Citation: Kaisheng Wang, Boyu Xiao, Ling Xu, Mingbo Zhou, Takayuki Tanaka, Atsuhiro Osuka, Jianxin Song. Nitrogen-bridged Ni(Ⅱ) porphyrinoid trimers with a central quinodiimine unit[J]. Chinese Chemical Letters, ;2022, 33(10): 4545-4548. doi: 10.1016/j.cclet.2022.01.061 shu

Nitrogen-bridged Ni(Ⅱ) porphyrinoid trimers with a central quinodiimine unit

    * Corresponding author.
    E-mail address: jxsong@hunnu.edu.cn (J. Song).
  • Received Date: 18 November 2021
    Revised Date: 18 January 2022
    Accepted Date: 23 January 2022
    Available Online: 31 January 2022

Figures(7)

  • Buchwald-Hartwig amination of 5, 15-dibromo and 5, 10-dibromo Ni(Ⅱ)porphyrins with 5-amino Ni(Ⅱ)porphyrin gave linear and bent trimers 4Ni and 5Ni with a central quinodiimine-type Ni(Ⅱ)porphyrinoid. The structures of 4Ni and 5Ni have been confirmed by X-ray diffraction analysis in both cases. The formation of unusual products 4Ni and 5Ni has been ascribed to facile oxidation of 5, 15- and 5, 10-amino Ni(Ⅱ) porphyrin unit. Reduction of 4Ni and 5Ni under proper conditions gave NH-bridged Ni(Ⅱ)porphyrin trimers 4Ni-2H and 5Ni-2H in high yields. Trimers 4Ni and 5Ni exhibit the lowest energy band as compared with 4Ni-2H and 5Ni-2H. Especially the bent trimer 5Ni exhibits a broad absorption tail beyond 1400 nm.
  • Porphyrin arrays are organic functional molecules with large π-conjugated systems and have potential applications in optoelectronic devices [1-11], sensors [12-15] and photodynamic therapy (PDT) [16-18]. In the last decade, porphyrin arrays with alkynes [19, 20], benzene [21] or heterocycles (such as thiophene [22], pyridine [23], pyrrole [24, 25]) as bridging units have been intensively studied. Porphyrin dimers with a single carbon or heteroatom bridging unit have received much attention due to their unique photophysical properties, chemical properties, and characteristic electronic delocalization [26-37]. In 2006, Arnold et al. reported the first isolation of meso-meso nitrogen-bridged diporphyrinylamine 1, which showed a broadened Soret band and red shift Q bands, indicating substantial electronic interaction between the porphyrins [27]. Ruppert et al. reported meso-meso, β-meso, β-β-nitrogen-bridged diporphyrinylamines [29], which were all synthesized by Buchwald-Hartwig amination. Later, Osuka et al. reported that meso-meso nitrogen-bridged Ni(Ⅱ) porphyrin dimer was cleanly converted into aminyl radical 2 and nitrenium cation 3 by oxidation with PbO2 and tris(4-bromophenyl)aminiumyl hexachloroantimonate (Magic Blue), respectively (Fig. 1) [34]. As an extension, we report here the synthesis of nitrogen-atom bridged Ni(Ⅱ) porphyrin trimers.

    Figure 1

    Figure 1.  N-Bridged porphyrin oligomers. Ar = 3, 5-di-tert-butylphenyl.

    First we attempted to synthesize linear NH-bridged porphyrin trimer 4Ni-2H by the similar Buchwald-Hartwig amination of 5, 15-dibromo Ni(Ⅱ)porphyrin 7Ni with 5-amino Ni(Ⅱ)porphyrin 6Ni [34]. A 4:1 solution of 6Ni and 7Ni in toluene was heated at 100 ℃ for 12 h in the presence of 0.4 equiv. Pd(OAc)2, 0.4 equiv. BINAP, and 7 equiv. t-BuOK (Scheme 1). To our surprise, only a linear trimer 4Ni bearing a central quinodiimine-type porphyrinoid unit was obtained in 38% yield. The matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrum showed the parent ion of 4Ni at m/z 2627.3453 [M]+ (calcd. for (C172H192N14Ni3)+ = 2627.3509) (Fig. S13 in Supporting information), which is smaller by two than the expected parent ion peak of 4Ni-2H. The structure of 4Ni has been revealed by X-ray diffraction structural analysis (Fig. 2 and Fig. S17 in Supporting information). The bond lengths of C2meso-N (1.300(6) Å and 1.304(6) Å) are distinctly shorter than those of C1meso-N (1.412(6) Å and 1.395(7) Å). The 1H NMR spectrum of 4Ni showed broadened signals at room temperature in CDCl3 (Fig. S3 in Supporting information), which gradually changed to sharp peaks upon cooling down to −60 ℃ (Fig. S4 in Supporting information) [38], suggesting conformational motions at room temperature, which are comparable or faster than 1H NMR timescale. It is noteworthy that four doublets due to the b-protons of the central quinodiimine unit were observed in the up-field shifted region at 7.77, 6.76, 5.70 and 3.99 ppm.

    Scheme 1

    Scheme 1.  Syntheses of meso-meso N-bridged porphyrinoid trimers. Conditions: a) Pd(OAc)2, BINAP, t-BuOK, toluene, 100 ℃, 12 h. Ar = 3, 5-di-tert-butylphenyl.

    Figure 2

    Figure 2.  X-ray single crystal structure of 4Ni and 5Ni. (a) Top view and (b) side view of 4Ni, (c) top view and d) side view of 5Ni. The thermal ellipsoids are on 30% probability level. Solvent molecules, 3, 5-di-tert-butylphenyl groups, and hydrogens are omitted for clarity.

    Similarly, Buchwald-Hartwig amination of 5, 10-dibromo Ni(Ⅱ)porphyrin 8Ni with 6Ni afforded l-shaped bent trimer 5Ni in 25% yield. The quinodiimine structure of 5Ni has been also confirmed by X-ray analysis. 5Ni shows that the bond lengths of C2meso-N (1.299(5) Å and 1.302(6) Å) are shorter than those of C1meso-N bonds (1.399(5) Å and 1.413(6) Å) (Fig. 2 and Fig. S18 in Supporting information). The 1H NMR spectrum of 5Ni showed broadened signals at room temperature that became sharp and complicated signals at −60 ℃ in CDCl3 (Figs. S5 and S6 in Supporting information). In line with the quinodiimine structure, the corresponding β-protons were observed in the high field at 7.07, 6.73, 6.42, 6.33, 5.66, 4.33, and 3.74 ppm.

    The structural data of 4Ni shows that lengths of C1meso-N bonds (1.412(6) Å and 1.395(7) Å) bond to the terminal porphyrin units are longer than C2meso-N (1.300(6) Å and 1.304(6) Å) attached to the central quinodiimine units. Similarly, 5Ni shows that lengths of C1meso-N bonds (1.399(5) Å and 1.413(6) Å) bond to the terminal porphyrin units are longer than C2meso-N (1.299(5) Å and 1.302(6) Å) attached to the central quinodiimine units. The observed short C2meso-N bond lengths in 4Ni and 5Ni indicated its double bond characters significantly [34], which further proved the structure of 4Ni and 5Ni to be N-bridged (rather than NH-bridged) porphyrin trimer. The dihedral angles between the terminal porphyrins and terminal porphyrin, terminal porphyrin and central quinodiimine are 66.81(3)°, 56.34(3)° and 58.06(3)° in 4Ni, and 6.83(3)°, 42.67(3)° and 39.34(3)° in 5Ni (Fig. 2 and Figs. S17 and S18 in Supporting information).

    Electrochemical properties of 4Ni and 5Ni were examined by cyclic voltammetry and differential-pulse voltammetry in CH2Cl2 against a ferrocene/ferrocenium ion couple (Table 1 and Table S4 in Supporting information). Reversible oxidation waves were recorded at 0.22 and 0.52 V for 4Ni, and at 0.12 and 0.23 V for 5Ni. Reversible reduction waves were observed at −1.02 and −1.11 V for 4Ni, and at −0.79 and −1.14 V for 5Ni (Figs. S20 and S21 in Supporting information). As a result, the electrochemical HOMO-LUMO gaps of 4Ni and 5Ni were determined to be 1.24 and 0.91 eV, respectively. The observed reversible reduction waves of 4Ni and 5Ni encouraged us to examine their chemical reduction. After many attempts, we found that reduction of 5Ni with aqueous hydrazine in CH2Cl2 afforded 5Ni-2H quantitatively (Scheme 2). Curiously, 4Ni was not reduced with aqueous hydrazine but was reduced quantitatively to give 4Ni-2H with NaBH4 and Pd/C in CH2Cl2/CH3OH. 1H NMR spectra of both 4Ni-2H and 5Ni-2H are very simple, reflecting their symmetric structures with signals of the β-protons appearing in the range of 8–9 ppm (Fig. 3 and Figs. S7 and S8 in Supporting information). The structure of 5Ni-2H has been confirmed by single crystal X-ray diffraction analysis (Fig. 4 and Fig. S19 in Supporting information). In 5Ni-2H, the bond lengths of the C2meso-N bond and the C1meso-N bond are similar, being 1.409(8) Å, 1.406(8) Å and 1.393(7) Å, 1.434(11) Å, respectively, in line with the assigned structures. In addition, the dihedral angles between the terminal porphyrins and the central porphyrin are 58.29(7)° and 58.15(7)°, which are larger than those on 5Ni (42.67(3)° and 39.34(3)°).

    Table 1

    Table 1.  Electrochemical measurement of 4Ni, 5Ni, 4Ni-2H and 5Ni-2H performed in CH2Cl2 at room temperature.a
    DownLoad: CSV

    Scheme 2

    Scheme 2.  Syntheses of meso-meso NH-bridged porphyrin trimers. Conditions: (a) NaBH4, Pd/C, CH2Cl2/CH3OH; (b) NH2—NH2·H2O, CH2Cl2. Ar = 3, 5-di-tert-butylphenyl.

    Figure 3

    Figure 3.  Partial 1H NMR spectra of (a) 4Ni-2H and (b) 5Ni-2H.

    Figure 4

    Figure 4.  X-ray single crystal structure of 5Ni-2H. (a) Top view and (b) side view. The thermal ellipsoids are on 30% probability level. Solvent molecules, 3, 5-di-tert-butylphenyl groups, and hydrogens except those connected to N atoms are omitted for clarity.

    The unexpected formation of 4Ni and 5Ni may be ascribed to the facile oxidation of 4Ni-2H and 5Ni-2H under the amination reaction conditions. These trimers have the central electron-rich Ni(Ⅱ) porphyrin bearing 5, 15 or 5, 10-aminoporphyrin units. Thus, we examined the electrochemical properties of 4Ni-2H and 5Ni-2H (Table 1 and Table S4 in Supporting information). Actually, the reversible oxidation waves were observed at −0.09 and 0.17 V for 4Ni-2H, and at 0.11, 0.25 and 0.41 V for 5Ni-2H (Figs. S22 and S23 in Supporting information). It is thus conceivable that 4Ni-2H and 5Ni-2H are oxidized under the amination conditions with air. So, when we try to oxidized them with PbO2 and Magic Blue, neither aminyl radical nor nitrenium cation was found. The possible reason may be that the quinodiimine unit is more stable than other species.

    The UV–vis-NIR absorption spectra of 4Ni, 5Ni, 4Ni-2H and 5Ni-2H in CH2Cl2 are shown in Fig. 5. 4Ni shows two split Soret bands at 426 and 472 nm, a Q-band at 537 nm, and a broadened Q-like band at 915 nm. 5Ni shows a Soret band at 429 nm, Q-bands at 540 and 581 nm, and a broadened Q-like band at 892 nm. Both 4Ni and 5Ni exhibit characteristic absorption spectra of quinonoidal porphyrinoid arrays [39-42]. 4Ni-2H shows a Soret band at 423 nm, and a Q-band at 627 nm. Similarly to 4Ni-2H, the absorption spectrum of 5Ni-2H shows a Soret band at 418 nm, and a Q-band at 664 nm. In particular, 4Ni and 5Ni display the lowest energy band reaching to 1200 nm and 1400 nm, respectively.

    Figure 5

    Figure 5.  UV–vis-NIR absorption spectra of 4Ni (black line), 5Ni (red line), 4Ni-2H (blue line) and 5Ni-2H (green line) in CH2Cl2.

    Density functional theory (DFT) calculations clearly indicated that both the HOMO of 4Ni and HOMO-1 5Ni were localized at terminal porphyrin units, whereas both LUMOs of 4Ni and 5Ni were localized at the central quinodiimine units (Figs. S28 and S29 in Supporting information). Time-dependent density functional theory (TD-DFT) calculations indicated that the absorption bands around 1000 nm of trimers 4Ni and 5Ni resulted from the transition from HOMO to LUMO of 4Ni and HOMO-1 to LUMO of 5Ni, respectively (Figs. S24 and S25 in Supporting information). These results show that both absorption bands around 1000 nm of 4Ni and 5Ni could be assigned to charge transfer (CT) band.

    In summary, we synthesized N-bridged porphyrinoid trimers 4Ni and 5Ni having the central quinodiimine through Buchwald-Hartwig amination, under which the oxidations of the NH-bridged porphyrin trimers 4Ni-2H and 5Ni-2H proceeded smoothly. The trimer 4Ni-2H was obtained by reduction with NaBH4 and Pd/C, while 5Ni-2H was obtained by reduction with aqueous hydrazine. The structures of 4Ni, 5Ni and 5Ni-2H were determined by X-ray diffraction analysis. The UV–vis-NIR absorption spectra showed that the trimers 4Ni and 5Ni have the lowest energy band reaching to 1200 nm and 1400 nm, respectively. These N-bridged porphyrinoid trimers exhibited interesting spectral properties. Further exploration of cyclic or larger N-bridged porphyrinoid arrays is ongoing in our laboratory.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    The work at Hunan Normal University was supported by the National Natural Science Foundation of China (Nos. 21772036, 22071052, 21602058, 21702057), the Science and Technology Planning Project of Hunan Province (No. 2018TP1017), and the Scientific Research Fund of Hunan Provincial Education Department (No. 19A331), and Hunan Provincial Innovation Foundation for Postgraduate (No. CX20210473).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.061.


    1. [1]

      A. Tsuda, A. Osuka, Science 293 (2001) 79–82.  doi: 10.1126/science.1059552

    2. [2]

      D. Holten, D.F. Bocian, J.S. Lindsey, Acc. Chem. Res. 35 (2002) 57–69.  doi: 10.1021/ar970264z

    3. [3]

      N. Aratani, D. Kim, A. Osuka, Chem. Asian J. 4 (2009) 1172–1182.  doi: 10.1002/asia.200900045

    4. [4]

      N. Aratani, A. Osuka, H.S. Cho, D. Kim, J. Photochem. Photobiol. C 3 (2002) 25–52.  doi: 10.1016/S1389-5567(02)00003-5

    5. [5]

      K.S. Kim, J.M. Lim, A. Osuka, D. Kim, J. Photochem. Photobiol. C 9 (2008) 13–28.  doi: 10.5467/JKESS.2008.29.1.013

    6. [6]

      K. Zeng, Z. Tong, L. Ma, et al., Energy Environ. Sci. 13 (2020) 1617–1657.  doi: 10.1039/c9ee04200h

    7. [7]

      Y. Rio, P. Vázquez, E. Palomares, J. Porphyrins Phthalocyanines 13 (2009) 645–651.  doi: 10.1142/S1088424609000826

    8. [8]

      L.L. Li, E.W.G. Diau, Chem. Soc. Rev. 42 (2013) 291–304.  doi: 10.1039/C2CS35257E

    9. [9]

      M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Chem. Rev. 114 (2014) 12330–12396.  doi: 10.1021/cr5001964

    10. [10]

      A. Mahmood, J.Y. Hu, B. Xiao, et al., J. Mater. Chem. A 6 (2018) 16769–16797.  doi: 10.1039/C8TA06392C

    11. [11]

      Q. Li, C. Li, J. Kim, et al., J. Am. Chem. Soc. 141 (2019) 5294–5302.  doi: 10.1021/jacs.8b13148

    12. [12]

      J. Yang, M.C. Yoon, H. Yoo, P. Kim, D. Kim, Chem. Soc. Rev. 41 (2012) 4808–4826.  doi: 10.1039/c2cs35022j

    13. [13]

      V.S.Y. Lin, S.G. DiMagno, M.J. Therien, Science 264 (1994) 1105–1111.  doi: 10.1126/science.8178169

    14. [14]

      T. Tanaka, A. Osuka, Chem. Soc. Rev. 44 (2015) 943–969.  doi: 10.1039/C3CS60443H

    15. [15]

      Q. Li, C. Li, G. Baryshnikov, et al., Nat. Commun. 11 (2020) 5289.  doi: 10.1038/s41467-020-19118-9

    16. [16]

      J. Tian, B. Huang, M.H. Nawaz, W. Zhang, Coord. Chem. Rev. 420 (2020) 213410–213429.  doi: 10.1016/j.ccr.2020.213410

    17. [17]

      M. Ethirajan, Y. Chen, P. Joshi, R.K. Pandey, Chem. Soc. Rev. 40 (2011) 340–362.  doi: 10.1039/B915149B

    18. [18]

      R.D. Teo, J.Y. Hwang, J. Termini, Z. Gross, H.B. Gray, Chem. Rev. 117 (2017) 2711–2729.  doi: 10.1021/acs.chemrev.6b00400

    19. [19]

      M. Rickhaus, A.V. Jentzsch, L. Tejerina, et al., J. Am. Chem. Soc. 139 (2017) 16502–16505.  doi: 10.1021/jacs.7b10710

    20. [20]

      P.S. Bols, H.L. Anderson, Acc. Chem. Res. 51 (2018) 2083–2092.  doi: 10.1021/acs.accounts.8b00313

    21. [21]

      O. Wennerström, H. Ericsson, I. Raston, S. Svensson, W. Pimlott, Tetrahedron Lett. 30 (1989) 1129–1132.  doi: 10.1016/S0040-4039(01)80378-6

    22. [22]

      J. Song, S.Y. Jang, S. Yamaguchi, et al., Angew. Chem. Int. Ed. 47 (2008) 6004–6007.  doi: 10.1002/anie.200802026

    23. [23]

      J. Song, N. Aratani, J.H. Heo, et al., J. Am. Chem. Soc. 132 (2010) 11868–11869.  doi: 10.1021/ja1046654

    24. [24]

      C. Maeda, H. Shinokubo, A. Osuka, Org. Lett. 12 (2010) 1820–1823.  doi: 10.1021/ol100448x

    25. [25]

      Y. Rao, J.O. Kim, W. Kim, et al., Chem. Eur. J. 22 (2016) 8801–8804.  doi: 10.1002/chem.201601306

    26. [26]

      M.O. Senge, M.G.H. Vicente, K.R. Gerzevske, T.P. Forsyth, K.M. Smith, Inorg. Chem. 33 (1994) 5625–5638.  doi: 10.1021/ic00103a006

    27. [27]

      L.J. Esdaile, M.O. Senge, D.P. Arnold, Chem. Commun. (2006) 4192–4194.  doi: 10.1039/b608365j

    28. [28]

      L.J. Esdaile, P. Jensen, J.C. McMurtrie, D.P. Arnold, Angew. Chem. Int. Ed. 46 (2007) 2090–2093.  doi: 10.1002/anie.200604658

    29. [29]

      A.M.V.M. Pereira, M.G.P.M.S. Neves, J.A.S. Cavaleiro, et al., Org. Lett. 13 (2011) 4742–4745.  doi: 10.1021/ol2020658

    30. [30]

      C.H. Devillers, S. Hebié, D. Lucas, et al., J. Org. Chem. 79 (2014) 6424–6434.  doi: 10.1021/jo5005586

    31. [31]

      A.A. Ryan, S. Plunkett, A. Casey, T. McCabe, M.O. Senge, Chem. Commun. 50 (2014) 353–355.  doi: 10.1039/C3CC46828C

    32. [32]

      K. Fujimoto, H. Yorimitsu, A. Osuka, Chem. Eur. J. 21 (2015) 11311–11314.  doi: 10.1002/chem.201502215

    33. [33]

      K. Merahi, A.M.V.M. Pereira, C. Jeandon, et al., J. Porphyrins Phthalocyanines 20 (2016) 1233–1243.  doi: 10.1142/S1088424616500954

    34. [34]

      D. Shimizu, K. Fujimoto, A. Osuka, Angew. Chem. Int. Ed. 57 (2018) 9434–9438.  doi: 10.1002/anie.201805385

    35. [35]

      N. Fukui, A. Osuka, Bull. Chem. Soc. Jpn. 91 (2018) 1131–1137.  doi: 10.1246/bcsj.20180103

    36. [36]

      D. Shimizu, Y. Ide, T. Ikeue, A. Osuka, Angew. Chem. Int. Ed. 58 (2019) 5023–5027.  doi: 10.1002/anie.201900792

    37. [37]

      K. Wang, A. Osuka, J. Song, ACS Cent. Sci. 6 (2020) 2159–2178.  doi: 10.1021/acscentsci.0c01300

    38. [38]

      H. Mori, J.M. Lim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 52 (2013) 12997–13001.  doi: 10.1002/anie.201308545

    39. [39]

      I.M. Blake, L.H. Rees, T.D.W. Claridge, H.L. Anderson, Angew. Chem. Int. Ed. 39 (2000) 1818–1821.  doi: 10.1002/(SICI)1521-3773(20000515)39:10<1818::AID-ANIE1818>3.0.CO;2-E

    40. [40]

      I.M. Blake, A. Krivokapic, M. Katterle, H.L. Anderson, Chem. Commun. (2002) 1662–1663.

    41. [41]

      L.J. Esdaile, L. Rintoul, M.S. Goh, et al., Chem. Eur. J. 22 (2016) 3430–3446.  doi: 10.1002/chem.201504252

    42. [42]

      Y. Jun-i, N. Fukui, K. Furukawa, A. Osuka, Chem. Eur. J. 24 (2018) 1528–1532.  doi: 10.1002/chem.201705769

    1. [1]

      A. Tsuda, A. Osuka, Science 293 (2001) 79–82.  doi: 10.1126/science.1059552

    2. [2]

      D. Holten, D.F. Bocian, J.S. Lindsey, Acc. Chem. Res. 35 (2002) 57–69.  doi: 10.1021/ar970264z

    3. [3]

      N. Aratani, D. Kim, A. Osuka, Chem. Asian J. 4 (2009) 1172–1182.  doi: 10.1002/asia.200900045

    4. [4]

      N. Aratani, A. Osuka, H.S. Cho, D. Kim, J. Photochem. Photobiol. C 3 (2002) 25–52.  doi: 10.1016/S1389-5567(02)00003-5

    5. [5]

      K.S. Kim, J.M. Lim, A. Osuka, D. Kim, J. Photochem. Photobiol. C 9 (2008) 13–28.  doi: 10.5467/JKESS.2008.29.1.013

    6. [6]

      K. Zeng, Z. Tong, L. Ma, et al., Energy Environ. Sci. 13 (2020) 1617–1657.  doi: 10.1039/c9ee04200h

    7. [7]

      Y. Rio, P. Vázquez, E. Palomares, J. Porphyrins Phthalocyanines 13 (2009) 645–651.  doi: 10.1142/S1088424609000826

    8. [8]

      L.L. Li, E.W.G. Diau, Chem. Soc. Rev. 42 (2013) 291–304.  doi: 10.1039/C2CS35257E

    9. [9]

      M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Chem. Rev. 114 (2014) 12330–12396.  doi: 10.1021/cr5001964

    10. [10]

      A. Mahmood, J.Y. Hu, B. Xiao, et al., J. Mater. Chem. A 6 (2018) 16769–16797.  doi: 10.1039/C8TA06392C

    11. [11]

      Q. Li, C. Li, J. Kim, et al., J. Am. Chem. Soc. 141 (2019) 5294–5302.  doi: 10.1021/jacs.8b13148

    12. [12]

      J. Yang, M.C. Yoon, H. Yoo, P. Kim, D. Kim, Chem. Soc. Rev. 41 (2012) 4808–4826.  doi: 10.1039/c2cs35022j

    13. [13]

      V.S.Y. Lin, S.G. DiMagno, M.J. Therien, Science 264 (1994) 1105–1111.  doi: 10.1126/science.8178169

    14. [14]

      T. Tanaka, A. Osuka, Chem. Soc. Rev. 44 (2015) 943–969.  doi: 10.1039/C3CS60443H

    15. [15]

      Q. Li, C. Li, G. Baryshnikov, et al., Nat. Commun. 11 (2020) 5289.  doi: 10.1038/s41467-020-19118-9

    16. [16]

      J. Tian, B. Huang, M.H. Nawaz, W. Zhang, Coord. Chem. Rev. 420 (2020) 213410–213429.  doi: 10.1016/j.ccr.2020.213410

    17. [17]

      M. Ethirajan, Y. Chen, P. Joshi, R.K. Pandey, Chem. Soc. Rev. 40 (2011) 340–362.  doi: 10.1039/B915149B

    18. [18]

      R.D. Teo, J.Y. Hwang, J. Termini, Z. Gross, H.B. Gray, Chem. Rev. 117 (2017) 2711–2729.  doi: 10.1021/acs.chemrev.6b00400

    19. [19]

      M. Rickhaus, A.V. Jentzsch, L. Tejerina, et al., J. Am. Chem. Soc. 139 (2017) 16502–16505.  doi: 10.1021/jacs.7b10710

    20. [20]

      P.S. Bols, H.L. Anderson, Acc. Chem. Res. 51 (2018) 2083–2092.  doi: 10.1021/acs.accounts.8b00313

    21. [21]

      O. Wennerström, H. Ericsson, I. Raston, S. Svensson, W. Pimlott, Tetrahedron Lett. 30 (1989) 1129–1132.  doi: 10.1016/S0040-4039(01)80378-6

    22. [22]

      J. Song, S.Y. Jang, S. Yamaguchi, et al., Angew. Chem. Int. Ed. 47 (2008) 6004–6007.  doi: 10.1002/anie.200802026

    23. [23]

      J. Song, N. Aratani, J.H. Heo, et al., J. Am. Chem. Soc. 132 (2010) 11868–11869.  doi: 10.1021/ja1046654

    24. [24]

      C. Maeda, H. Shinokubo, A. Osuka, Org. Lett. 12 (2010) 1820–1823.  doi: 10.1021/ol100448x

    25. [25]

      Y. Rao, J.O. Kim, W. Kim, et al., Chem. Eur. J. 22 (2016) 8801–8804.  doi: 10.1002/chem.201601306

    26. [26]

      M.O. Senge, M.G.H. Vicente, K.R. Gerzevske, T.P. Forsyth, K.M. Smith, Inorg. Chem. 33 (1994) 5625–5638.  doi: 10.1021/ic00103a006

    27. [27]

      L.J. Esdaile, M.O. Senge, D.P. Arnold, Chem. Commun. (2006) 4192–4194.  doi: 10.1039/b608365j

    28. [28]

      L.J. Esdaile, P. Jensen, J.C. McMurtrie, D.P. Arnold, Angew. Chem. Int. Ed. 46 (2007) 2090–2093.  doi: 10.1002/anie.200604658

    29. [29]

      A.M.V.M. Pereira, M.G.P.M.S. Neves, J.A.S. Cavaleiro, et al., Org. Lett. 13 (2011) 4742–4745.  doi: 10.1021/ol2020658

    30. [30]

      C.H. Devillers, S. Hebié, D. Lucas, et al., J. Org. Chem. 79 (2014) 6424–6434.  doi: 10.1021/jo5005586

    31. [31]

      A.A. Ryan, S. Plunkett, A. Casey, T. McCabe, M.O. Senge, Chem. Commun. 50 (2014) 353–355.  doi: 10.1039/C3CC46828C

    32. [32]

      K. Fujimoto, H. Yorimitsu, A. Osuka, Chem. Eur. J. 21 (2015) 11311–11314.  doi: 10.1002/chem.201502215

    33. [33]

      K. Merahi, A.M.V.M. Pereira, C. Jeandon, et al., J. Porphyrins Phthalocyanines 20 (2016) 1233–1243.  doi: 10.1142/S1088424616500954

    34. [34]

      D. Shimizu, K. Fujimoto, A. Osuka, Angew. Chem. Int. Ed. 57 (2018) 9434–9438.  doi: 10.1002/anie.201805385

    35. [35]

      N. Fukui, A. Osuka, Bull. Chem. Soc. Jpn. 91 (2018) 1131–1137.  doi: 10.1246/bcsj.20180103

    36. [36]

      D. Shimizu, Y. Ide, T. Ikeue, A. Osuka, Angew. Chem. Int. Ed. 58 (2019) 5023–5027.  doi: 10.1002/anie.201900792

    37. [37]

      K. Wang, A. Osuka, J. Song, ACS Cent. Sci. 6 (2020) 2159–2178.  doi: 10.1021/acscentsci.0c01300

    38. [38]

      H. Mori, J.M. Lim, D. Kim, A. Osuka, Angew. Chem. Int. Ed. 52 (2013) 12997–13001.  doi: 10.1002/anie.201308545

    39. [39]

      I.M. Blake, L.H. Rees, T.D.W. Claridge, H.L. Anderson, Angew. Chem. Int. Ed. 39 (2000) 1818–1821.  doi: 10.1002/(SICI)1521-3773(20000515)39:10<1818::AID-ANIE1818>3.0.CO;2-E

    40. [40]

      I.M. Blake, A. Krivokapic, M. Katterle, H.L. Anderson, Chem. Commun. (2002) 1662–1663.

    41. [41]

      L.J. Esdaile, L. Rintoul, M.S. Goh, et al., Chem. Eur. J. 22 (2016) 3430–3446.  doi: 10.1002/chem.201504252

    42. [42]

      Y. Jun-i, N. Fukui, K. Furukawa, A. Osuka, Chem. Eur. J. 24 (2018) 1528–1532.  doi: 10.1002/chem.201705769

  • 加载中
    1. [1]

      Haiyan Yin Abdusalam Ablez Zhuangzhuang Wang Weian Li Yanqi Wang Qianqian Hu Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560

    2. [2]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    3. [3]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    4. [4]

      Yuchen WangYaoyu LiuXiongfei HuangGuanjie HeKai Yan . Fe nanoclusters anchored in biomass waste-derived porous carbon nanosheets for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(8): 109301-. doi: 10.1016/j.cclet.2023.109301

    5. [5]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

    6. [6]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    7. [7]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    9. [9]

      Quanyou GuoYue YangTingting HuHongqi ChuLijun LiaoXuepeng WangZhenzi LiLiping GuoWei Zhou . Regulating local electron transfer environment of covalent triazine frameworks through F, N co-modification towards optimized oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(1): 110235-. doi: 10.1016/j.cclet.2024.110235

    10. [10]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    11. [11]

      Xiang LiBeibei ZhangZhixiang WangXiangyu Chen . Organocatalyzed iodine-mediated reversible-deactivation radical polymerization via photoinduced charge transfer complex catalysis. Chinese Chemical Letters, 2025, 36(6): 110383-. doi: 10.1016/j.cclet.2024.110383

    12. [12]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    13. [13]

      Yuwei LiuYihui ZhuWeijian DuanYizhuo YangHaorui TuoChunhua Feng . Electrocatalytic nitrate reduction on Fe, Fe3O4, and Fe@Fe3O4 cathodes: Elucidating structure-sensitive mechanisms of direct electron versus hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(6): 110347-. doi: 10.1016/j.cclet.2024.110347

    14. [14]

      Jieqiong XuWenbin ChenShengkai LiQian ChenTao WangYadong ShiShengyong DengMingde LiPeifa WeiZhuo Chen . Organic stoichiometric cocrystals with a subtle balance of charge-transfer degree and molecular stacking towards high-efficiency NIR photothermal conversion. Chinese Chemical Letters, 2024, 35(10): 109808-. doi: 10.1016/j.cclet.2024.109808

    15. [15]

      Xiao YuDongyue CuiMengmeng WangZhaojin WangMengzhu WangDeshuang TuVladimir BregadzeChangsheng LuQiang ZhaoRunfeng ChenHong Yan . Boron cluster-based TADF emitter via through-space charge transfer enabling efficient orange-red electroluminescence. Chinese Chemical Letters, 2025, 36(3): 110520-. doi: 10.1016/j.cclet.2024.110520

    16. [16]

      Manlin LuSheng LiaoJiayu LiZidong YuNingjiu ZhaoZuoti XieShunli ChenLi DangMing-De Li . Face-to-face π-π interactions and electron communication boosting efficient reverse intersystem crossing in through-space charge transfer molecules. Chinese Chemical Letters, 2025, 36(6): 110066-. doi: 10.1016/j.cclet.2024.110066

    17. [17]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    18. [18]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

    19. [19]

      Hui LiuXiangyang TangZhuang ChengYin HuYan YanYangze XuZihan SuFutong LiuPing Lu . Constructing multifunctional deep-blue emitters with weak charge transfer excited state for high-performance non-doped blue OLEDs and single-emissive-layer hybrid white OLEDs. Chinese Chemical Letters, 2024, 35(10): 109809-. doi: 10.1016/j.cclet.2024.109809

    20. [20]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

Metrics
  • PDF Downloads(2)
  • Abstract views(698)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return