      Junfei YangKe WangShuxin SunTianqi PeiJunxiu LiXunwei GongCuixia ZhengYun ZhangQingling SongLei Wang . A "spore-like" oral nanodrug delivery platform for precision targeted therapy of inflammatory bowel disease. Chinese Chemical Letters, 2025, 36(3): 110180-. doi: 10.1016/j.cclet.2024.110180

    17. [17]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    18. [18]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    19. [19]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    20. [20]

      Jia-Qi FengXiang TianRui-Ge CaoYong-Xiu LiWen-Long LiuRong HuangSi-Yong QinAi-Qing ZhangYin-Jia Cheng . An AIE-based theranostic nanoplatform for enhanced colorectal cancer therapy: Real-time tumor-tracking and chemical-enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109657-. doi: 10.1016/j.cclet.2024.109657

Metrics
  • PDF Downloads(2)
  • Abstract views(629)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return