Citation: Yimiao He, Limei Tian, Xuexue Chang, Zeming Qu, Yanmin Huang, Chusheng Huang, Qing Sun, Honggen Wang. Rhodium-catalyzed formal [4 + 3] annulation reaction of N-methoxybenzamides with gem-difluorocyclopropenes: A combination of experimental and theoretical studies[J]. Chinese Chemical Letters, ;2022, 33(6): 2987-2992. doi: 10.1016/j.cclet.2022.01.068 shu

Rhodium-catalyzed formal [4 + 3] annulation reaction of N-methoxybenzamides with gem-difluorocyclopropenes: A combination of experimental and theoretical studies

    * Corresponding authors.
    E-mail addresses: heyimiao@gxtc.edu.cn (Y. He), sunqing@nchu.edu.cn (Q. Sun), wanghg3@mail.sysu.edu.cn (H. Wang).
    1 These authors contributed equally to this work.
  • Received Date: 21 December 2021
    Revised Date: 22 January 2022
    Accepted Date: 24 January 2022
    Available Online: 2 February 2022

Figures(11)

  • A rhodium-catalyzed [4 + 3] cycloaddition reaction between N-methoxybenzamides and gem-difluorocyclopropenes is described. The reaction offers a mild and efficient approach towards the synthesis of fluorinated 2H-azepin-2-ones with broad substrate scope. A consecutive HOAc-assisted CN bond formation and fluorine elimination are involved as key steps for success as illustrated by detailed DFT studies.
  • Transition metal-catalyzed C-H bond functionalization reactions are among the most straightforward and atom-economic synthetic methodologies for the construction of complex molecules [1-4]. Typically, a directing group is need to facilitate a regioselective C-H activation event. And the use of oxidizing directing group has received tremendous attentions by offering enhanced reactivity and eliminating the employment of external oxidant [5-12]. In this respect, various five- and six-numbered rings are mildly and effectively constructed through the oxidizing directing group strategy. For example, an elegant seminal work from Fagnou reported a Rh(Ⅲ)-catalyzed redox-neutral annulation of benzhydroxamic acids with alkynes towards the synthesis of isoquinolone derivatives by using N-O bond as a built-in oxidant (Scheme 1a) [13]. However, since the eight- membered rhodacycle intermediates are energetically unstable, utilizing this tactics to construct seven-membered rings is elusive [14, 15].

    Scheme 1

    Scheme 1.  Rhodium-catalyzed C─H activationreactions toward the organofluorines with an oxidizing directing group.

    Fluorinated organic molecules have attracted significant attention in drug discovery and agricultural chemistry due to their unique physicochemical and bioactivity properties [16-18]. Traditional methods for the incorporation of fluorine into the molecules often suffer from the need of substrate pre-activation, the use of non-readily available starting materials, low regio- or stereo-selectivity and/or poor functional group tolerance due to the employment of sensitive reagents [19-21]. Compared with the above-mentioned protocols, transition metal-catalyzed C-H/C-F bond activation assisted by a directing group provides a concise and reliable alternative in an atom- and step-economic pattern. In this context, the group of Loh reported a Rh-catalysed tandem C-H/C-F activation for the synthesis of (hetero)arylated monofluoroalkenes using gem-difluoroalkenes as electrophiles (Scheme 1b-1) [22-24]. The group of Wang disclosed a solvent-dependent enantioselective synthesis of alkynyl and monofluoroalkenyl isoindolinones by asymmetric CpRh-catalyzed C-H activation with α, α-difluoromethylene alkyne as the substrate (Scheme 1b-2) [25-28]. In these two cases, metal-mediated β-fluorine elimination was observed as key step. Previously, we discovered that different directing groups (N-OMe and N-OPiv amides) enabled dictate the selectivity of C-N formation versus β-F elimination with 2, 2-difluorovinyl tosylate as a substrate (Scheme 1c) [29-33]. With N-OMe benzamide being a directing group (DG), the reaction delivered a monofluorinated alkene with the retention of the tosylate functionality. When N-OPiv benzamides were used, however, [4 + 2] cyclization occurred to provide gem-difluorinated dihydroisoquinolin-1(2H)-ones.

    Herein, we report a rhodium-catalyzed formal [4 + 3] cycloaddition reaction of N-methoxybenzamides with easily accessible gem-difluorocyclopropenes [34-49]. The reaction allows the formation of highly functionalized fluorinated 2H-azepin-2-one frameworks with excellent regioselectivity and functional group tolerance (Scheme 1d). Some interesting features of the transformation include: i) Both C-N bond formation and fluorine elimination occur in the reaction with N-OMe as an internal oxidant; ii) The combination of [4 + 2] cycloaddition and retro-[2 + 1] strategy eliminates the formation of eight-membered rhodacycle, thereby providing a feasible and reliable route for the construction of seven-membered aromatic heterocycles; iii) This reaction proceeds under rather mild conditions, and a series of bioactive fluorinated 2H-azepin-2-one derivatives (Fig. 1) [50-52] are obtained in moderate to good yields.

    Figure 1

    Figure 1.  Representative bioactive molecules.

    The reaction was initially investigated by using N-methoxybenzamide 1a and gem-difluorocyclopropene 2a as model substrates, [Cp*RhCl2]2 as catalyst and K3PO4 as base in CH2Cl2 at 50 ℃ under argon atmosphere. To our delight, the desired product 3a was obtained in 41% yield (Table 1, entry 1). Solvent screening revealed that only chlorinated alkanes promoted the transformation, with 1, 1, 2, 2-tetrachloroethane being the solvent of choice to give a high yield of to 82% (Table 1, entries 2–7). Replacing [Cp*RhCl2]2 with Cp*Rh(OAc)2 led to a reduced yield of 61% (Table 1, entry 8). The reaction did not proceed with other transition metal catalysts such as [Cp*IrCl2]2, [RuCl2(p-cymene)]2 and [CoCp*(CO)I2] (Table 1, entries 9–11). Other inorganic bases were also subsequently used in the reaction, however, the yield of 3a was not further improved (Table 1, entries 12–16).

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    With optimized conditions in hand, we set to examine the scope. As shown in Scheme 2, the aromatic amide substrates bearing electron-donating (such as Me, t-Bu, OMe and N(CH3)2) and electron-withdrawing substituents (such as Ac, CN, NO2, CF3, CO2Me) at para position underwent reaction smoothly, delivering the cyclized products 3a-3f and 3k-3o in good yields. Substrates bearing halogen substituents were also compatible well (3g-3j), thus providing valuable handles for follow-up transformations. When meta-substituted N-methoxyamide 1p was used, the rhodation occurred at the less hindered site to provide exclusively the C-6 substituted regioisomer (3p). Specially, the 2-methyl substituted substrate did not retard the process (3q), although the yield was slightly reduced. To further highlight the synthetic versatility of our method, several substrates derived from complex natural products and drugs were also subjected to the reaction and the corresponding fluorination products were obtained without difficulty (3s-3v). Furthermore, various alkenyl amides with 2-alkyl substitution were also feasible substrates, producing the products 3w-3aa in moderate yields. Out of our expectation, N-methoxy-2-phenylacrylamide showed no reactivity in the protocol. To demonstrate the scalability of this methodology, the reaction of 1a with 2a was performed on 10 mmol scale, affording 76% yield of the product 3a.

    Scheme 2

    Scheme 2.  Substrate scope on amides. Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), K3PO4 (2.5 equiv.), 1, 1, 2, 2-tetrachloroethane (1 mL) at 50 ℃ under argon atmosphere for 12 h. Isolated yield. a 1a (10 mmol), 2a (12 mmol), [Cp*RhCl2]2 (5 mol%), K3PO4 (2.5 equiv.), 1, 1, 2, 2-tetrachloroethane (10 mL) at 50 ℃ under argon atmosphere for 12 h.

    The substrate scope for gem-difluorocyclopropenes was also explored (Scheme 3). It was found the reaction was not sensitive to the electron nature of the substituents on the aryl ring, as a diverse of substituents such as Me, n-Pr, F, Cl, Br, CF3, NO2 and CO2Me well survived in the reaction (3ab-3al). Interestingly, higher yields were obtained for meta-substituted aryl gem-difluorocyclopropenes (3ai-3al). The observed higher bench stability of meta-substituted aryl gem-difluorocyclopropenes could be a reason for this result. Not unexpectedly, substrates with other aromatic heterocycles, for example, thiochroman, pyridine, thiophene and benzoxazole were also tolerant, obtaining the products 3an-3aq in 44%−65% yields. It was intriguing that alkyl-substituted gem-difluorocyclopropenes were also compatible (3ar-3av), greatly expanding the diversity of the title reaction.

    Scheme 3

    Scheme 3.  gem-Difluorocyclopropene scope. Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), K3PO4 (2.5 equiv.), 1, 1, 2, 2-tetrachloroethane (1 mL) at 50 ℃ under argon atmosphere for 12 h. Isolated yield.

    Also interesting was the applicability of N-methoxybenzothioamide 4 in the reaction. The cyclization reaction proceeded smoothly to give the desired product 5 in 73% yield (Scheme 4).

    Scheme 4

    Scheme 4.  Annulation reaction of 4 with 2a.

    When N-methoxy-2-naphthamide 6 was used in the reaction, the 3-position C-H bond with less steric hindrance was exclusively functionalized to give the product 7 in 72% yield (Scheme 5a). Interestingly, treatment of N-methoxybenzo[d][1, 3]dioxole-5-carboxamide 8 with 2a provided the 4-position annulation product 9 in 78% yield (Scheme 5b). The later could be explained by a coordination effect between the oxygen atom at the 3-position and the transition metal.

    Scheme 5

    Scheme 5.  Regioselective reactions.

    Intermolecular competitive reactions were performed to understand the reactivity of N-methoxybenzamides and gem-difluorocyclopropenes (Scheme 6). Treatment of N-methoxybenzamide 1a and N-methoxybenzothioamide 4 with 2a under the standard conditions gave only 3a in 80% yield (Scheme 6a). Competition reaction of 4-methoxy-N-methoxybenzamide 1d and 4-acetyl-N-methoxybenzamide 1k with 2a gave exclusively 3k in 76% yield (Scheme 6b). This result demonstrated that the benzamide substrates with electron-donating substituents are less reactive. Furthermore, when 1a was treated with 2ac and 2ah, the corresponding products 3ac and 3ah were isolated in 13% and 68% yields, respectively, suggesting that electron-poorer 2ah is good for the reaction (Scheme 6c).

    Scheme 6

    Scheme 6.  Intermolecular competitive reactions.

    To further probe the mechanism, several control experiments were conducted (Scheme 7). When D2O was added to the reaction in the absence of 2a, a 47% deuterium incorporation at ortho position of 1a was observed without N-O bond cleavage (Scheme 7a). And a kinetic isotope effect (KIE) value of kH/kD = 1.3 was observed (Scheme 7b). These results suggested that the C-H bond cleavage is reversible and not be involved in the turnover-limiting step. A hydroamination product 10 was unexpectedly obtained in the absence of rhodium catalyst (Scheme 7c). However, this compound was demonstrated not to be an effective intermediate for the title reaction. A rhodacycle Rh-1 was prepared and its intermediacy in the reaction was confirmed by stoichiometric and catalytic reactions, suggesting a C-H activation took place.

    Scheme 7

    Scheme 7.  Mechanism studies.

    To further cast light on the mechanism, theoretical calculations were performed at the density functional theory level (B3LYP). For the convenience of calculation, the active catalyst Cp*Rh(OAc)2 was chosen as the starting point (zero value of energy). Using N-methoxy benzamide 1a as a substrate, N-H deprotonation followed by C-H activation were performed via a concerted metalation-deprotonation (CMD) mechanism with acetate acting as intramolecular base, through transition states TS-1G = 13.0 kcal/mol) and TS-2G = 19.8 kcal/mol), respectively (Fig. 2). The intermediate verification experiments in Scheme 7c echoed the calculation results. Thereafter, the insertion of gem-difluorocyclopropene 2ai into the rhodacycle INT-5 presented two characteristic spatial arrangements, TS-3G = 27.5 kcal/mol) and TS-3′G = 28.9 kcal/mol), both of which had a higher activation barrier than the first two steps (Fig. 3). The computational results indicated that C-H activation was not the turnover limiting step in the reaction, consistent with the observed small experimental KIE values (Scheme 7b). Taking into account the higher energy barrier of TS-3′, especially TS-4′, therefore subsequent calculations revolved around TS-3. From INT-7, the priority of either β-fluorine elimination or C-N bond formation was discussed. The results revealed that the direct β-fluorine elimination with or without the assistance of acetic acid, followed by C-N bond formation step via TS-4a and TS-4b, featured a high energy barrier of 33.2 and 35.1 kcal/mol, reaspectively. Two possible pathways for C-N bond formation prior to the defluorination were then calculated. Considering the high energy barrier of TS-4cG = 68.6 kcal/mol), the direct migration of the methoxy group from the amide to the trivalent rhodium to form INT-9c was tough. The migration process was more reasonable in the assistance of acetic acid, because the energy barrier of TS-4 was reduced to 28.8 kcal/mol and a Rh(Ⅴ) intermediate INT-10 was produced with the free-energy of −54.3 kcal/mol. the synergistic effect of rhodium and acetate accelerated the ring-opening defluorination of INT-10 to release the final product 3aiG = −71.0 kcal/mol). Overall, the computed Gibbs free-energy changes of the reaction pathway demonstrated a redox-neutral Rh(Ⅲ)-Rh(Ⅴ)-Rh(Ⅲ) catalytic cycle for the developed protocol involving HOAc-prompted oxidative addition and unprecedented C-F bond cleavage/ring expansion processes.

    Figure 2

    Figure 2.  Computed pathways for N─H and C─H activation.

    Figure 3

    Figure 3.  Computed pathways for C─N formation and F-elimination.

    On the basis of the above studies and previous reports [53-57], a plausible mechanism is proposed in Scheme 8. A ligand exchange between [Cp*RhCl2]2 and K3PO4 forms a reactive catalyst. Rhodacycle A is then formed via consecutive N-H and ortho C-H bonds activation. These processes may occur via a CMD (concerted metalation deprotonation)-like mechanism in the aid of internal PO43− base [29]. Afterwards, a migratory insertion of the rhodacycle A into gem-difluorocyclopropene 2 delivers the intermediate B. Rh(Ⅲ) in intermediate B is oxidized to Rh(Ⅴ) nitrenoid intermediate C in the aid of K2HPO4. Rh(Ⅴ) intermediate C returns to Rh(Ⅲ) through a C-N migratory insertion into the nitrenoid. Finally, the synergistic effect of rhodium and K2HPO4 accelerates the ring-opening defluorination to release the product 3.

    Scheme 8

    Scheme 8.  Possible catalytic cycle.

    In summary, we developed a novel [4 + 3] cycloaddition reaction of N-methoxyamides with gem-difluorocyclopropenes, enabling a modular, concise and efficient approach for accessing highly functionalized fluorine-substituted 2H-azepin-2-ones in moderate to good yields. Other appealing features include simple and readily available substrates, mild conditions and broad substrate scope. DFT studies revealed a consecutive C-N bond formation and fluorine elimination events in the annulation reaction. Given the importance of 7-membered heterocycles as well as fluorine atom in medicinal chemistry, we anticipate this protocol will find applications. During the preparation of this work, Yi and Zhou reported a similar work [58].

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This work was financially supported by National Natural Science Foundation of China (Nos. 21861007, 21702034), Natural Science Foundation of Guangxi Province (No. 2021GXNSFAA075024), "BAGUI Scholar" Program of Guangxi Province of China, High-Level Innovation Team and Distinguished Scholar Program in Guangxi Colleges and Universities.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.068.


    1. [1]

      W.C.P. Tsang, N. Zheng, S.L. Buchwald, J. Am. Chem. Soc. 127 (2005) 14560-14561.  doi: 10.1021/ja055353i

    2. [2]

      X. Chen, X.S. Hao, C.E. Goodhue, J.Q. Yu, J. Am. Chem. Soc. 128 (2006) 6790-6791.  doi: 10.1021/ja061715q

    3. [3]

      J.A. Jordan-Hore, C.C.C. Johansson, M. Gulias, E.M. Beck, M.J. Gaunt, J. Am. Chem. Soc. 130 (2008) 16184-16186.  doi: 10.1021/ja806543s

    4. [4]

      S.H. Cho, J.Y. Kim, S.Y. Lee, S. Chang, Angew. Chem. Int. Ed. 48 (2009) 9127-9130.  doi: 10.1002/anie.200903957

    5. [5]

      S. Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 133 (2011) 2350-2353.  doi: 10.1021/ja109676d

    6. [6]

      N. Guimond, S.I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 133 (2011) 6449-6457.  doi: 10.1021/ja201143v

    7. [7]

      X.X. Xu, Y. Liu, C.M. Park, Angew. Chem. Int. Ed. 51 (2012) 9372-9376.  doi: 10.1002/anie.201204970

    8. [8]

      J.R. Huckins, E.A. Bercot, O.R. Thiel, T.L. Hwang, M.M. Bio, J. Am. Chem. Soc. 135 (2013) 14492-14495.  doi: 10.1021/ja405140f

    9. [9]

      R. Zeng, S.Z. Wu, C.L. Fu, S.M. Ma, J. Am. Chem. Soc. 135 (2013) 18284-18287.  doi: 10.1021/ja409861s

    10. [10]

      T.K. Hyster, D.M. Dalton, T. Rovis, Chem. Sci. 6 (2015) 254-258.  doi: 10.1039/C4SC02590C

    11. [11]

      X.M. Wang, T. Gensch, A. Lerchen, C.G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 139 (2017) 6506-6512.  doi: 10.1021/jacs.7b02725

    12. [12]

      Y.X. Wu, Z.Q. Chen, Y.X. Yang, W.L. Zhu, B. Zhou, J. Am. Chem. Soc. 140 (2018) 42-45.  doi: 10.1021/jacs.7b10349

    13. [13]

      N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 132 (2010) 6908-6909.  doi: 10.1021/ja102571b

    14. [14]

      N. Semakul, K.E. Jackson, R.S. Paton, T. Rovis, Chem. Sci. 8 (2017) 1015-1020.  doi: 10.1039/C6SC02587K

    15. [15]

      T. Piou, F. Romanov-Michailidis, M. Romanova-Michaelides, et al., J. Am. Chem. Soc. 139 (2017) 1296-1310.  doi: 10.1021/jacs.6b11670

    16. [16]

      I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, John Wiley & Sons, Ltd., Chichester, 2009.

    17. [17]

      W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369.  doi: 10.1021/jm800219f

    18. [18]

      S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320-330.  doi: 10.1039/B610213C

    19. [19]

      A.K. Ghosh, B. Zajc, Org. Lett. 8 (2006) 1553-1556.  doi: 10.1021/ol060002+

    20. [20]

      M.H. Yang, S.S. Matikonda, R.A. Altman, Org. Lett. 15 (2013) 3894-3897.  doi: 10.1021/ol401637n

    21. [21]

      O.E. Han, J. Okoromoba, G.B. Hammond, B. Xu, J. Am. Chem. Soc. 136 (2014) 14381-14384.  doi: 10.1021/ja508369z

    22. [22]

      P.P. Tian, C. Feng, T.P. Loh, Nat. Commun. 6 (2015) 7472-7478.  doi: 10.1038/ncomms8472

    23. [23]

      H. Liu, S.J. Song, C.Q. Wang, C. Feng, T.P. Loh, ChemSusChem 10 (2017) 58-61.  doi: 10.1002/cssc.201601341

    24. [24]

      L.H. Kong, B.X. Liu, X.K. Zhou, F. Wang, X.W. Li, Chem. Commun. 53 (2017) 10326-10329.  doi: 10.1039/C7CC06048C

    25. [25]

      T. Li, C. Zhou, X.Q. Yan, J. Wang, Angew. Chem. Int. Ed. 57 (2018) 4048-4052.  doi: 10.1002/anie.201712691

    26. [26]

      C.Q. Wang, L. Ye, C. Feng, T.P. Loh, J. Am. Chem. Soc. 139 (2017) 1762-1765.  doi: 10.1021/jacs.6b12142

    27. [27]

      C.Q. Wang, Y. Zhang, C. Feng, Angew. Chem. Int. Ed. 56 (2017) 14918-14922.  doi: 10.1002/anie.201708505

    28. [28]

      H. Gao, M. Sun, H.M. Zhang, et al., Org. Lett. 21 (2019) 5229-5233.  doi: 10.1021/acs.orglett.9b01831

    29. [29]

      J.Q. Wu, S.S. Zhang, H. Gao, et al., J. Am. Chem. Soc. 139 (2017) 3537-3545.  doi: 10.1021/jacs.7b00118

    30. [30]

      W.W. Ji, E. Lin, Q.J. Li, H.G. Wang, Chem. Commun. 53 (2017) 5665-5668.  doi: 10.1039/C7CC02105D

    31. [31]

      L. Zhou, C. Zhu, T.P. Loh, C. Feng, Chem. Commun. 54 (2018) 5618-5621.  doi: 10.1039/C8CC02183J

    32. [32]

      T.J. Gong, M.Y. Xu, S.H. Yu, et al., Org. Lett. 20 (2018) 570-573.  doi: 10.1021/acs.orglett.7b03677

    33. [33]

      M.M. Tian, X.F. Yang, B. Zhang, B.X. Liu, X.W. Li, Org. Chem. Front. 5 (2018) 3406-3409.  doi: 10.1039/C8QO00947C

    34. [34]

      F. Wang, T. Luo, J. Hu, et al., Olah, Angew. Chem. Int. Ed. 50 (2011) 7153-7157.  doi: 10.1002/anie.201101691

    35. [35]

      L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 52 (2013) 12390-12394.  doi: 10.1002/anie.201306703

    36. [36]

      X.Y. Deng, J.H. Lin, J. Zheng, J.C. Xiao, Chem. Commun. 51 (2015) 8805-8808.  doi: 10.1039/C5CC02736E

    37. [37]

      W. Xu, Q.Y. Chen, J. Org. Chem. 67 (2002) 9421-9427.  doi: 10.1021/jo020431v

    38. [38]

      Z.L. Cheng, Q.Y. Chen, J. Fluorine Chem. 126 (2005) 39-43.  doi: 10.1016/j.jfluchem.2004.10.003

    39. [39]

      Z.L. Cheng, Q.Y. Chen, Chin. J. Chem. 24 (2006) 1219-1224.  doi: 10.1002/cjoc.200690227

    40. [40]

      Z.L. Cheng, Q.Y. Chen, J. Fluorine Chem. 127 (2006) 894-900.  doi: 10.1016/j.jfluchem.2006.03.020

    41. [41]

      G. Tran, G.D. Pardo, et al., Org. Lett. 17 (2015) 3414-3417.  doi: 10.1021/acs.orglett.5b01370

    42. [42]

      T. Nihei, T. Hoshino, T. Konno, Org. Biomol. Chem. 13 (2015) 3721-3731.  doi: 10.1039/C5OB00046G

    43. [43]

      A. Feraldi-Xypolia, G. Fredj, G. Tran, et al., Asian J. Org. Chem. 6 (2017) 927-935.  doi: 10.1002/ajoc.201700216

    44. [44]

      X. Zhao, S. Xu, Y. Zhou, S. Cao, Org. Chem. Front. 6 (2019) 2539-2543.  doi: 10.1039/C9QO00580C

    45. [45]

      K. Yamani, H. Pierre, A. Archambeau, C. Meyer, J. Cossy, Angew. Chem. Int. Ed. 59 (2020) 18505-18509.  doi: 10.1002/anie.202008572

    46. [46]

      L.C. Li, C.F. Ni, F. Wang, J. Hu, Nat. Commun. 7 (2016) 13320-13331.  doi: 10.1038/ncomms13320

    47. [47]

      K. Sekine, A. Ushiyama, Y. Endo, K. Mikami, J. Org. Chem. 85 (2020) 7916-7924.  doi: 10.1021/acs.joc.0c00622

    48. [48]

      X. Wang, F. Wang, F.F. Huang, C.F. Ni, J. Hu, Org. Lett. 23 (2021) 1764-1768.  doi: 10.1021/acs.orglett.1c00190

    49. [49]

      X.X. Liu, J. Chen, C.Y. Yang, et al., Org. Lett. 23 (2021) 6831-6835.  doi: 10.1021/acs.orglett.1c02392

    50. [50]

      P.A. Reddy, K.E. Woodward, S.M. McIlheran, et al., J. Med. Chem. 40 (1997) 44-49.  doi: 10.1021/jm960561u

    51. [51]

      N. Minakawa, T. Sasaki, A. Matsuda, Tetrahedron 54 (1998) 13517-13528.  doi: 10.1016/S0040-4020(98)00832-1

    52. [52]

      M. Bigioni, A. Ettorre, P. Felicetti, et al., Bioorg. Med. Chem. Lett. 22 (2012) 5360-5362.  doi: 10.1016/j.bmcl.2012.07.067

    53. [53]

      H.Y. Zou, Z.L. Wang, Y. Cao, G.P. Huang, Chin. Chem. Lett. 29 (2018) 1355-1358.  doi: 10.1016/j.cclet.2017.10.034

    54. [54]

      X. Feng, J.X. Tian, Y. Sun, et al., Chin. Chem. Lett. 32 (2021) 470-474.  doi: 10.1016/j.cclet.2020.02.039

    55. [55]

      Y.H. Cai, D.H. Tan, Q.Q. Zhang, et al., Chin. Chem. Lett. 32 (2021) 417-420.  doi: 10.1016/j.cclet.2020.03.031

    56. [56]

      P. Zhang, W.J. Chang, H.Y. Jiao, et al., Chin. Chem. Lett. 32 (2021) 1717-1720.  doi: 10.1016/j.cclet.2021.01.024

    57. [57]

      H.B. Xu, Y.Y. Zhu, X.Y. Chai, J.H. Yang, L. Dong, Green Synth. Catal. 1 (2020) 167-170.  doi: 10.1016/j.gresc.2020.09.001

    58. [58]

      H.Y. Xu, W.J. Chen, M.Y. Bian, et al., ACS Catal. 11 (2021) 14694-14701.  doi: 10.1021/acscatal.1c04508

    1. [1]

      W.C.P. Tsang, N. Zheng, S.L. Buchwald, J. Am. Chem. Soc. 127 (2005) 14560-14561.  doi: 10.1021/ja055353i

    2. [2]

      X. Chen, X.S. Hao, C.E. Goodhue, J.Q. Yu, J. Am. Chem. Soc. 128 (2006) 6790-6791.  doi: 10.1021/ja061715q

    3. [3]

      J.A. Jordan-Hore, C.C.C. Johansson, M. Gulias, E.M. Beck, M.J. Gaunt, J. Am. Chem. Soc. 130 (2008) 16184-16186.  doi: 10.1021/ja806543s

    4. [4]

      S.H. Cho, J.Y. Kim, S.Y. Lee, S. Chang, Angew. Chem. Int. Ed. 48 (2009) 9127-9130.  doi: 10.1002/anie.200903957

    5. [5]

      S. Rakshit, C. Grohmann, T. Besset, F. Glorius, J. Am. Chem. Soc. 133 (2011) 2350-2353.  doi: 10.1021/ja109676d

    6. [6]

      N. Guimond, S.I. Gorelsky, K. Fagnou, J. Am. Chem. Soc. 133 (2011) 6449-6457.  doi: 10.1021/ja201143v

    7. [7]

      X.X. Xu, Y. Liu, C.M. Park, Angew. Chem. Int. Ed. 51 (2012) 9372-9376.  doi: 10.1002/anie.201204970

    8. [8]

      J.R. Huckins, E.A. Bercot, O.R. Thiel, T.L. Hwang, M.M. Bio, J. Am. Chem. Soc. 135 (2013) 14492-14495.  doi: 10.1021/ja405140f

    9. [9]

      R. Zeng, S.Z. Wu, C.L. Fu, S.M. Ma, J. Am. Chem. Soc. 135 (2013) 18284-18287.  doi: 10.1021/ja409861s

    10. [10]

      T.K. Hyster, D.M. Dalton, T. Rovis, Chem. Sci. 6 (2015) 254-258.  doi: 10.1039/C4SC02590C

    11. [11]

      X.M. Wang, T. Gensch, A. Lerchen, C.G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 139 (2017) 6506-6512.  doi: 10.1021/jacs.7b02725

    12. [12]

      Y.X. Wu, Z.Q. Chen, Y.X. Yang, W.L. Zhu, B. Zhou, J. Am. Chem. Soc. 140 (2018) 42-45.  doi: 10.1021/jacs.7b10349

    13. [13]

      N. Guimond, C. Gouliaras, K. Fagnou, J. Am. Chem. Soc. 132 (2010) 6908-6909.  doi: 10.1021/ja102571b

    14. [14]

      N. Semakul, K.E. Jackson, R.S. Paton, T. Rovis, Chem. Sci. 8 (2017) 1015-1020.  doi: 10.1039/C6SC02587K

    15. [15]

      T. Piou, F. Romanov-Michailidis, M. Romanova-Michaelides, et al., J. Am. Chem. Soc. 139 (2017) 1296-1310.  doi: 10.1021/jacs.6b11670

    16. [16]

      I. Ojima, Fluorine in Medicinal Chemistry and Chemical Biology, John Wiley & Sons, Ltd., Chichester, 2009.

    17. [17]

      W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369.  doi: 10.1021/jm800219f

    18. [18]

      S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320-330.  doi: 10.1039/B610213C

    19. [19]

      A.K. Ghosh, B. Zajc, Org. Lett. 8 (2006) 1553-1556.  doi: 10.1021/ol060002+

    20. [20]

      M.H. Yang, S.S. Matikonda, R.A. Altman, Org. Lett. 15 (2013) 3894-3897.  doi: 10.1021/ol401637n

    21. [21]

      O.E. Han, J. Okoromoba, G.B. Hammond, B. Xu, J. Am. Chem. Soc. 136 (2014) 14381-14384.  doi: 10.1021/ja508369z

    22. [22]

      P.P. Tian, C. Feng, T.P. Loh, Nat. Commun. 6 (2015) 7472-7478.  doi: 10.1038/ncomms8472

    23. [23]

      H. Liu, S.J. Song, C.Q. Wang, C. Feng, T.P. Loh, ChemSusChem 10 (2017) 58-61.  doi: 10.1002/cssc.201601341

    24. [24]

      L.H. Kong, B.X. Liu, X.K. Zhou, F. Wang, X.W. Li, Chem. Commun. 53 (2017) 10326-10329.  doi: 10.1039/C7CC06048C

    25. [25]

      T. Li, C. Zhou, X.Q. Yan, J. Wang, Angew. Chem. Int. Ed. 57 (2018) 4048-4052.  doi: 10.1002/anie.201712691

    26. [26]

      C.Q. Wang, L. Ye, C. Feng, T.P. Loh, J. Am. Chem. Soc. 139 (2017) 1762-1765.  doi: 10.1021/jacs.6b12142

    27. [27]

      C.Q. Wang, Y. Zhang, C. Feng, Angew. Chem. Int. Ed. 56 (2017) 14918-14922.  doi: 10.1002/anie.201708505

    28. [28]

      H. Gao, M. Sun, H.M. Zhang, et al., Org. Lett. 21 (2019) 5229-5233.  doi: 10.1021/acs.orglett.9b01831

    29. [29]

      J.Q. Wu, S.S. Zhang, H. Gao, et al., J. Am. Chem. Soc. 139 (2017) 3537-3545.  doi: 10.1021/jacs.7b00118

    30. [30]

      W.W. Ji, E. Lin, Q.J. Li, H.G. Wang, Chem. Commun. 53 (2017) 5665-5668.  doi: 10.1039/C7CC02105D

    31. [31]

      L. Zhou, C. Zhu, T.P. Loh, C. Feng, Chem. Commun. 54 (2018) 5618-5621.  doi: 10.1039/C8CC02183J

    32. [32]

      T.J. Gong, M.Y. Xu, S.H. Yu, et al., Org. Lett. 20 (2018) 570-573.  doi: 10.1021/acs.orglett.7b03677

    33. [33]

      M.M. Tian, X.F. Yang, B. Zhang, B.X. Liu, X.W. Li, Org. Chem. Front. 5 (2018) 3406-3409.  doi: 10.1039/C8QO00947C

    34. [34]

      F. Wang, T. Luo, J. Hu, et al., Olah, Angew. Chem. Int. Ed. 50 (2011) 7153-7157.  doi: 10.1002/anie.201101691

    35. [35]

      L. Li, F. Wang, C. Ni, J. Hu, Angew. Chem. Int. Ed. 52 (2013) 12390-12394.  doi: 10.1002/anie.201306703

    36. [36]

      X.Y. Deng, J.H. Lin, J. Zheng, J.C. Xiao, Chem. Commun. 51 (2015) 8805-8808.  doi: 10.1039/C5CC02736E

    37. [37]

      W. Xu, Q.Y. Chen, J. Org. Chem. 67 (2002) 9421-9427.  doi: 10.1021/jo020431v

    38. [38]

      Z.L. Cheng, Q.Y. Chen, J. Fluorine Chem. 126 (2005) 39-43.  doi: 10.1016/j.jfluchem.2004.10.003

    39. [39]

      Z.L. Cheng, Q.Y. Chen, Chin. J. Chem. 24 (2006) 1219-1224.  doi: 10.1002/cjoc.200690227

    40. [40]

      Z.L. Cheng, Q.Y. Chen, J. Fluorine Chem. 127 (2006) 894-900.  doi: 10.1016/j.jfluchem.2006.03.020

    41. [41]

      G. Tran, G.D. Pardo, et al., Org. Lett. 17 (2015) 3414-3417.  doi: 10.1021/acs.orglett.5b01370

    42. [42]

      T. Nihei, T. Hoshino, T. Konno, Org. Biomol. Chem. 13 (2015) 3721-3731.  doi: 10.1039/C5OB00046G

    43. [43]

      A. Feraldi-Xypolia, G. Fredj, G. Tran, et al., Asian J. Org. Chem. 6 (2017) 927-935.  doi: 10.1002/ajoc.201700216

    44. [44]

      X. Zhao, S. Xu, Y. Zhou, S. Cao, Org. Chem. Front. 6 (2019) 2539-2543.  doi: 10.1039/C9QO00580C

    45. [45]

      K. Yamani, H. Pierre, A. Archambeau, C. Meyer, J. Cossy, Angew. Chem. Int. Ed. 59 (2020) 18505-18509.  doi: 10.1002/anie.202008572

    46. [46]

      L.C. Li, C.F. Ni, F. Wang, J. Hu, Nat. Commun. 7 (2016) 13320-13331.  doi: 10.1038/ncomms13320

    47. [47]

      K. Sekine, A. Ushiyama, Y. Endo, K. Mikami, J. Org. Chem. 85 (2020) 7916-7924.  doi: 10.1021/acs.joc.0c00622

    48. [48]

      X. Wang, F. Wang, F.F. Huang, C.F. Ni, J. Hu, Org. Lett. 23 (2021) 1764-1768.  doi: 10.1021/acs.orglett.1c00190

    49. [49]

      X.X. Liu, J. Chen, C.Y. Yang, et al., Org. Lett. 23 (2021) 6831-6835.  doi: 10.1021/acs.orglett.1c02392

    50. [50]

      P.A. Reddy, K.E. Woodward, S.M. McIlheran, et al., J. Med. Chem. 40 (1997) 44-49.  doi: 10.1021/jm960561u

    51. [51]

      N. Minakawa, T. Sasaki, A. Matsuda, Tetrahedron 54 (1998) 13517-13528.  doi: 10.1016/S0040-4020(98)00832-1

    52. [52]

      M. Bigioni, A. Ettorre, P. Felicetti, et al., Bioorg. Med. Chem. Lett. 22 (2012) 5360-5362.  doi: 10.1016/j.bmcl.2012.07.067

    53. [53]

      H.Y. Zou, Z.L. Wang, Y. Cao, G.P. Huang, Chin. Chem. Lett. 29 (2018) 1355-1358.  doi: 10.1016/j.cclet.2017.10.034

    54. [54]

      X. Feng, J.X. Tian, Y. Sun, et al., Chin. Chem. Lett. 32 (2021) 470-474.  doi: 10.1016/j.cclet.2020.02.039

    55. [55]

      Y.H. Cai, D.H. Tan, Q.Q. Zhang, et al., Chin. Chem. Lett. 32 (2021) 417-420.  doi: 10.1016/j.cclet.2020.03.031

    56. [56]

      P. Zhang, W.J. Chang, H.Y. Jiao, et al., Chin. Chem. Lett. 32 (2021) 1717-1720.  doi: 10.1016/j.cclet.2021.01.024

    57. [57]

      H.B. Xu, Y.Y. Zhu, X.Y. Chai, J.H. Yang, L. Dong, Green Synth. Catal. 1 (2020) 167-170.  doi: 10.1016/j.gresc.2020.09.001

    58. [58]

      H.Y. Xu, W.J. Chen, M.Y. Bian, et al., ACS Catal. 11 (2021) 14694-14701.  doi: 10.1021/acscatal.1c04508

  • 加载中
    1. [1]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    2. [2]

      Wenling YuanFengli LiZhe ChenQiaoxin XuZhenhua GuanNanyu YaoZhengxi HuJunjun LiuYuan ZhouYing YeYonghui Zhang . AbnI: An α-ketoglutarate-dependent dioxygenase involved in brassicicene CH functionalization and ring system rearrangement. Chinese Chemical Letters, 2024, 35(5): 108788-. doi: 10.1016/j.cclet.2023.108788

    3. [3]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    4. [4]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    5. [5]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    6. [6]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    7. [7]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    8. [8]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    9. [9]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    10. [10]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    15. [15]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    18. [18]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    19. [19]

      Peng WangJianjun WangNi SongXin ZhouMing Li . Radical dehydroxymethylative fluorination of aliphatic primary alcohols and diverse functionalization of α-fluoroimides via BF3·OEt2-catalyzed C‒F bond activation. Chinese Chemical Letters, 2025, 36(1): 109748-. doi: 10.1016/j.cclet.2024.109748

    20. [20]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

Metrics
  • PDF Downloads(3)
  • Abstract views(804)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return