Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries
-
* Corresponding authors.
E-mail addresses: hytyl@163.com (Y. Tan), hqzhou@hunnu.edu.cn (H. Zhou).
Citation:
Yuxue Mo, Liling Liao, Dongyang Li, Rongwu Pan, Yanhong Deng, Yanliang Tan, Haiqing Zhou. Development prospects of metal-based two-dimensional nanomaterials in lithium-sulfur batteries[J]. Chinese Chemical Letters,
;2023, 34(1): 107130.
doi:
10.1016/j.cclet.2022.01.023
J. Deng, C. Bae, A. Denlinger, T. Miller, Joule 4 (2020) 509-515.
doi: 10.1002/aenm.202002893
P. Wang, B. Xi, M. Huang, et al., Adv. Energy Mater. 11 (2021) 2002893.
doi: 10.1002/aenm.202002893
Y.T. Liu, S. Liu, G.R. Li, X.P. Gao, Adv. Mater. 33 (2021) 2003955.
doi: 10.1002/adma.202003955
C. Wang, L. Sun, L. Kai, et al., ACS Appl. Mater. Interfaces 12 (2020) 43560–43567.
doi: 10.1021/acsami.0c09567
K.H. Su, P.W. Chi, T. Paul, et al., Mater. Today Phys. 18 (2021) 100373.
doi: 10.1016/j.mtphys.2021.100373
J. Conder, R. Bouchet, S. Trabesinger, et al., Nat. Energy 2 (2017) 17069.
doi: 10.1038/nenergy.2017.69
S.S. Zhang, J. Power Sources 231 (2013) 153–162.
doi: 10.1016/j.jpowsour.2012.12.102
R. Fang, S. Zhao, Z. Sun, et al., Adv. Mater. 29 (2017) 1606823.
doi: 10.1002/adma.201606823
Q. Shao, Z.S. Wu, J. Chen, Energy Storage Mater. 22 (2019) 284–310.
doi: 10.3390/microorganisms7090284
Z.W. Seh, W. Li, J.J. Cha, et al., Nat. Commun. 4 (2013) 1331.
doi: 10.1038/ncomms2327
S. Tao, W.F. Huang, S.Q. Chu, et al., Mater. Today Phys. 18 (2021) 100403.
doi: 10.1016/j.mtphys.2021.100403
J.X. Lin, Y.X. Mo, P.F. Zhang, et al., Mater. Today Energy 13 (2019) 267–276.
doi: 10.1016/j.mtener.2019.05.014
Y. Wu, D. Lei, C. Wang, Mater. Today Phys. 18 (2021) 100395.
doi: 10.1016/j.mtphys.2021.100395
S.Y. Liu, C.Y. Fan, Y.H. Shi, et al., ACS Appl. Mater. Interfaces 10 (2018) 509–516.
doi: 10.1021/acsami.7b14118
M. Hagen, D. Hanselmann, K. Ahlbrecht, et al., Adv. Energy Mater. 5 (2015)
1401986.
doi: 10.1002/aenm.201401986
H. Hong, N. Mohamad, K. Chae, et al., J. Mater. Chem. A 9 (2021)
10012–10038.
doi: 10.1039/d1ta01091c
J. Nai, X. Zhao, H. Yuan, X. Tao, L. Guo, Nano Res. 14 (2021) 2053–2066.
doi: 10.1007/s12274-021-3506-9
T. Li, C. He, W. Zhang, J. Energy Chem. 52 (2021) 121–129.
doi: 10.1016/j.jechem.2020.04.042
X. Yang, G. Xia, J. Ye, W. Du, C. Hu, Appl. Surf. Sci. 22 (2021) 148632.
F. Bonaccorso, L. Colombo, G. Yu, et al., Science 347 (2015) 1246501.
doi: 10.1126/science.1246501
J.S. Zeng, L. Zhang, Q. Zhou, et al., Small 18 (2022) 2104624.
doi: 10.1002/smll.202104624
F.M. Cai, L.L. Liao, Y. Zhao, et al., J. Mater. Chem. A 9 (2021) 10199–10207.
doi: 10.1039/d1ta00144b
L.L. Liao, L. Yang, G. Zhao, et al., Chin. J. Chem. 39 (2021) 288–294.
doi: 10.1002/cjoc.202000487
D.Y. Li, L.L. Liao, H.Q. Zhou, et al., Mater. Today Phys. 16 (2021) 100314.
doi: 10.1016/j.mtphys.2020.100314
W. Xue, Z. Shi, L. Suo, et al., Nat. Energy 4 (2019) 374–382.
doi: 10.1038/s41560-019-0351-0
L.L. Liao, J.Y. Sun, D.Y. Li, et al., Small 16 (2020) 1906629.
doi: 10.1002/smll.201906629
C. Zhao, G.L. Xu, Z. Yu, et al., Nat. Nanotechnol. 16 (2021) 166–173.
doi: 10.1038/s41565-020-00797-w
J.Y. Sun, F. Tian, F. Yu, et al., ACS Catal. 10 (2020) 1511.
doi: 10.1021/acscatal.9b03030
L. Shi, Z. Li, L.C. Ju, et al., J. Mater. Chem. A 8 (2020) 1059–1065.
doi: 10.1039/c9ta12743g
Q. Zhou, L.L. Liao, Q.H. Bian, et al., Small 18 (2022) 2105642.
doi: 10.1002/smll.202105642
D.R. Deng, C. Bai, F. Xue, et al., ACS Appl. Mater. Interfaces 11 (2019)
11474–11480.
doi: 10.1021/acsami.8b22660
J. Miao, C. Wang, Nano Res. 14 (2021) 1878–1888.
doi: 10.1007/s12274-020-3001-8
L. Liao, C. Cheng, H. Zhou, et al., Mater. Today Phys. 22 (2022) 100589.
doi: 10.1016/j.mtphys.2021.100589
X. Song, T. Zhang, H. Yang, H. Ji, H. Gao, Nano Res. 14 (2021) 3810–3819.
doi: 10.1007/s12274-021-3668-5
Q. Li, Y. Liu, L. Yang, Y. Wang, B.J. Zhong, Colloid Interf. Sci. 585 (2021) 43–50.
doi: 10.1016/j.jcis.2020.11.084
B. Bwa, A. Jh, A. Lz, Mater. Today Commun. 27 (2021) 102312.
doi: 10.1016/j.mtcomm.2021.102312
D. Xie, S. Mei, Y. Xu, et al., ChemSusChem 14 (2021) 1404–1413.
doi: 10.1002/cssc.202002731
T. Shi, C. Zhao, C. Yin, H. Yin, K. Yu, Nanotechnology 31 (2020) 495406.
doi: 10.1088/1361-6528/abb490
X. Zhou, J. Tian, Q. Wu, J. Hu, C. Li, Energy Storage Mater. 24 (2020) 644–654.
doi: 10.1016/j.ensm.2019.06.009
C.P. Yang, Y.X. Yin, H. Ye, et al., ACS Appl. Mater. Interfaces 6 (2014)
8789–8795.
doi: 10.1021/am501627f
X. Yang, Z. Meng, T. Ca, W.Q. Han, ACS Appl. Mater. Interfaces 7 (2015) 25202–25210.
doi: 10.1021/acsami.5b08129
C. Jin, W. Zhang, Z. Zhuang, et al., J. Mater. Chem. A 5 (2017) 632–640.
doi: 10.1039/C6TA07620C
S. Zhang, D. Xu, C. Su, et al., Chem. Commun. 56 (2020) 810–813.
doi: 10.1039/c9cc07693j
S. Li, Q. Xiang, M.K. Aslam, et al., J. Electroanal. Chem. 850 (2019) 113408.
doi: 10.1016/j.jelechem.2019.113408
J.H. Ahn, G.K. Veerasubramani, S.M. Lee, T.S. You, D.W. Kim, J. Electrochem.
Soc. 166 (2019) A5201–A5209.
doi: 10.1149/2.0311903jes
Y. Zhang, G. Li, J. Wang, et al., Adv. Funct. Mater. 30 (2020) 2001165.
doi: 10.1002/adfm.202001165
J. Li, Y. Xu, Y. Zhang, C. He, T. Li, J. Mater. Chem. A 8 (2020) 19544–19554.
doi: 10.1039/d0ta06701f
H. Li, S. Ma, H. Cai, et al., Energy Storage Mater. 18 (2019) 338–348.
doi: 10.1016/j.ensm.2018.08.016
Y. Qiu, L. Fan, M. Wang, et al., ACS Nano 14 (2020) 16105–16113.
doi: 10.1021/acsnano.0c08056
C. Song, Q. Jin, W. Zhang, et al., J. Colloid Interf. Sci. 595 (2021) 51–58.
doi: 10.1016/j.jcis.2021.03.125
P. Zeng, C. Liu, X. Zhao, et al., ACS Nano 14 (2020) 11558–11569.
doi: 10.1021/acsnano.0c04054
Y. Zhu, G. Li, D. Luo, et al., Nano Energy 79 (2021) 105393.
doi: 10.1016/j.nanoen.2020.105393
J. He, A. Bhargav, A. Manthiram, ACS Nano 15 (2021) 8583–8591.
doi: 10.1021/acsnano.1c00446
G.M. Zhou, S.Y. Zhao, T.S. Wang, et al., Nano Lett. 20 (2020) 1252–1261.
doi: 10.1021/acs.nanolett.9b04719
C.G. Wang, H.W. Song, C.C. Yu, et al., J. Mater. Chem. A 8 (2020) 3421–3430.
doi: 10.1039/c9ta11680j
Z.Z. Liu, L. Zhou, Q. Ge, et al., ACS Appl. Mater. Interfaces 10 (2018)
19311–19317.
doi: 10.1021/acsami.8b03830
H. Wang, T. Zhou, D. Li, et al., ACS Appl. Mater. Interfaces 9 (2016) 4320–4325.
H. Zhang, M. Zou, W. Zhao, et al., ACS Nano 13 (2019) 3982–3991.
doi: 10.1021/acsnano.8b07843
J. Wei, H. Su, C. Qin, et al., J. Electroanal. Chem. 837 (2019) 184–190.
doi: 10.1016/j.jelechem.2019.02.034
J. Pu, Z. Shen, J. Zheng, et al., Nano Energy 37 (2017) 7–14.
doi: 10.1016/j.nanoen.2017.05.009
Z.Y. Wang, L. Wang, S. Liu, G.R. Li, X.P. Gao, Adv. Funct. Mater. 29 (2019)
1901051.
doi: 10.1002/adfm.201901051
X. Song, D. Tian, Y. Qiu, et al., Energy Storage Mater. 41 (2021) 248–254.
doi: 10.1016/j.ensm.2021.05.028
W. Ren, M. Wei, U.M. Muhammad, et al., ChemSusChem 11 (2018) 2695–2702.
doi: 10.1002/cssc.201801212
X. Zhang, Y. Tian, W. Lu, et al., ChemElectroChem 8 (2021) 3629–3636.
doi: 10.1002/celc.202100783
Y.X. Mo, J.X. Lin, Y.J. Wu, et al., ACS Appl. Mater. Interface 11 (2019)
4065–4073.
doi: 10.1021/acsami.8b20225
Z. Sun, S. Vijay, H.H. Heenen, et al., Adv. Energy Mater. 10 (2020) 1904010.
doi: 10.1002/aenm.201904010
X. Yang, G. Xia, J. Ye, et al., Appl. Surf. Sci. 22 (2021) 148632.
B. Guan, Y. Zhang, L. Fan, et al., ACS Nano 13 (2019) 6742–6750.
doi: 10.1021/acsnano.9b01329
W. Sun, Y. Li, S. Liu, et al., Chem. Eng. J. 416 (2021) 129166.
doi: 10.1016/j.cej.2021.129166
Z. Zhuang, Q. Kang, D. Wang, Y. Li, Nano Res. 13 (2020) 11.
doi: 10.1117/12.2570710
Z.Z. Du, X.J. Chen, W. Hu, et al., J. Am. Soc. Chem. 141 (2019) 3977–3985.
doi: 10.1021/jacs.8b12973
M. Wang, L. Fan, X. Sun, et al., ACS Energy Lett. 5 (2020) 3041–3050.
doi: 10.1021/acsenergylett.0c01564
Y. Wang, J. Shen, L.C. Xu, et al., Phys. Chem. Chem. Phys. 21 (2019) 18559.
doi: 10.1039/c9cp03419f
S. Liu, C. Zhang, W. Yue, X. Chen, X. Yang, ACS Appl. Energy Mater. 2 (2019)
5009–5018.
doi: 10.1021/acsaem.9b00680
R. Meng, Q. Deng, C. Peng, et al., Nano Today 35 (2020) 100991.
doi: 10.1016/j.nantod.2020.100991
J. He, A. Bhargav, A. Manthiram, Adv. Mater. 32 (2020) 2004741.
doi: 10.1002/adma.202004741
W. Yang, W. Yang, L. Dong, et al., J. Mater. Chem. A 7 (2019) 13103–13112.
doi: 10.1039/c9ta03227d
J. Liu, S. Xiao, L. Chang, et al., J. Energy Chem. 56 (2021) 343–352.
doi: 10.1080/08923973.2021.1913503
H.Y. Zhou, Z.Y. Sui, K. Amin, et al., ACS Appl. Mater. Interfaces 12 (2020)
13904–13913.
doi: 10.1021/acsami.9b23006
H. Shi, J. Qin, P. Lu, et al., Adv. Funct. Mater. 31 (2021) 2102314.
doi: 10.1002/adfm.202102314
J. Zhang, C. You, H. Lin, J. Wang, Energy Environ. Mater. 5 (2022) 731–750.
doi: 10.1002/eem2.12250
J.J. Yuan, Z. Huang, Y.Z. Song, M.Y. Li, H.Y. Li, Chem. Eng. J. 426 (2021) 128705.
doi: 10.1016/j.cej.2021.128705
D. Luo, Z. Zhang, G. Li, et al., ACS Nano 14 (2020) 4849–4860.
doi: 10.1021/acsnano.0c00799
Z. Qiao, Y. Zhang, Z. Meng, et al., Adv. Funct. Mater. 31 (2021) 2100970.
doi: 10.1002/adfm.202100970
C. Ma, Y. Zhang, Y. Feng, et al., Adv. Mater. 33 (2021) 2100171.
doi: 10.1002/adma.202100171
Y.J. Zhang, J. Qu, Q.Y. Ji, et al., Carbon 155 (2019) 353–360.
doi: 10.14336/ad.2018.0617
H. Pan, Z. Tan, H. Zhou, et al., J. Energy Chem. 39 (2019) 101–108.
doi: 10.1016/j.jechem.2019.01.019
H. Yang, Y. Yang, X. Zhang, et al., ACS Appl. Mater. Interfaces 11 (2019)
31860–31868.
doi: 10.1021/acsami.9b08962
Z. Zhao, Z. Yi, H. Li, R. Pathak, Z. Yang, et al., Nano Energy 81 (2021) 105621.
doi: 10.1016/j.nanoen.2020.105621
X. Li, X. Yang, J. Ye, G. Xia, Z. Fu, et al., Chem. Eng. J. 405 (2021) 126947.
doi: 10.1016/j.cej.2020.126947
Y. Wang, L. Yang, Y. Chen, et al., ACS Appl. Mater. Interfaces 12 (2020)
57859–57869.
doi: 10.1021/acsami.0c16631
B. Guan, X. Sun, Y. Zhang, et al., Chin. Chem. Lett. 32 (2021) 2249–2253.
doi: 10.1016/j.cclet.2020.12.051
Y. Hu, A. Hu, J. Wang, et al., J. Mater. Chem. A 9 (2021) 9771–9779.
doi: 10.1039/d1ta00798j
J.X. Lin, X.M. Qu, X.H. Wu, et al., ACS Sustainable Chem. Eng. 9 (2021) 1804–1813.
doi: 10.1021/acssuschemeng.0c08049
J. Wang, W. Cai, X. Mu, et al., Nano Res. 14 (2021) 4865–4877.
doi: 10.1007/s12274-021-3446-4
J. Xie, B. Li, H. Peng, et al., Adv. Mater. 31 (2019) 1903813.
doi: 10.1002/adma.201903813
Y. Zhang, X. Liu, L. Wu, et al., J. Mater. Chem. A 8 (2020) 2741–2751.
doi: 10.1039/c9ta12135h
P. Li, H. Lv, Z. Li, et al., Adv. Mater. 33 (2021) 2007803.
doi: 10.1002/adma.202007803
J. Cui, Z. Li, J. Li, et al., J. Mater. Chem. A 8 (2020) 1896–1903.
doi: 10.1039/c9ta11250b
Z. Chang, Y. Qiao, J. Wang, H. Deng, H.J. Zhou, J. Mater. Chem. A 9 (2021)
4870–4879.
doi: 10.1039/d0ta10495g
P. Wang, B. Xi, Z. Zhang, et al., Angew. Chem. Int. Ed. 60 (2021) 15563–15571.
doi: 10.1002/anie.202104053
Y. Tian, G. Li, Y. Zhang, et al., Adv. Mater. 32 (2019) 1904876.
C. Chao, Q. Jiang, H. Xu, et al., Nano Energy 76 (2020) 105033.
doi: 10.1016/j.nanoen.2020.105033
N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, J. Energy Chem. 42 (2020) 128–137.
K. Xu, X. Liang, L.L. Wang, et al., Rare Met. 40 (2021) 2810–2818.
doi: 10.1007/s12598-020-01686-w
X. Liu, G. Feng, Y. Li, et al., Ind. Eng. Chem. Res. 59 (2020) 7538–7545.
doi: 10.1021/acs.iecr.9b06962
P. Cheng, P. Guo, K. Sun, et al., J. Membrane Sci. 619 (2021) 118780.
doi: 10.1016/j.memsci.2020.118780
G. Yan, C. Xu, Z. Meng, et al., Nanoscale 12 (2020) 24368–24375.
doi: 10.1039/d0nr06429g
W. Tian, B. Xi, Y. Gu, et al., Nano Res. 13 (2020) 2673–2682.
doi: 10.1007/s12274-020-2909-3
Z. Luo, X. Qiu, C. Liu, et al., Nano Energy 79 (2021) 105507.
doi: 10.1016/j.nanoen.2020.105507
Z. Luo, C. Liu, Y. Tian, et al., Energy Storage Mater. 27 (2020) 124–132.
doi: 10.1016/j.ensm.2020.01.025
Y. Liu, Y. Wu, J. Zheng, et al., Nano Energy 82 (2021) 105723.
doi: 10.1016/j.nanoen.2020.105723
L. Xue, W. Chen, Y. Hu, et al., Nano Energy 79 (2021) 105481.
doi: 10.1016/j.nanoen.2020.105481
C. Cui, R. Zhang, C. Fu, et al., ACS Appl. Mater. Interfaces 13 (2021) 28252–28260.
doi: 10.1021/acsami.1c06289
K. Yan, Z. Lu, H.W. Lee, et al., Nat. Energy 1 (2016) 16010.
doi: 10.1038/nenergy.2016.10
S.S. Chi, Q. Wang, B. Han, et al., Nano Lett. 20 (2020) 2724–2732.
doi: 10.1021/acs.nanolett.0c00352
D. Xie, H.H. Li, W.Y. Diao, et al., Energy Storage Mater. 27 (2020) 124–132.
doi: 10.1016/j.ensm.2020.01.025
J. Wang, S. Yi, J. Liu, et al., ACS Nano 14 (2020) 9819–9831.
doi: 10.1021/acsnano.0c02241
M. Gao, W.Y. Zhou, Y.X. Mo, et al., Adv. Powder Mater. 1 (2022) 100006.
doi: 10.1016/j.apmate.2021.09.006
R. Deng, M. Wang, H. Yu, et al., Energy Environ. Mater. 5 (2022) 777–799.
doi: 10.1002/eem2.12257
M. Jana, R. Xu, X.B. Cheng, et al., Energy Environ. Sci. 13 (2020) 1049–1075.
doi: 10.1039/c9ee02049g
J. Mei, T. Liao, Z. Sun, Energy Environ. Mater. 4 (2021) 1–18.
doi: 10.1002/eem2.12163
Y. Cao, X. Meng, A. Li, Energy Environ. Mater. 4 (2021) 363–391.
doi: 10.1002/eem2.12132
M.A. Pope, I.A. Aksay, Adv. Energy Mater. 5 (2015) 1500124.
doi: 10.1002/aenm.201500124
S.F. Ng, M.Y.L. Lau, W.J. Ong, Adv. Mater. 33 (2021) 2008654.
doi: 10.1002/adma.202008654
M. Zhao, B. Li, X. Zhang, J. Huang, Q. Zhang, ACS Cent. Sci. 6 (2020) 1095–1104.
doi: 10.1021/acscentsci.0c00449
L. Cong, H. Xie, J. Li, Adv. Energy Mater. 7 (2017) 1601906.
doi: 10.1002/aenm.201601906
S.W. Song, L. Yu, X. Xiao, et al., Mater. Today Phys. 13 (2020) 100216.
doi: 10.1016/j.mtphys.2020.100216
Fan Wu , Shaoyang Wu , Xin Ye , Yurong Ren , Peng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851
Zhijia Zhang , Shihao Sun , Yuefang Chen , Yanhao Wei , Mengmeng Zhang , Chunsheng Li , Yan Sun , Shaofei Zhang , Yong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922
Xiaoxing Ji , Xiaojuan Li , Chenggang Wang , Gang Zhao , Hongxia Bu , Xijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388
Xinlin Zhang , Cheng Tang , Haitao Li , Jie Sun , Aijun Du , Minghong Wu , Haijiao Zhang . Robust assembly of TiO2 quantum dots onto Ti3C2Tx for excellent lithium storage capability. Chinese Chemical Letters, 2025, 36(6): 110088-. doi: 10.1016/j.cclet.2024.110088
Na Li , Wenxue Wang , Peng Wang , Zhanying Sun , Xinlong Tian , Xiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731
Yajun Hou , Chuanzheng Zhu , Qiang Wang , Xiaomeng Zhao , Kun Luo , Zongshuai Gong , Zhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697
Yongjian Li , Xinyu Zhu , Chenxi Wei , Youyou Fang , Xinyu Wang , Yizhi Zhai , Wenlong Kang , Lai Chen , Duanyun Cao , Meng Wang , Yun Lu , Qing Huang , Yuefeng Su , Hong Yuan , Ning Li , Feng Wu . Unraveling the chemical and structural evolution of novel Li-rich layered/rocksalt intergrown cathode for Li-ion batteries. Chinese Chemical Letters, 2024, 35(12): 109536-. doi: 10.1016/j.cclet.2024.109536
Ruofan Yin , Zhaoxin Guo , Rui Liu , Xian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643
Fangling Cui , Zongjie Hu , Jiayu Huang , Xiaoju Li , Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Chunru Zhao , Yi Liu , Shilong Li , Xiang Wu , Jinghai Liu . PVP decorated H3.78V6O13 microspheres assembled by nanosheets for aqueous zinc ion batteries at variable work temperature. Chinese Chemical Letters, 2025, 36(6): 110185-. doi: 10.1016/j.cclet.2024.110185
Tong Peng , Yupeng Xing , Lan Mu , Chenggang Wang , Ning Zhao , Wenbo Liao , Jianlei Li , Gang Zhao . Recent research on aqueous zinc-ion batteries and progress in optimizing full-cell performance. Chinese Chemical Letters, 2025, 36(6): 110039-. doi: 10.1016/j.cclet.2024.110039
Ting Hu , Yuxuan Guo , Yixuan Meng , Ze Zhang , Ji Yu , Jianxin Cai , Zhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603
Xiangyue Li , Dexin Zhu , Kunmin Pan , Xiaoye Zhou , Jiaming Zhu , Yingxue Wang , Yongpeng Ren , Hong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Runjing Xu , Xin Gao , Ya Chen , Xiaodong Chen , Lifeng Cui . Research status and prospect of rechargeable magnesium ion batteries cathode materials. Chinese Chemical Letters, 2024, 35(11): 109852-. doi: 10.1016/j.cclet.2024.109852
Yue Wang , Caixia Xu , Xingtao Tian , Siyu Wang , Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167