Citation: Yi Liu, Xuepeng Shao, Wenting Bu, Zhen Qin, Youyi Ni, Fengcheng Wu, Chuting Yang, Xiaolin Wang. Radioanalytical chemistry for nuclear forensics in China: Progress and future perspective[J]. Chinese Chemical Letters, ;2022, 33(7): 3384-3394. doi: 10.1016/j.cclet.2022.03.016 shu

Radioanalytical chemistry for nuclear forensics in China: Progress and future perspective

    * Corresponding authors.
    E-mail addresses: yangchuting@caep.cn (C. Yang), xlwang@caep.cn (X. Wang).
    1 These authors contributed equally to this work
  • Received Date: 31 December 2021
    Revised Date: 2 March 2022
    Accepted Date: 3 March 2022
    Available Online: 7 March 2022

Figures(5)

  • A relatively new branch of science - nuclear forensics, aiming at providing the nature, origin, history and possible trafficking route of seized nuclear materials/devices, has been established and rapidly developed over decades to screen illicit nuclear activities. This highly interdisciplinary science is built upon a foundation of analytical chemistry, radiochemistry, nuclear physics, material sciences, geology, and other scientific disciplines, within which radiochemical methodologies and radioanalytical techniques play a key role. The present review provides a brief overview about the crucial aspects of nuclear forensics, including basic content, procedure, concerned elements, common separation, analytical method, and so on. The state of the art and recent progresses of nuclear forensics by research communities in China are reviewed, while selected examples and practical applications are emphasized. The challenges associated with this new area and on-going developments are highlighted and discussed.

    1. [1]

      International Atomic Energy AgencyImplementing Guide: Nuclear Forensics in Support of Investigations, 2015 IAEA Nuclear Security Series No. 2-G (Rev. 1Vienna, Austria.

    2. [2]

      K.J. Moody, P.M. Grant, I.D. Hutcheon, Nuclear Forensic Analysis, 2nd ed., CRC Press, 2014.

    3. [3]

      K. Mayer, M. Wallenius, Z. Varga, Chem. Rev. 113(2013) 884-900.  doi: 10.1021/cr300273f

    4. [4]

      M.D. Straub, J. Arnold, J. Fessenden, J.L. Kiplinger, Anal. Chem. 93(2021) 3-22.  doi: 10.1021/acs.analchem.0c03571

    5. [5]

      K. Mayer, M. Wallenius, I. Ray, Analyst 130(2005) 433-441.  doi: 10.1039/B412922A

    6. [6]

      K. Mayer, M. Wallenius, T. Fanghanel, J. Alloys Compd. (2007) 50-56444-445.

    7. [7]

      E. Keegan, M.J. Kristo, K. Toole, R. Kips, E. Young, Anal. Chem. 88(2016) 1496-1505.  doi: 10.1021/acs.analchem.5b02915

    8. [8]

      M.J. Kristo, Handbook of Radioactivity Analysis, 3rd ed., Elsevier, 2012.

    9. [9]

      X. Hou, W. Chen, Y. He, B.T. Jones, Appl. Spectro. Rev. 40(2005) 245-267.  doi: 10.1081/ASR-200064495

    10. [10]

      J.S. Becker, Spectrochim. Acta Part B 57(2002) 1805-1820.  doi: 10.1016/S0584-8547(02)00213-6

    11. [11]

      F.E. Stanley, J. Anal. At. Spectrom. 27(2012) 1821-1830.  doi: 10.1039/c2ja30182b

    12. [12]

      M. Wallenius, A. Morgenstern, C. Apostolicis, K. Mayer, Anal. Bioanal. Chem. 374(2002) 379-384.  doi: 10.1007/s00216-002-1555-9

    13. [13]

      M. Wallenius, K. Mayer, Fresenius J. Anal. Chem. 366(2000) 234-238.  doi: 10.1007/s002160050046

    14. [14]

      F. Zhang, K.Q. Ma, Y. Li, et al., Chem. Eng. J. 392(2020) 123717.  doi: 10.1016/j.cej.2019.123717

    15. [15]

      D. Jiang, L. Liu, N. Pan, et al., Chem. Eng. J. 271(2015) 147-154.  doi: 10.1016/j.cej.2015.02.066

    16. [16]

      C. Huang, H. Lv, C. Zuo, et al., J. Radioanal. Nucl. Chem. 317(2018) 103-110.  doi: 10.1007/s10967-018-5836-y

    17. [17]

      Y. Saito-Kokubu, D. Suzuki, C.G. Lee, et al., Int. J. Mass Spectrom. 310(2012) 52-56.  doi: 10.1016/j.ijms.2011.11.008

    18. [18]

      L. Zhang, P. Xiong, H. Zhang, et al., Anal. Chem. 91(2019) 7215-7225.  doi: 10.1021/acs.analchem.9b00543

    19. [19]

      M. Wallenius, P. Peerani, L. Koch, J. Radioanal. Nucl. Chem. 246(2000) 317-321.  doi: 10.1023/A:1006774524272

    20. [20]

      D. Alamelu, S.K. Aggarwal, Int. J. Nucl. Energy Sci. Technol. 6(2011) 30-36.  doi: 10.1504/IJNEST.2011.039245

    21. [21]

      W.T. Bu, J. Zheng, Q.J. Guo, et al., Environ. Sci. Technol. 48(2014) 534-541.  doi: 10.1021/es403500e

    22. [22]

      W.T. Bu, J. Zheng, Q.J. Guo, et al., J. Radioanal. Nucl. Chem. 314(2017) 2417-2423.  doi: 10.1007/s10967-017-5618-y

    23. [23]

      W. Men, J. Zheng, H. Wang, et al., Sci. Rep. 8(2018) 1892.  doi: 10.1038/s41598-018-20151-4

    24. [24]

      Z. Wang, J. Zheng, Y. Ni, et al., Anal. Chem. 89(2017) 2221-2226.  doi: 10.1021/acs.analchem.6b04975

    25. [25]

      W. Bu, M. Gu, X. Ding, et al., J. Anal. At. Spectrom. 36(2021) 2330-2337.  doi: 10.1039/D1JA00288K

    26. [26]

      B.T. Manard, D.A. Bostick, S.C. Metzger, et al., Spectrochim. Acta Part B 179(2021) 106097.  doi: 10.1016/j.sab.2021.106097

    27. [27]

      Z. Varga, M. Wallenius, K. Mayer, Radiochim. Acta 98(2010) 771-778.  doi: 10.1524/ract.2010.1777

    28. [28]

      E. Keegan, S. Richter, I. Kelly, et al., Appl. Geochem. 23(2008) 765-777.  doi: 10.1016/j.apgeochem.2007.12.004

    29. [29]

      Z. Varga, M. Wallenius, K. Mayer, M. Meppen, Proc. Radiochim. Acta 1(2011) 1-4.  doi: 10.1524/rcpr.2011.0000

    30. [30]

      X. Ding, W. Bu, Y. Ni, et al., J. Anal. At. Spectrom. 36(2021) 2144-2152.  doi: 10.1039/D1JA00218J

    31. [31]

      X. Yin, Y. Wang, X. Bai, et al., Nat. Commun. 8(2017) 14438.  doi: 10.1038/ncomms14438

    32. [32]

      C. Cheng, T. Jiang, J. Han, et al., Electrophoresis 37(2016) 2657-2662.  doi: 10.1002/elps.201600215

    33. [33]

      X. Shao, W. Bu, K. Long, et al., Spectrochim. Acta Part B 159(2019) 105656.  doi: 10.1016/j.sab.2019.105656

    34. [34]

      X. Shao, W. Bu, Y. Fan, et al., J. Anal. At. Spectrom. 35(2020) 467-477.  doi: 10.1039/C9JA00420C

    35. [35]

      X.M. Liu, L. Tang, Z.H. Fu, K.M. Long, Rock Min. Anal. 2(2014) 178-185.

    36. [36]

      X.P. Shen, Z.M. Li, W.L. Wang, et al., Chin. J. Anal. Chem. 3(2017) 342-347.

    37. [37]

      J.A. Day, J.A. Caruso, J.S. Becker, H.J. Dietze, J. Anal. At. Spectrom. 15(2000) 1343-1348.  doi: 10.1039/b002617o

    38. [38]

      A.L. de Souza, M.E.B. Cotrim, M.A.F. Pires, Microchem. J. 106(2013) 194-201.  doi: 10.1016/j.microc.2012.06.015

    39. [39]

      Z. Varga, R. Katona, Z. Stefanka, et al., Talanta 80(2010) 1744-1749.  doi: 10.1016/j.talanta.2009.10.018

    40. [40]

      Y. Ni, W. Bu, K. Xiong, et al., Microchem. J. 169(2021) 106615.  doi: 10.1016/j.microc.2021.106615

    41. [41]

      A.R. Timberbaev, R.M. Timerbaev, TrAC-Trend Anal. Chem. 51(2013) 44-50.  doi: 10.1016/j.trac.2013.05.015

    42. [42]

      L. Liu, Z. Yun, B. He, G. Jiang, Anal. Chem. 86(2014) 8167-8175.  doi: 10.1021/ac501347d

    43. [43]

      C. Willberger, D. Leichtfuß, S. Amayri, T. Reich, Inorg. Chem. 58(2019) 4851-4858.  doi: 10.1021/acs.inorgchem.8b03407

    44. [44]

      E. Dupuis, H. Isnard, C. Evette, F. Chartier, Talanta 219(2020) 121345.  doi: 10.1016/j.talanta.2020.121345

    45. [45]

      A.R. Timerbaev, Chem. Rev. 113(2013) 778-812.  doi: 10.1021/cr300199v

    46. [46]

      J. Zhang, Z. Qin, D. Deng, et al., J. Anal. At. Spectrom. 31(2016) 934-939.  doi: 10.1039/C5JA00491H

    47. [47]

      R.L. Edwards, J.H. Chen, G.J. Wasserburg, Earth Planet Sci. Lett. 81(1987) 175-192.  doi: 10.1016/0012-821X(87)90154-3

    48. [48]

      Y. Chen, Y. Zhao, L. Li, et al., J. Radioanal. Nucl. Chem. 314(2017) 499-505.  doi: 10.1007/s10967-017-5396-6

    49. [49]

      R.W. Williams, A.M. Gaffney, Proc. Radiochim. Acta 1(2011) 31-35.  doi: 10.1524/rcpr.2011.0005

    50. [50]

      K. Usman, T.D. MacMahon, App. Radiat. Isotopes 52(2000) 585-589.  doi: 10.1016/S0969-8043(99)00214-6

    51. [51]

      A. Morgenstern, C. Apostolidis, K. Mayer, Anal. Chem. 74(2002) 5513-5516.  doi: 10.1021/ac0203948

    52. [52]

      S.H. Huang, L. Chang, Y. Chen, et al., J. Nucl. Radiochem. 39(2017) 368-372.

    53. [53]

      Y. Chen, S. Huang, R. Hu, et al., J. Radioanal. Nucl. Chem. 322(2019) 1605-1609.  doi: 10.1007/s10967-019-06922-x

    54. [54]

      J. Xu, Z.M. Li, Y.M. Shi, et al., Chin. J. Anal. Chem. 41(2013) 1675-1680.

    55. [55]

      H.T. Zhang, F.R. Zhu, J. Xu, et al., Radiochim. Acta 96(2008) 327-331.  doi: 10.1524/ract.2008.1499

    56. [56]

      K. Mayer, M. Wallenius, M. Hedberg, K. Lützenkirchen, Radiochim. Acta 97(2009) 261-264.  doi: 10.1524/ract.2009.1608

    57. [57]

      Y. Chen, Z. Chang, Y. Zhao, et al., J. Radioanal. Nucl. Chem. 281(2009) 675-678.  doi: 10.1007/s10967-009-0056-0

    58. [58]

      C. Xiao, G. Yuan, X.J. Jin, J. Radioanal. Nucl. Chem. 307(2016) 1657-1659.  doi: 10.1007/s10967-015-4541-3

    59. [59]

      C. Xiao, Y. Yao, X. Jin, et al., J. Radioanal. Nucl. Chem. 312(2017) 711-715.  doi: 10.1007/s10967-017-5215-0

    60. [60]

      M.J. Kristo, A.M. Gaffney, N. Marks, et al., Annu. Rev. Earth Planet Sci. 44(2016) 555-579.  doi: 10.1146/annurev-earth-060115-012309

    61. [61]

      X.Y. Jiang, L.L. Li, Z.M. Du, At. Energy Sci. Technol. 11(2020) 2014-2023.

    62. [62]

      X.Y. Jiang, L.L. Li, At. Energy Sci. Technol. 2(2021) 200-210.

    63. [63]

      X.L. Zhao, B.B. Fransco, W.E. Kieser, Nucl. Instrum. Methods Phys. Res. B 459(2019) 98-114.  doi: 10.1016/j.nimb.2019.08.012

    64. [64]

      J. Krajkó, Z. Varga, E. Yalcintas, M. Wallenius, K. Mayer, Talanta 129(2014) 499-504.  doi: 10.1016/j.talanta.2014.06.022

    65. [65]

      International Atomic Energy Agency, World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification, IAEATECHDOC-1629, 2009 Vienna.

    66. [66]

      M. Lin, Y. Zhao, L. Zhao, et al., J. Anal. At. Spectrom. 30(2015) 396-402.  doi: 10.1039/C4JA00354C

    67. [67]

      F. Guéguen, H. Isnard, A. Nonell, et al., J. Anal. At. Spectrom. 30(2015) 443-452.  doi: 10.1039/C4JA00361F

    68. [68]

      J. Krajko, Z. Varga, M. Wallenius, K. Mayer, J. Radioanal. Nucl. Chem. 304(2015) 177-181.  doi: 10.1007/s10967-014-3505-3

    69. [69]

      J.J. Zhou, L.L. Li, X.Y. Jiang, T.X. Ren, L.F. Zhao, At. Energy Sci. Technol. 4(2021) 620-626.

    70. [70]

      X.P. Shao, High-Precision Isotope Analysis of Cerium-Neodymium by Thermal Ionization Mass Spectrometry and Origin Assessment of Uranium Ores Based on Rare Earth Elements, China Academy of Engineering Physics, Ph. D. Thesis, 2020.

    71. [71]

      X.Y. Jiang, L.C. Zhu, Y. Zhang, et al., At. Energy Sci. Technol. 2(2020) 373-378.

    72. [72]

      J.B. Ainscough, B.W. Oledfield, J.O. Ware, J. Nucl. Mater. 74(1973) 117-128.

    73. [73]

      P. Taylor, R.J. Mceachern, D.C. Doern, J. Nucl. Mater. 256(1998) 213-217.  doi: 10.1016/S0022-3115(98)00063-4

    74. [74]

      V. Jones, M. Leng, N. Solovieva, H. Sloane, P. Tarasov, Quaternary Sci. Rev. 23(2004) 833-839.  doi: 10.1016/j.quascirev.2003.06.014

    75. [75]

      L. Pajo, K. Mayer, L. Koch, Fresenius J. Anal. Chem. 371(2001) 348-352.  doi: 10.1007/s002160100983

    76. [76]

      T.X. Wang, S.D. Zhang, Y.G. Zhao, et al., At. Energy Sci. Technol. 11(2014) 2106-2110.

    77. [77]

      T.X. Wang, S.D. Zhang, Y.G. Zhao, et al., At. Energy Sci. Technol. 11(2017) 2092-2096.

    78. [78]

      G. Nicolaou, J. Radioanal. Nucl. Chem. 279(2008) 503-508.

    79. [79]

      A.E. Jones, P. Turner, C. Zimmerman, J.Y. Goulermas, Anal. Chem. 86(2014) 5399-5405.  doi: 10.1021/ac5004757

    80. [80]

      J.H. Su, J. Wu, S.D. Hu, Ann. Nucl. Energy 126(2019) 43-47.  doi: 10.1016/j.anucene.2018.10.053

    81. [81]

      M. Robel, M.J. Kristo, J. Environ. Radioact. 276(2008) 415-419.

    82. [82]

      X. Shi, B. Zhang, Nucl. Power Eng. 31(2010) 1-4.

    83. [83]

      G. Nicolaou, Ann. Nucl. Energy 72(2014) 130-133.

    84. [84]

      S.B. Zhang, D.F. Tian, J. Wu, J.H. Li, At. Energy Sci. Technol. 1(2007) 104-108.

    85. [85]

      J.H. Su, J. Wu, S.D. Hu, Ann. Nucl. Energy 131(2019) 325-331.  doi: 10.1016/j.anucene.2019.04.005

    86. [86]

      IAEA Safeguards GlossaryInternational Nuclear Verification Series, Vol. 3, IAEA, Vienna, 2001.

    87. [87]

      International Atomic Energy Agency, Environmental Sampling for Safeguards STR-348(Revision 1), IAEA, 2011.

    88. [88]

      L.L. Luo, T.L. Yang, X.M. Liu, et al., Progr. Rep. China Nucl. Sci. Technol. 4(2015) 90-93.

    89. [89]

      Y. Shen, Y.G. Zhao, S.L. Guo, et al., Nucl. Techn. 9(2005) 693-696.

    90. [90]

      T.L. Yang, L.L. Luo, X.M. Liu, et al., J. Radioanal. Nucl. Chem. 309(2016) 461-465.

    91. [91]

      M.H. Lee, J.H. Park, K. Song, Radiat. Meas. 46(2011) 409-412.  doi: 10.1016/j.radmeas.2011.01.019

    92. [92]

      T. Shinnonaga, D. Donohue, A. Ciurapinski, Spectrochim. Acta Part B 64(2009) 95-98.  doi: 10.1016/j.sab.2008.10.044

    93. [93]

      P.M. Hedberg, P. Peres, J.B. Cliff, J. Anal. At. Spectrom. 26(2011) 406-413.  doi: 10.1039/C0JA00181C

    94. [94]

      T. Noto, H. Tomita, Y. Kawaraba, Radiat. Meas. 46(2011) 1807-1809.  doi: 10.1016/j.radmeas.2011.06.011

    95. [95]

      C. Wang, Y. Shen, X.H. Zhao, et al., At. Energy Sci. Technol. 2(2020) 366-372.

    96. [96]

      W. Wang, Z.M. Li, J. Xu, et al., J. Chin. Mass Spectrom. Soc. 3(2016) 213-221.

    97. [97]

      W. Wang, J. Xu, L.H. Zhai, et al., J. Chin. Mass Spectrom. Soc. 6(2019) 518-524.

    98. [98]

      W. Wang, Z.M. Li, J. Xu, et al., Chin. J. Anal. Chem. 11(2017) 1719-1726.

    99. [99]

      W. Wang, S. Fang, J. Xu, et al., Chin. J. Anal. Chem. 8(2018) 1245-1252.

    100. [100]

      F. Wang, Y. Zhang, Y.G. Zhao, et al., Meas. Sci. Technol. 29(2018) 095903.  doi: 10.1088/1361-6501/aad31e

    101. [101]

      J.D. Brockman, J.W.N. Brown, J.S. Morrell, Anal. Chem. 88(2016) 8765-8771.  doi: 10.1021/acs.analchem.6b02144

    102. [102]

      R.X. Hu, Y. Shen, S.H. Huang, et al., Progr. Rep. China Nucl. Sci. Technol. 6(2019) 74-79.

    103. [103]

      Q. Zhuang, G. Li, Z. Liu, Catena 170(2018) 386-396.  doi: 10.1016/j.catena.2018.06.037

    104. [104]

      Y. Xu, S. Pan, J. Gao, et al., Chemosphere 207(2018) 130-138.  doi: 10.1016/j.chemosphere.2018.05.082

    105. [105]

      K. Zhang, S. Pan, Z. Liu, et al., China. J. Environ. Radioact. 181(2018) 78-84.  doi: 10.1016/j.jenvrad.2017.10.016

    106. [106]

      W. Zhang, S. Xing, X. Hou, Soil Till. Res. 191(2019) 162-170.  doi: 10.1016/j.still.2019.04.004

    107. [107]

      W. Zhang, X. Hou, Chemosphere 230(2019) 587-595.  doi: 10.1016/j.chemosphere.2019.05.094

    108. [108]

      R.R. Wang, Y. Fu, L. Lei, G. Li, Z.Y. Liu, ACS Omega 4(2019) 22646-22654.  doi: 10.1021/acsomega.9b03650

    109. [109]

      F. Taylor, M. Higginson, O. Marsden, J. Schwantes, J. Radioanal. Nucl. Chem. 323(2020) 415-430.  doi: 10.1007/s10967-019-06950-7

    110. [110]

      J.M. Schwantes, O. Marsden, D. Reilly, J. Radioanal. Nucl. Chem. 315(2018) 347-352.  doi: 10.1007/s10967-017-5663-6

    111. [111]

      D.M.L. Ho, A.N. Nelwamondo, A. Okubo, et al., J. Radioanal. Nucl. Chem. 315(2018) 353-363.  doi: 10.1007/s10967-017-5677-0

    112. [112]

      M.J. Kristo, R. Williams, A.M. Gaffney, et al., J. Radioanal. Nucl. Chem. 315(2018) 425-434.  doi: 10.1007/s10967-017-5680-5

    113. [113]

      S.V. Jovanovic, T. Kell, J. Radioanal. Nucl. Chem. 329(2021) 319-326.  doi: 10.1007/s10967-021-07773-1

    114. [114]

      L.L. Li, Y.G. Zhao, Y. Shen, T.X. Wang, Y.C. Jiang, J. Chin. Mass Spectrom. Soc. 4(2015) 328-333.

    115. [115]

      K.C. Treinen, W.S. Kinman, Y. Chen, et al., J. Radioanal. Nucl. Chem. 314(2017) 2469-2474.  doi: 10.1007/s10967-017-5593-3

    116. [116]

      L.C. Zhu, T.X. Wang, Y.G. Zhao, et al., Rock Min. Anal. 4(2015) 414-419.

    117. [117]

      H.J. Nilsson, T. Tyliszczak, R.E. Wilson, L. Werme, D.K. Shuh, Anal. Bioanal. Chem. 383(2005) 41-47.  doi: 10.1007/s00216-005-3355-5

    118. [118]

      C. Walther, M.A. Denecke, Chem. Rev. 113(2013) 995-1015.  doi: 10.1021/cr300343c

    1. [1]

      International Atomic Energy AgencyImplementing Guide: Nuclear Forensics in Support of Investigations, 2015 IAEA Nuclear Security Series No. 2-G (Rev. 1Vienna, Austria.

    2. [2]

      K.J. Moody, P.M. Grant, I.D. Hutcheon, Nuclear Forensic Analysis, 2nd ed., CRC Press, 2014.

    3. [3]

      K. Mayer, M. Wallenius, Z. Varga, Chem. Rev. 113(2013) 884-900.  doi: 10.1021/cr300273f

    4. [4]

      M.D. Straub, J. Arnold, J. Fessenden, J.L. Kiplinger, Anal. Chem. 93(2021) 3-22.  doi: 10.1021/acs.analchem.0c03571

    5. [5]

      K. Mayer, M. Wallenius, I. Ray, Analyst 130(2005) 433-441.  doi: 10.1039/B412922A

    6. [6]

      K. Mayer, M. Wallenius, T. Fanghanel, J. Alloys Compd. (2007) 50-56444-445.

    7. [7]

      E. Keegan, M.J. Kristo, K. Toole, R. Kips, E. Young, Anal. Chem. 88(2016) 1496-1505.  doi: 10.1021/acs.analchem.5b02915

    8. [8]

      M.J. Kristo, Handbook of Radioactivity Analysis, 3rd ed., Elsevier, 2012.

    9. [9]

      X. Hou, W. Chen, Y. He, B.T. Jones, Appl. Spectro. Rev. 40(2005) 245-267.  doi: 10.1081/ASR-200064495

    10. [10]

      J.S. Becker, Spectrochim. Acta Part B 57(2002) 1805-1820.  doi: 10.1016/S0584-8547(02)00213-6

    11. [11]

      F.E. Stanley, J. Anal. At. Spectrom. 27(2012) 1821-1830.  doi: 10.1039/c2ja30182b

    12. [12]

      M. Wallenius, A. Morgenstern, C. Apostolicis, K. Mayer, Anal. Bioanal. Chem. 374(2002) 379-384.  doi: 10.1007/s00216-002-1555-9

    13. [13]

      M. Wallenius, K. Mayer, Fresenius J. Anal. Chem. 366(2000) 234-238.  doi: 10.1007/s002160050046

    14. [14]

      F. Zhang, K.Q. Ma, Y. Li, et al., Chem. Eng. J. 392(2020) 123717.  doi: 10.1016/j.cej.2019.123717

    15. [15]

      D. Jiang, L. Liu, N. Pan, et al., Chem. Eng. J. 271(2015) 147-154.  doi: 10.1016/j.cej.2015.02.066

    16. [16]

      C. Huang, H. Lv, C. Zuo, et al., J. Radioanal. Nucl. Chem. 317(2018) 103-110.  doi: 10.1007/s10967-018-5836-y

    17. [17]

      Y. Saito-Kokubu, D. Suzuki, C.G. Lee, et al., Int. J. Mass Spectrom. 310(2012) 52-56.  doi: 10.1016/j.ijms.2011.11.008

    18. [18]

      L. Zhang, P. Xiong, H. Zhang, et al., Anal. Chem. 91(2019) 7215-7225.  doi: 10.1021/acs.analchem.9b00543

    19. [19]

      M. Wallenius, P. Peerani, L. Koch, J. Radioanal. Nucl. Chem. 246(2000) 317-321.  doi: 10.1023/A:1006774524272

    20. [20]

      D. Alamelu, S.K. Aggarwal, Int. J. Nucl. Energy Sci. Technol. 6(2011) 30-36.  doi: 10.1504/IJNEST.2011.039245

    21. [21]

      W.T. Bu, J. Zheng, Q.J. Guo, et al., Environ. Sci. Technol. 48(2014) 534-541.  doi: 10.1021/es403500e

    22. [22]

      W.T. Bu, J. Zheng, Q.J. Guo, et al., J. Radioanal. Nucl. Chem. 314(2017) 2417-2423.  doi: 10.1007/s10967-017-5618-y

    23. [23]

      W. Men, J. Zheng, H. Wang, et al., Sci. Rep. 8(2018) 1892.  doi: 10.1038/s41598-018-20151-4

    24. [24]

      Z. Wang, J. Zheng, Y. Ni, et al., Anal. Chem. 89(2017) 2221-2226.  doi: 10.1021/acs.analchem.6b04975

    25. [25]

      W. Bu, M. Gu, X. Ding, et al., J. Anal. At. Spectrom. 36(2021) 2330-2337.  doi: 10.1039/D1JA00288K

    26. [26]

      B.T. Manard, D.A. Bostick, S.C. Metzger, et al., Spectrochim. Acta Part B 179(2021) 106097.  doi: 10.1016/j.sab.2021.106097

    27. [27]

      Z. Varga, M. Wallenius, K. Mayer, Radiochim. Acta 98(2010) 771-778.  doi: 10.1524/ract.2010.1777

    28. [28]

      E. Keegan, S. Richter, I. Kelly, et al., Appl. Geochem. 23(2008) 765-777.  doi: 10.1016/j.apgeochem.2007.12.004

    29. [29]

      Z. Varga, M. Wallenius, K. Mayer, M. Meppen, Proc. Radiochim. Acta 1(2011) 1-4.  doi: 10.1524/rcpr.2011.0000

    30. [30]

      X. Ding, W. Bu, Y. Ni, et al., J. Anal. At. Spectrom. 36(2021) 2144-2152.  doi: 10.1039/D1JA00218J

    31. [31]

      X. Yin, Y. Wang, X. Bai, et al., Nat. Commun. 8(2017) 14438.  doi: 10.1038/ncomms14438

    32. [32]

      C. Cheng, T. Jiang, J. Han, et al., Electrophoresis 37(2016) 2657-2662.  doi: 10.1002/elps.201600215

    33. [33]

      X. Shao, W. Bu, K. Long, et al., Spectrochim. Acta Part B 159(2019) 105656.  doi: 10.1016/j.sab.2019.105656

    34. [34]

      X. Shao, W. Bu, Y. Fan, et al., J. Anal. At. Spectrom. 35(2020) 467-477.  doi: 10.1039/C9JA00420C

    35. [35]

      X.M. Liu, L. Tang, Z.H. Fu, K.M. Long, Rock Min. Anal. 2(2014) 178-185.

    36. [36]

      X.P. Shen, Z.M. Li, W.L. Wang, et al., Chin. J. Anal. Chem. 3(2017) 342-347.

    37. [37]

      J.A. Day, J.A. Caruso, J.S. Becker, H.J. Dietze, J. Anal. At. Spectrom. 15(2000) 1343-1348.  doi: 10.1039/b002617o

    38. [38]

      A.L. de Souza, M.E.B. Cotrim, M.A.F. Pires, Microchem. J. 106(2013) 194-201.  doi: 10.1016/j.microc.2012.06.015

    39. [39]

      Z. Varga, R. Katona, Z. Stefanka, et al., Talanta 80(2010) 1744-1749.  doi: 10.1016/j.talanta.2009.10.018

    40. [40]

      Y. Ni, W. Bu, K. Xiong, et al., Microchem. J. 169(2021) 106615.  doi: 10.1016/j.microc.2021.106615

    41. [41]

      A.R. Timberbaev, R.M. Timerbaev, TrAC-Trend Anal. Chem. 51(2013) 44-50.  doi: 10.1016/j.trac.2013.05.015

    42. [42]

      L. Liu, Z. Yun, B. He, G. Jiang, Anal. Chem. 86(2014) 8167-8175.  doi: 10.1021/ac501347d

    43. [43]

      C. Willberger, D. Leichtfuß, S. Amayri, T. Reich, Inorg. Chem. 58(2019) 4851-4858.  doi: 10.1021/acs.inorgchem.8b03407

    44. [44]

      E. Dupuis, H. Isnard, C. Evette, F. Chartier, Talanta 219(2020) 121345.  doi: 10.1016/j.talanta.2020.121345

    45. [45]

      A.R. Timerbaev, Chem. Rev. 113(2013) 778-812.  doi: 10.1021/cr300199v

    46. [46]

      J. Zhang, Z. Qin, D. Deng, et al., J. Anal. At. Spectrom. 31(2016) 934-939.  doi: 10.1039/C5JA00491H

    47. [47]

      R.L. Edwards, J.H. Chen, G.J. Wasserburg, Earth Planet Sci. Lett. 81(1987) 175-192.  doi: 10.1016/0012-821X(87)90154-3

    48. [48]

      Y. Chen, Y. Zhao, L. Li, et al., J. Radioanal. Nucl. Chem. 314(2017) 499-505.  doi: 10.1007/s10967-017-5396-6

    49. [49]

      R.W. Williams, A.M. Gaffney, Proc. Radiochim. Acta 1(2011) 31-35.  doi: 10.1524/rcpr.2011.0005

    50. [50]

      K. Usman, T.D. MacMahon, App. Radiat. Isotopes 52(2000) 585-589.  doi: 10.1016/S0969-8043(99)00214-6

    51. [51]

      A. Morgenstern, C. Apostolidis, K. Mayer, Anal. Chem. 74(2002) 5513-5516.  doi: 10.1021/ac0203948

    52. [52]

      S.H. Huang, L. Chang, Y. Chen, et al., J. Nucl. Radiochem. 39(2017) 368-372.

    53. [53]

      Y. Chen, S. Huang, R. Hu, et al., J. Radioanal. Nucl. Chem. 322(2019) 1605-1609.  doi: 10.1007/s10967-019-06922-x

    54. [54]

      J. Xu, Z.M. Li, Y.M. Shi, et al., Chin. J. Anal. Chem. 41(2013) 1675-1680.

    55. [55]

      H.T. Zhang, F.R. Zhu, J. Xu, et al., Radiochim. Acta 96(2008) 327-331.  doi: 10.1524/ract.2008.1499

    56. [56]

      K. Mayer, M. Wallenius, M. Hedberg, K. Lützenkirchen, Radiochim. Acta 97(2009) 261-264.  doi: 10.1524/ract.2009.1608

    57. [57]

      Y. Chen, Z. Chang, Y. Zhao, et al., J. Radioanal. Nucl. Chem. 281(2009) 675-678.  doi: 10.1007/s10967-009-0056-0

    58. [58]

      C. Xiao, G. Yuan, X.J. Jin, J. Radioanal. Nucl. Chem. 307(2016) 1657-1659.  doi: 10.1007/s10967-015-4541-3

    59. [59]

      C. Xiao, Y. Yao, X. Jin, et al., J. Radioanal. Nucl. Chem. 312(2017) 711-715.  doi: 10.1007/s10967-017-5215-0

    60. [60]

      M.J. Kristo, A.M. Gaffney, N. Marks, et al., Annu. Rev. Earth Planet Sci. 44(2016) 555-579.  doi: 10.1146/annurev-earth-060115-012309

    61. [61]

      X.Y. Jiang, L.L. Li, Z.M. Du, At. Energy Sci. Technol. 11(2020) 2014-2023.

    62. [62]

      X.Y. Jiang, L.L. Li, At. Energy Sci. Technol. 2(2021) 200-210.

    63. [63]

      X.L. Zhao, B.B. Fransco, W.E. Kieser, Nucl. Instrum. Methods Phys. Res. B 459(2019) 98-114.  doi: 10.1016/j.nimb.2019.08.012

    64. [64]

      J. Krajkó, Z. Varga, E. Yalcintas, M. Wallenius, K. Mayer, Talanta 129(2014) 499-504.  doi: 10.1016/j.talanta.2014.06.022

    65. [65]

      International Atomic Energy Agency, World Distribution of Uranium Deposits (UDEPO) with Uranium Deposit Classification, IAEATECHDOC-1629, 2009 Vienna.

    66. [66]

      M. Lin, Y. Zhao, L. Zhao, et al., J. Anal. At. Spectrom. 30(2015) 396-402.  doi: 10.1039/C4JA00354C

    67. [67]

      F. Guéguen, H. Isnard, A. Nonell, et al., J. Anal. At. Spectrom. 30(2015) 443-452.  doi: 10.1039/C4JA00361F

    68. [68]

      J. Krajko, Z. Varga, M. Wallenius, K. Mayer, J. Radioanal. Nucl. Chem. 304(2015) 177-181.  doi: 10.1007/s10967-014-3505-3

    69. [69]

      J.J. Zhou, L.L. Li, X.Y. Jiang, T.X. Ren, L.F. Zhao, At. Energy Sci. Technol. 4(2021) 620-626.

    70. [70]

      X.P. Shao, High-Precision Isotope Analysis of Cerium-Neodymium by Thermal Ionization Mass Spectrometry and Origin Assessment of Uranium Ores Based on Rare Earth Elements, China Academy of Engineering Physics, Ph. D. Thesis, 2020.

    71. [71]

      X.Y. Jiang, L.C. Zhu, Y. Zhang, et al., At. Energy Sci. Technol. 2(2020) 373-378.

    72. [72]

      J.B. Ainscough, B.W. Oledfield, J.O. Ware, J. Nucl. Mater. 74(1973) 117-128.

    73. [73]

      P. Taylor, R.J. Mceachern, D.C. Doern, J. Nucl. Mater. 256(1998) 213-217.  doi: 10.1016/S0022-3115(98)00063-4

    74. [74]

      V. Jones, M. Leng, N. Solovieva, H. Sloane, P. Tarasov, Quaternary Sci. Rev. 23(2004) 833-839.  doi: 10.1016/j.quascirev.2003.06.014

    75. [75]

      L. Pajo, K. Mayer, L. Koch, Fresenius J. Anal. Chem. 371(2001) 348-352.  doi: 10.1007/s002160100983

    76. [76]

      T.X. Wang, S.D. Zhang, Y.G. Zhao, et al., At. Energy Sci. Technol. 11(2014) 2106-2110.

    77. [77]

      T.X. Wang, S.D. Zhang, Y.G. Zhao, et al., At. Energy Sci. Technol. 11(2017) 2092-2096.

    78. [78]

      G. Nicolaou, J. Radioanal. Nucl. Chem. 279(2008) 503-508.

    79. [79]

      A.E. Jones, P. Turner, C. Zimmerman, J.Y. Goulermas, Anal. Chem. 86(2014) 5399-5405.  doi: 10.1021/ac5004757

    80. [80]

      J.H. Su, J. Wu, S.D. Hu, Ann. Nucl. Energy 126(2019) 43-47.  doi: 10.1016/j.anucene.2018.10.053

    81. [81]

      M. Robel, M.J. Kristo, J. Environ. Radioact. 276(2008) 415-419.

    82. [82]

      X. Shi, B. Zhang, Nucl. Power Eng. 31(2010) 1-4.

    83. [83]

      G. Nicolaou, Ann. Nucl. Energy 72(2014) 130-133.

    84. [84]

      S.B. Zhang, D.F. Tian, J. Wu, J.H. Li, At. Energy Sci. Technol. 1(2007) 104-108.

    85. [85]

      J.H. Su, J. Wu, S.D. Hu, Ann. Nucl. Energy 131(2019) 325-331.  doi: 10.1016/j.anucene.2019.04.005

    86. [86]

      IAEA Safeguards GlossaryInternational Nuclear Verification Series, Vol. 3, IAEA, Vienna, 2001.

    87. [87]

      International Atomic Energy Agency, Environmental Sampling for Safeguards STR-348(Revision 1), IAEA, 2011.

    88. [88]

      L.L. Luo, T.L. Yang, X.M. Liu, et al., Progr. Rep. China Nucl. Sci. Technol. 4(2015) 90-93.

    89. [89]

      Y. Shen, Y.G. Zhao, S.L. Guo, et al., Nucl. Techn. 9(2005) 693-696.

    90. [90]

      T.L. Yang, L.L. Luo, X.M. Liu, et al., J. Radioanal. Nucl. Chem. 309(2016) 461-465.

    91. [91]

      M.H. Lee, J.H. Park, K. Song, Radiat. Meas. 46(2011) 409-412.  doi: 10.1016/j.radmeas.2011.01.019

    92. [92]

      T. Shinnonaga, D. Donohue, A. Ciurapinski, Spectrochim. Acta Part B 64(2009) 95-98.  doi: 10.1016/j.sab.2008.10.044

    93. [93]

      P.M. Hedberg, P. Peres, J.B. Cliff, J. Anal. At. Spectrom. 26(2011) 406-413.  doi: 10.1039/C0JA00181C

    94. [94]

      T. Noto, H. Tomita, Y. Kawaraba, Radiat. Meas. 46(2011) 1807-1809.  doi: 10.1016/j.radmeas.2011.06.011

    95. [95]

      C. Wang, Y. Shen, X.H. Zhao, et al., At. Energy Sci. Technol. 2(2020) 366-372.

    96. [96]

      W. Wang, Z.M. Li, J. Xu, et al., J. Chin. Mass Spectrom. Soc. 3(2016) 213-221.

    97. [97]

      W. Wang, J. Xu, L.H. Zhai, et al., J. Chin. Mass Spectrom. Soc. 6(2019) 518-524.

    98. [98]

      W. Wang, Z.M. Li, J. Xu, et al., Chin. J. Anal. Chem. 11(2017) 1719-1726.

    99. [99]

      W. Wang, S. Fang, J. Xu, et al., Chin. J. Anal. Chem. 8(2018) 1245-1252.

    100. [100]

      F. Wang, Y. Zhang, Y.G. Zhao, et al., Meas. Sci. Technol. 29(2018) 095903.  doi: 10.1088/1361-6501/aad31e

    101. [101]

      J.D. Brockman, J.W.N. Brown, J.S. Morrell, Anal. Chem. 88(2016) 8765-8771.  doi: 10.1021/acs.analchem.6b02144

    102. [102]

      R.X. Hu, Y. Shen, S.H. Huang, et al., Progr. Rep. China Nucl. Sci. Technol. 6(2019) 74-79.

    103. [103]

      Q. Zhuang, G. Li, Z. Liu, Catena 170(2018) 386-396.  doi: 10.1016/j.catena.2018.06.037

    104. [104]

      Y. Xu, S. Pan, J. Gao, et al., Chemosphere 207(2018) 130-138.  doi: 10.1016/j.chemosphere.2018.05.082

    105. [105]

      K. Zhang, S. Pan, Z. Liu, et al., China. J. Environ. Radioact. 181(2018) 78-84.  doi: 10.1016/j.jenvrad.2017.10.016

    106. [106]

      W. Zhang, S. Xing, X. Hou, Soil Till. Res. 191(2019) 162-170.  doi: 10.1016/j.still.2019.04.004

    107. [107]

      W. Zhang, X. Hou, Chemosphere 230(2019) 587-595.  doi: 10.1016/j.chemosphere.2019.05.094

    108. [108]

      R.R. Wang, Y. Fu, L. Lei, G. Li, Z.Y. Liu, ACS Omega 4(2019) 22646-22654.  doi: 10.1021/acsomega.9b03650

    109. [109]

      F. Taylor, M. Higginson, O. Marsden, J. Schwantes, J. Radioanal. Nucl. Chem. 323(2020) 415-430.  doi: 10.1007/s10967-019-06950-7

    110. [110]

      J.M. Schwantes, O. Marsden, D. Reilly, J. Radioanal. Nucl. Chem. 315(2018) 347-352.  doi: 10.1007/s10967-017-5663-6

    111. [111]

      D.M.L. Ho, A.N. Nelwamondo, A. Okubo, et al., J. Radioanal. Nucl. Chem. 315(2018) 353-363.  doi: 10.1007/s10967-017-5677-0

    112. [112]

      M.J. Kristo, R. Williams, A.M. Gaffney, et al., J. Radioanal. Nucl. Chem. 315(2018) 425-434.  doi: 10.1007/s10967-017-5680-5

    113. [113]

      S.V. Jovanovic, T. Kell, J. Radioanal. Nucl. Chem. 329(2021) 319-326.  doi: 10.1007/s10967-021-07773-1

    114. [114]

      L.L. Li, Y.G. Zhao, Y. Shen, T.X. Wang, Y.C. Jiang, J. Chin. Mass Spectrom. Soc. 4(2015) 328-333.

    115. [115]

      K.C. Treinen, W.S. Kinman, Y. Chen, et al., J. Radioanal. Nucl. Chem. 314(2017) 2469-2474.  doi: 10.1007/s10967-017-5593-3

    116. [116]

      L.C. Zhu, T.X. Wang, Y.G. Zhao, et al., Rock Min. Anal. 4(2015) 414-419.

    117. [117]

      H.J. Nilsson, T. Tyliszczak, R.E. Wilson, L. Werme, D.K. Shuh, Anal. Bioanal. Chem. 383(2005) 41-47.  doi: 10.1007/s00216-005-3355-5

    118. [118]

      C. Walther, M.A. Denecke, Chem. Rev. 113(2013) 995-1015.  doi: 10.1021/cr300343c

  • 加载中
    1. [1]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    2. [2]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    3. [3]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    4. [4]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    5. [5]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    6. [6]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    7. [7]

      Yao-Hua GuYu ChenQing LiNeng-Bin XieXue XingJun XiongMin HuTian-Zhou LiKe-Yu YuanYu LiuTang TangFan HeBi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627

    8. [8]

      Yimin GuoYiting LuoShuwen HuaChuan-Fan DingYinghua Yan . Application of magnetic nanomaterials in peptidomics: A review in the past decade. Chinese Chemical Letters, 2025, 36(6): 110070-. doi: 10.1016/j.cclet.2024.110070

    9. [9]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    10. [10]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    11. [11]

      Lei ZhuHai-Ruo LiYi-Ning MaoRuiying LiuBo ZhangJing ChenWengui XuLibo ZhangCheng-Peng Li . A four-fold interpenetrated MOF for efficient perrhenate/pertechnetate removal from alkaline nuclear effluents. Chinese Chemical Letters, 2024, 35(12): 109921-. doi: 10.1016/j.cclet.2024.109921

    12. [12]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    13. [13]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    14. [14]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    15. [15]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    16. [16]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    17. [17]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    18. [18]

      Qijie GongJian SongYihui SongKai TangPanpan YangXiao WangMin ZhaoLiang OuyangLi RaoBin YuPeng ZhanSaiyang ZhangXiaojin Zhang . New techniques and strategies in drug discovery (2020–2024 update). Chinese Chemical Letters, 2025, 36(3): 110456-. doi: 10.1016/j.cclet.2024.110456

    19. [19]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    20. [20]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

Metrics
  • PDF Downloads(22)
  • Abstract views(919)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return