Visible light responsive spiropyran derivatives based on dynamic coordination bonds
-
* Corresponding author.
E-mail address: chli@nju.edu.cn (C.-H. Li).
1 These authors contributed equally to this work.
Citation:
Xiong Xiao, Wei Zheng, Yue Zhao, Cheng-Hui Li. Visible light responsive spiropyran derivatives based on dynamic coordination bonds[J]. Chinese Chemical Letters,
;2023, 34(2): 107457.
doi:
10.1016/j.cclet.2022.04.055
J. Zhang, Y. Fu, H.H. Han, et al., Nat. Commun. 8(2017) 987.
doi: 10.1038/s41467-017-01137-8
Y. Xiong, P. Rivera-Fuentes, E. Sezgin, et al., Org. Lett. 18(2016) 3666–3669.
doi: 10.1021/acs.orglett.6b01717
J. Yan, L.X. Zhao, C. Li, et al., J. Am. Chem. Soc. 137(2015) 2436–2439.
doi: 10.1021/ja512189a
X. Chai, H.H. Han, A.C. Sedgwick, et al., J. Am. Chem. Soc. 142(2020) 18005–18013.
doi: 10.1021/jacs.0c05379
L. Ming, L.Y. Gu, Q. Zhang, M.Z. Xue, Y.G. Liu, Chin. Chem. Lett. 24(2013) 1014–1018.
doi: 10.1016/j.cclet.2013.07.001
X. Tian, J. Li, Y. Zhang, et al., Sens. Actuator. B: Chem. 359(2022) 131618.
doi: 10.1016/j.snb.2022.131618
S. Son, E. Shin, B.S. Kim, Biomacromolecules 15(2014) 628–634.
doi: 10.1021/bm401670t
A. Fagan, M. Bartkowski, S. Giordani, Front. Chem. 9(2021) 720087.
doi: 10.3389/fchem.2021.720087
R. Klajn, Chem. Soc. Rev. 43(2014) 148–184.
doi: 10.1039/C3CS60181A
Y. Hao, J. Meng, S. Wang, Chin. Chem. Lett. 28(2017) 2085–2091.
doi: 10.1016/j.cclet.2017.10.019
B. Champagne, A. Plaquet, J.L. Pozzo, V. Rodriguez, F. Castet, J. Am. Chem. Soc. 134(2012) 8101–8103.
doi: 10.1021/ja302395f
A.A. Ali, R. Kharbash, Y. Kim, Anal. Chim. Acta 1110(2020) 199–223.
doi: 10.1016/j.aca.2020.01.057
L. Kortekaas, W.R. Browne, Chem. Soc. Rev. 48(2019) 3406–3424.
doi: 10.1039/C9CS00203K
M. Natali, S. Giordani, Chem. Soc. Rev. 41(2012) 4010–4029.
doi: 10.1039/c2cs35015g
L. Wang, Y. Liu, X. Zhan, D. Luo, X. Sun, J. Mater. Chem. C 7(2019) 8649–8654.
doi: 10.1039/C9TC02076D
J. Tian, J. Xu, H. Peng, et al., Prog. Org. Coat. 160(2021) 106531.
doi: 10.1016/j.porgcoat.2021.106531
L. Wimberger, S.K.K. Prasad, M.D. Peeks, et al., J. Am. Chem. Soc. 143(2021) 20758–20768.
doi: 10.1021/jacs.1c08810
Z. Shi, P. Peng, D. Strohecker, Y. Liao, J. Am. Chem. Soc. 133(2011) 14699–14703.
doi: 10.1021/ja203851c
M.J. Feeney, S.W. Thomas, Macromolecules 51(2018) 8027–8037.
doi: 10.1021/acs.macromol.8b01915
Y. Ma, Y. Yu, J. Li, et al., InfoMat 3(2021) 82–100.
doi: 10.1002/inf2.12125
T. Qin, J. Han, Y. Geng, et al., Chem. Eur. J. 24(2018) 12539–12545.
doi: 10.1002/chem.201801692
H. Zhang, Q. Li, Y. Yang, X. Ji, J.L. Sessler, J. Am. Chem. Soc. 143(2021) 18635–18642.
doi: 10.1021/jacs.1c08558
J. He, Y. Yang, Y. Li, et al., Cell Rep. Phys. Sci. 2(2021) 100643.
doi: 10.1016/j.xcrp.2021.100643
Q. Qi, C. Li, X. Liu, et al., J. Am. Chem. Soc. 139(2017) 16036–16039.
doi: 10.1021/jacs.7b07738
N.A. Voloshin, E.V. Solov'eva, S.O. Bezugliy, A.V. Metelitsa, V.I. Minkin, Chem. Heterocycl. Com. 48(2012) 1361–1370.
doi: 10.1007/s10593-012-1145-5
H. Wu, D. Zhang, L. Su, et al., J. Am. Chem. Soc. 129(2007) 6839–6846.
doi: 10.1021/ja0702824
L.X. Yu, Y. Liu, S.C. Chen, Y. Guan, Y.Z. Wang, Chin. Chem. Lett. 25(2014) 389–396.
doi: 10.1016/j.cclet.2013.12.014
L.N. Fu, B. Leng, Y.S. Li, X.K. Gao, Chin. Chem. Lett. 27(2016) 1319–1329.
doi: 10.1016/j.cclet.2016.06.045
C. Ventura, P. Thornton, S. Giordani, A. Heise, Polym. Chem. 5(2014) 6318–6324.
doi: 10.1039/C4PY00778F
M. Tomasulo, E. Deniz, R.J. Alvarado, F.M. Raymo, J. Phys. Chem. C 112(2008) 8038–8045.
M. Sommer, Macromol. Rapid Commun. 42(2021) e2000597.
doi: 10.1002/marc.202000597
N. Nadir, Z. Wahid, M.T. Zainuddin, N.Z. Mohamed Islam, Adv. Mater. Res. 925(2014) 323–328.
doi: 10.4028/www.scientific.net/AMR.925.323
E.I. Balmond, B.K. Tautges, A.L. Faulkner, et al., J. Org. Chem. 81(2016) 8744–8758.
doi: 10.1021/acs.joc.6b01193
J.Q. Ren, H. Tian, Sensors 7(2007) 3166–3178.
doi: 10.3390/s7123166
M. Natali, L. Soldi, S. Giordani, Tetrahedron 66(2010) 7612–7617.
doi: 10.1016/j.tet.2010.07.035
M. Baldrighi, G. Locatelli, J. Desper, C.B. Aakeroy, S. Giordani, Chem. Eur. J. 22(2016) 13976–13984.
doi: 10.1002/chem.201602608
T.J. Feuerstein, R. Muller, C. Barner-Kowollik, P.W. Roesky, Inorg. Chem. 58(2019) 15479–15486.
doi: 10.1021/acs.inorgchem.9b02547
I. Kim, D.C. Jeong, M. Lee, et al., Tetrahedron Lett. 56(2015) 6080–6084.
doi: 10.1016/j.tetlet.2015.09.055
N. Shao, J.Y. Jin, H. Wang, et al., Anal. Chem. 80(2008) 3466–3475.
doi: 10.1021/ac800072y
J.F. Zhu, H. Yuan, W.H. Chan, A.W. Lee, Org. Biomol. Chem. 8(2010) 3957–3964.
doi: 10.1039/c004871b
Y. Zhang, N. Shao, R. Yang, et al., Sci. China Ser. B 49(2006) 246–255.
doi: 10.1007/s11426-006-0246-3
G. Ma, Q. Zhou, X. Zhang, Y. Xu, H. Liu, New J. Chem. 38(2014) 552–560.
doi: 10.1039/C3NJ01238G
S. Goswami, A.K. Das, A.K. Maity, et al., Dalton Trans. 43(2014) 231–239.
doi: 10.1039/C3DT51851E
G.M. Sylvia, A.M. Mak, S. Heng, et al., Chemosensors 6(2018) 17.
doi: 10.3390/chemosensors6020017
D.B. Stubing, S. Heng, A.D. Abell, Org. Biomol. Chem. 14(2016) 3752–3757.
doi: 10.1039/C6OB00468G
Y. Shiraishi, Y. Matsunaga, T. Hirai, Chem. Commun. 48(2012) 5485–5487.
doi: 10.1039/c2cc30258f
J. Meng, H. Xu, Z. Li, S. Xu, C. Yao, Tetrahedron 73(2017) 6637–6643.
doi: 10.1016/j.tet.2017.10.014
X. Guo, D. Zhang, D. Zhu, Adv. Mater. 16(2004) 125–130.
doi: 10.1002/adma.200306102
T. Zhou, Z. Li, J. Wang, New J. Chem. 43(2019) 8869–8872.
doi: 10.1039/C9NJ01727E
F.B. Miguez, I.F. Reis, L.P. Dutra, et al., Dyes Pigments 171(2019) 107757.
doi: 10.1016/j.dyepig.2019.107757
D. Bleger, S. Hecht, Angew. Chem. Int. Ed. 54(2015) 11338–11349.
doi: 10.1002/anie.201500628
D. Roke, C. Stuckhardt, W. Danowski, S.J. Wezenberg, B.L. Feringa, Angew. Chem. Int. Ed. 57(2018) 10515–10519.
doi: 10.1002/anie.201802392
S. Helmy, F.A. Leibfarth, S. Oh, et al., J. Am. Chem. Soc. 136(2014) 8169–8172.
doi: 10.1021/ja503016b
A. Bagheri, C. Bainbridge, J. Jin, ACS Appl. Polym. Mater. 1(2019) 1896–1904.
doi: 10.1021/acsapm.9b00458
N.D. Shepherd, T. Wang, B. Ding, J.E. Beves, D.M. D'Alessandro, Inorg. Chem. 60(2021) 11706–11710.
doi: 10.1021/acs.inorgchem.0c03383
Y. Duan, H. Zhao, C. Xiong, et al., Chin. J. Chem. 39(2021) 985–998.
doi: 10.1002/cjoc.202000532
C.C. Ko, V.W. Yam, Acc. Chem. Res. 51(2018) 149–159.
doi: 10.1021/acs.accounts.7b00426
H.T. Sun, X.H. Tian, J. Autschbach, et al., J. Mater. Chem. C 1(2013) 5779–5790.
doi: 10.1039/c3tc31131g
J. -. X. Wang, C. Li, H. Tian, Coord. Chem. Rev. 427(2021) 213579.
doi: 10.1016/j.ccr.2020.213579
J. Lee, M.M. Sroda, Y. Kwon, et al., ACS Appl. Mater. Interfaces 12(2020) 54075–54082.
doi: 10.1021/acsami.0c15116
W. Qiu, P.A. Gurr, G.G. Qiao, ACS Appl. Mater. Interfaces 11(2019) 29268–29275.
doi: 10.1021/acsami.9b09023
T. Yamaguchi, A. Maity, V. Polshettiwar, M. Ogawa, Inorg. Chem. 57(2018) 3671–3674.
doi: 10.1021/acs.inorgchem.7b03132
W. Maret, Y. Li, Chem. Rev. 109(2009) 4682–4707.
doi: 10.1021/cr800556u
J.C. Lai, L. Li, D.P. Wang, et al., Nat. Commun. 9(2018) 2725.
doi: 10.1038/s41467-018-05285-3
J.C. Lai, X.Y. Jia, D.P. Wang, et al., Nat. Commun. 10(2019) 1164.
doi: 10.1038/s41467-019-09130-z
M. Schulz-Senft, P.J. Gates, F.D. Sönnichsen, A. Staubitz, Dyes Pigments 136(2017) 292–301.
doi: 10.1016/j.dyepig.2016.08.039
Y. Zhao, Z. Li, J. Ma, Q. Jia, ACS Appl. Mater. Interfaces 13(2021) 55806–55814.
doi: 10.1021/acsami.1c14739
Z. Wu, Q. Wang, P. Li, B. Fang, M. Yin, J. Mater. Chem. C 9(2021) 6290–6296.
doi: 10.1039/D1TC00974E
J.K. Rad, A.R. Mahdavian, H. Salehi-Mobarakeh, A. Abdollahi, Macromolecules 49(2015) 141–152.
M. Natali, C. Aakeroy, J. Desper, S. Giordani, Dalton Trans. 39(2010) 8269–8277.
doi: 10.1039/c0dt00242a
G. Berkovic, V. Krongauz, V. Weiss, Chem. Rev. 100(2000) 1741–1754.
doi: 10.1021/cr9800715
W. Szymanski, J.M. Beierle, H.A. Kistemaker, W.A. Velema, B.L. Feringa, Chem. Rev. 113(2013) 6114–6178.
doi: 10.1021/cr300179f
C. Heinzmann, S. Coulibaly, A. Roulin, G.L. Fiore, C. Weder, ACS Appl. Mater. Interfaces 6(2014) 4713–4719.
doi: 10.1021/am405302z
D. Habault, H. Zhang, Y. Zhao, Chem. Soc. Rev. 42(2013) 7244–7256.
doi: 10.1039/c3cs35489j
C.H. Li, J.L. Zuo, Adv. Mater. 32(2020) e1903762.
G. Li, Z. Pan, Z. Jia, et al., New J. Chem. 45(2021) 6386–6396.
doi: 10.1039/D1NJ00429H
A. Ahmad, Y. Wei, F. Syed, et al., RSC Adv. 5(2015) 99364–99377.
doi: 10.1039/C5RA20096B
S. Lee, J.E. Kwon, J. Hong, S.Y. Park, K. Kang, J. Mater. Chem. A 7(2019) 11438–11443.
doi: 10.1039/C9TA01508F
J. Boelke, S. Hecht, Adv. Opt. Mater. 7(2019) 1900404.
doi: 10.1002/adom.201900404
Y. Xiao, C. Cao, J. Coord. Chem. 71(2018) 3836–3846.
doi: 10.1080/00958972.2018.1540780
S.S. Deshpande, M.A. Jachak, S.S. Khopkar, G.S. Shankarling, Sens. Actuator B: Chem. 258(2018) 648–656.
doi: 10.1016/j.snb.2017.11.138
A. Kumar, S. Kumar, J. Photoch. Photobio. A 390(2020) 112265.
doi: 10.1016/j.jphotochem.2019.112265
P.X. Wang, F.Q. Bai, Z.X. Zhang, et al., Org. Electron. 45(2017) 33–41.
doi: 10.1016/j.orgel.2017.02.031
T. Moeller, The Chemistry of the Lanthanides, Pergamon, Great Britain, 1973.
S. Cotton, Lanthanides and Actinides, Macmillan International Higher Education, 1991.
R. Carr, N.H. Evans, D. Parker, Chem. Soc. Rev. 41(2012) 7673–7686.
doi: 10.1039/c2cs35242g
X. Li, W. Liu, Z. Guo, M. Tan, Inorg. Chem. 42(2003) 8735–8738.
doi: 10.1021/ic034268d
B. Wang, Z. Zang, H. Wang, et al., Angew. Chem. 125(2013) 3844–3847.
doi: 10.1002/ange.201210172
Y.H. Sheng, J. Leszczynski, A.A. Garcia, et al., J. Phys. Chem. B 108(2004) 16233–16243.
doi: 10.1021/jp0488867
O. Brugner, T. Reichenbach, M. Sommer, M. Walter, J. Phys. Chem. A 121(2017) 2683–2687.
doi: 10.1021/acs.jpca.7b01248
V.I. Minkin, Chem. Rev. 104(2004) 2751–2776.
doi: 10.1021/cr020088u
L. Cui, H. Zhang, G. Zhang, et al., Spectrochim. Acta A 202(2018) 13–17.
doi: 10.1016/j.saa.2018.04.076
Yi Liu , Zhe-Hao Wang , Guan-Hua Xue , Lin Chen , Li-Hua Yuan , Yi-Wen Li , Da-Gang Yu , Jian-Heng Ye . Photocatalytic dicarboxylation of strained C–C bonds with CO2 via consecutive visible-light-induced electron transfer. Chinese Chemical Letters, 2024, 35(6): 109138-. doi: 10.1016/j.cclet.2023.109138
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Pei Cao , Yilan Wang , Lejian Yu , Miao Wang , Liming Zhao , Xu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421
Ziyong Li , Jinzhao Song , Xinyu Gao , Xiaoxie Ma , Keyu Liu , Ziwei Ma , Qilian Wang , Xinliang Zeng , Haining Zhang , Pei Zhang , Hui Guo , Jun Yin . Highly efficient green light-excited AIE photosensitizers derived from BF2-curcuminoid for specific photodynamic eradication of Gram-negative bacteria. Chinese Chemical Letters, 2025, 36(5): 110073-. doi: 10.1016/j.cclet.2024.110073
Xi Zhou , Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464
Xuhui Fan , Fan Wang , Mengjiao Li , Faiza Meharban , Yaying Li , Yuanyuan Cui , Xiaopeng Li , Jingsan Xu , Qi Xiao , Wei Luo . Visible light excitation on CuPd/TiN with enhanced chemisorption for catalyzing Heck reaction. Chinese Chemical Letters, 2025, 36(1): 110299-. doi: 10.1016/j.cclet.2024.110299
Dongdong YANG , Jianhua XUE , Yuanyu YANG , Meixia WU , Yujia BAI , Zongxuan WANG , Qi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266
Shuwen SUN , Gaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399
Jiayu Zeng , Minhui Liu , Ting Yang , Jia Huang , Songjiao Li , Wanting Zhang , Dan Cheng , Longwei He , Jia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166
Tingting Liu , Pengfei Sun , Wei Zhao , Yingshuang Li , Lujun Cheng , Jiahai Fan , Xiaohui Bi , Xiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813
Di An , Mingdong She , Ziyang Zhang , Ting Zhang , Miaomiao Xu , Jinjun Shao , Qian Shen , Xuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841
Jianye Kang , Xinyu Yang , Xuhao Yang , Jiahui Sun , Yuhang Liu , Shutao Wang , Wenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
Tian-Yu Gao , Xiao-Yan Mo , Shu-Rong Zhang , Yuan-Xu Jiang , Shu-Ping Luo , Jian-Heng Ye , Da-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364
Lang Gao , Cen Zhou , Rui Wang , Feng Lan , Bohang An , Xiaozhou Huang , Xiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832
Jing Wang , Zenghui Li , Xiaoyang Liu , Bochao Su , Honghong Gong , Chao Feng , Guoping Li , Gang He , Bin Rao . Fine-tuning redox ability of arylene-bridged bis(benzimidazolium) for electrochromism and visible-light photocatalysis. Chinese Chemical Letters, 2024, 35(9): 109473-. doi: 10.1016/j.cclet.2023.109473
Xin Wang , Changzhao Chen , Qishen Wang , Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473
Rong-Nan Yi , Wei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787