Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater
-
* Corresponding authors.
E-mail addresses: yxz@hnu.edu.cn (X. Yuan), wangh@hnu.edu.cn (H. Wang).
Citation:
Zichen Shangguan, Xingzhong Yuan, Longbo Jiang, Yanlan Zhao, Lei Qin, Xuerong Zhou, Yan Wu, Jia Wei Chew, Hou Wang. Zeolite-based Fenton-like catalysis for pollutant removal and reclamation from wastewater[J]. Chinese Chemical Letters,
;2022, 33(11): 4719-4731.
doi:
10.1016/j.cclet.2022.01.001
P.Y. Nguyen, G. Carvalho, M.A.M. Reis, A. Oehmen, Water. Res. 188 (2021) 116446.
doi: 10.1016/j.watres.2020.116446
A.K. Priya, L. Gnanasekaran, S. Rajendran, J. Qin, Y. Vasseghian, Environ. Res. (2021) 112298.
J. Guo, X. Li, J. Liang, et al., Coord. Chem. Rev. 443 (2021) 214033.
doi: 10.1016/j.ccr.2021.214033
H. Fu, C.C. Wang, W. Liu, Chin. Chem. Lett. 33 (2022) 1647–1649.
doi: 10.1016/j.cclet.2021.08.065
S. Zhou, Y. Wang, K. Zhou, et al., Chin. Chem. Lett. 32 (2021) 2179–2182.
doi: 10.1016/j.cclet.2020.12.002
Z. Fan, S. Yang, Q. Zhu, X. Zhu, Chemosphere (2021) 132681.
B. Akkoyunlu, S. Daly, E. Casey, Bioresour. Technol. 341 (2021) 125793.
doi: 10.1016/j.biortech.2021.125793
H. Luo, Y. Zeng, Y. Cheng, D. He, X. Pan, Sci. Total. Environ. 703 (2020) 135468.
doi: 10.1016/j.scitotenv.2019.135468
H. Luo, Y. Zeng, D. He, X. Pan, Chem. Eng. J. 407 (2021) 127191.
doi: 10.1016/j.cej.2020.127191
D. Ma, H. Yi, C. Lai, et al., Chemosphere 275 (2021) 130104.
doi: 10.1016/j.chemosphere.2021.130104
W. Pronk, A. Ding, E. Morgenroth, et al., Water. Res. 149 (2019) 553–565.
doi: 10.1016/j.watres.2018.11.062
H. Wang, C. Qian, J. Liu, et al., J. Am. Chem. Soc. 142 (2020) 4862–4871.
doi: 10.1021/jacs.0c00054
H. Wang, Y. Wu, X.Z. Yuan, et al., Adv. Mater. 30 (2018) 1704561.
doi: 10.1002/adma.201704561
D. Kanakaraju, B.D. Glass, M. Oelgemoller, J. Environ. Manage. 219 (2018) 189–207.
doi: 10.1016/j.jenvman.2018.04.103
D.B. Miklos, C. Remy, M. Jekel, et al., Water. Res. 139 (2018) 118–131.
doi: 10.1016/j.watres.2018.03.042
D. Liang, N. Li, J. An, et al., Sci. Total. Environ. 753 (2021) 141809.
doi: 10.1016/j.scitotenv.2020.141809
J. Guo, L. Jiang, J. Liang, et al., Chemosphere 270 (2021) 128651.
doi: 10.1016/j.chemosphere.2020.128651
Y. Zhao, X. Yuan, X. Li, L. Jiang, H. Wang, J. Hazard. Mater. 409 (2021) 124893.
doi: 10.1016/j.jhazmat.2020.124893
W. Xiong, W. Cui, R. Li, et al., Environ. Sci. Ecotechnol. 1 (2020) 100005.
doi: 10.1016/j.ese.2019.100005
H. Che, X. Gao, J. Chen, et al., Angew. Chem. Int. Ed. 60 (2021) 25546–25550.
doi: 10.1002/anie.202111769
J. Tang, J. Wang, Environ. Sci. Technol. 52 (2018) 5367–5377.
doi: 10.1021/acs.est.8b00092
F. Pardo, J.M. Rosas, A. Santos, A. Romero, Environ. Sci. Pollut. Res. Int. 21 (2014) 12198–12207.
doi: 10.1007/s11356-014-2997-2
Y. Zhu, R. Zhu, Y. Xi, et al., Chem. Eng. J. 346 (2018) 567–577.
doi: 10.1016/j.cej.2018.04.073
N. Wang, T. Zheng, G. Zhang, P. Wang, J. Environ. Chem. Eng. 4 (2016) 762–787.
doi: 10.1016/j.jece.2015.12.016
S. Giannakis, M.I. Polo López, D. Spuhler, et al., Appl. Catal. B: Environ. 199 (2016) 199–223.
doi: 10.1016/j.apcatb.2016.06.009
S. Lu, L. Liu, H. Demissie, G. An, D. Wang, Environ. Int. 146 (2021) 106273.
doi: 10.1016/j.envint.2020.106273
P.V. Nidheesh, RSC Adv. 5 (2015) 40552–40577.
doi: 10.1039/C5RA02023A
K. Toda, T. Tanaka, Y. Tsuda, et al., J. Hazard. Mater. 278 (2014) 426–432.
doi: 10.1016/j.jhazmat.2014.06.033
R. Yang, Q. Peng, B. Yu, Y. Shen, H. Cong, Sep. Purif. Technol. 267 (2021) 118620.
doi: 10.1016/j.seppur.2021.118620
W. Xie, Z. Huang, F. Zhou, et al., J. Clean. Prod. 313 (2021) 127754.
doi: 10.1016/j.jclepro.2021.127754
P. Su, X. Du, Y. Zheng, et al., Chem. Eng. J. (2021) 133597.
J. Zhang, S. Qiu, H. Feng, et al., Chem. Eng. J. 428 (2022) 131403.
doi: 10.1016/j.cej.2021.131403
N. Geng, W. Chen, H. Xu, et al., Ultrason. Sonochem. 72 (2021) 105411.
doi: 10.1016/j.ultsonch.2020.105411
T. Yang, D. Yu, D. Wang, et al., Appl. Catal. B: Environ. 286 (2021) 119859.
doi: 10.1016/j.apcatb.2020.119859
W. Xu, W. Xue, H. Huang, et al., Appl. Catal. B: Environ. 291 (2021) 120129.
doi: 10.1016/j.apcatb.2021.120129
X. Nie, G. Li, S. Li, et al., Appl. Catal. B: Environ. 300 (2022) 120734.
doi: 10.1016/j.apcatb.2021.120734
H. Wang, C. Zhang, X. Zhang, et al., Chem. Eng. J. 429 (2022) 132445.
doi: 10.1016/j.cej.2021.132445
S. Yang, W. Yu, B. Du, et al., Chem. Eng. J. 421 (2021) 129967.
doi: 10.1016/j.cej.2021.129967
E.G. Garrido-Ramírez, B.K.G. Theng, M.L. Mora, Appl. Clay. Sci. 47 (2010) 182–192.
doi: 10.1016/j.clay.2009.11.044
A.D. Bokare, W. Choi, J. Hazard. Mater. 275 (2014) 121–135.
doi: 10.1016/j.jhazmat.2014.04.054
S. Yuan, X. Mao, A.N. Alshawabkeh, Environ. Sci. Technol. 46 (2012) 3398–3405.
doi: 10.1021/es204546u
Q.Q. Cai, M.Y. Wu, L.M. Hu, et al., Water. Res. 183 (2020) 116119.
doi: 10.1016/j.watres.2020.116119
M.L. Rache, A.R. García, H.R. Zea, et al., Appl. Catal. B: Environ. 146 (2014) 192–200.
doi: 10.1016/j.apcatb.2013.04.028
X.J. Guo, Y.N. Xu, F. Zha, X.H. Tang, H.F. Tian, Appl. Surf. Sci. 530 (2020) 147144.
doi: 10.1016/j.apsusc.2020.147144
S.S. Xin, G.C. Liu, X.H. Ma, et al., Appl. Catal. B: Environ. 280 (2021) 119386.
doi: 10.1016/j.apcatb.2020.119386
M.M. Arimi, Prog. Nat. Sci: Mater. 27 (2017) 275–282.
doi: 10.1016/j.pnsc.2017.02.001
K. Stanciakova, B.M. Weckhuysen, Trends. Chem. 3 (2021) 456–468.
doi: 10.1016/j.trechm.2021.03.004
C. Martinez-Macias, P. Serna, B.C. Gates, ACS Catal 5 (2015) 5647–5656.
doi: 10.1021/acscatal.5b00995
J. He, C. Lai, L. Qin, et al., Chemosphere 256 (2020) 127083.
doi: 10.1016/j.chemosphere.2020.127083
N. Jiang, R. Shang, S.G.J. Heijman, L.C. Rietveld, Water. Res. 144 (2018) 145–161.
doi: 10.1016/j.watres.2018.07.017
G. Hu, J. Yang, X. Duan, et al., Chem. Eng. J. 417 (2021) 129209.
doi: 10.1016/j.cej.2021.129209
M. Shamzhy, M. Opanasenko, P. Concepcion, A. Martinez, Chem. Soc. Rev. 48 (2019) 1095–1149.
doi: 10.1039/C8CS00887F
J.H. Hack, J.P. Dombrowski, X. Ma, et al., J. Am. Chem. Soc. 143 (2021) 10203–10213.
doi: 10.1021/jacs.1c03205
A.N. Soon, B.H. Hameed, Desalination 269 (2011) 1–16.
doi: 10.1016/j.desal.2010.11.002
R. Gonzalez-Olmos, F.D. Kopinke, K. Mackenzie, A. Georgi, Environ. Sci. Technol. 47 (2013) 2353–2360.
doi: 10.1021/es303885y
S. Mitra, V.K. Sharma, R. Mukhopadhyay, Rep. Prog. Phys. 84 (2021) 49.
A. Ahmadi Zahrani, B. Ayati, J. Electroanal. Chem. 873 (2020) 114456.
doi: 10.1016/j.jelechem.2020.114456
P. Munnik, P.E. de Jongh, K.P. de Jong, Chem. Rev. 115 (2015) 6687–6718.
doi: 10.1021/cr500486u
Y. Yan, S. Jiang, H. Zhang, RSC Adv. 6 (2016) 3850–3859.
doi: 10.1039/C5RA19832A
L. Singh, P. Rekha, S. Chand, Sep. Purif. Technol. 170 (2016) 321–336.
doi: 10.1016/j.seppur.2016.06.059
Q. Zhu, J. Yan, Q. Dai, et al., J. Hazard. Mater. 385 (2020) 121581.
doi: 10.1016/j.jhazmat.2019.121581
X. Wang, X. Zhang, Y. Zhang, et al., J. Mater. Chem. A 8 (2020) 15513–15546.
doi: 10.1039/D0TA04541A
W. Yu, M.D. Porosoff, J.G. Chen, Chem. Rev. 112 (2012) 5780–5817.
doi: 10.1021/cr300096b
J.W. van Honschoten, N. Brunets, N.R. Tas, Chem. Soc. Rev. 39 (2010) 1096–1114.
doi: 10.1039/b909101g
Y. Yan, S. Jiang, H. Zhang, Sep. Purif. Technol. 133 (2014) 365–374.
doi: 10.1016/j.seppur.2014.07.014
Y. Chai, W. Shang, W. Li, et al., Adv. Sci. (Weinh). 6 (2019) 1900299.
doi: 10.1002/advs.201900299
M. Romero-Sáez, D. Divakar, A. Aranzabal, J.R. González-Velasco, J.A. González-Marcos, Appl. Catal. B: Environ. 180 (2016) 210–218.
doi: 10.1016/j.apcatb.2015.06.027
Y. Wu, H. Zhang, Y. Yan, J. Environ. Manage. 270 (2020) 110907.
doi: 10.1016/j.jenvman.2020.110907
Y. Wu, H. Zhang, Y. Yan, Chem. Eng. J. 380 (2020) 122466.
doi: 10.1016/j.cej.2019.122466
C. Zhou, H. Zhang, Y. Yan, X. Zhang, Micropor. Mwsopor. Mat. 248 (2017) 139–148.
doi: 10.1016/j.micromeso.2017.04.020
X. Zhou, H. Chen, X. Cui, et al., Appl. Catal. A 451 (2013) 112–119.
doi: 10.1016/j.apcata.2012.11.023
S. Deng, X. Zhang, G. Lv, et al., J. Sol-Gel. Sci. Technol. 91 (2019) 54–62.
doi: 10.1007/s10971-019-05030-2
L. Luo, C. Dai, A. Zhang, et al., RSC Adv. 6 (2016) 32789–32797.
doi: 10.1039/C6RA03552C
Z. Diao, L. Cheng, W. Guo, et al., Front. Chem. Sci. Eng. 15 (2021) 643–653.
doi: 10.1007/s11705-020-1972-3
T.X. Huong Le, M. Drobek, M. Bechelany, et al., Micropor. Mwsopor. Mat. 278 (2019) 64–69.
doi: 10.1016/j.micromeso.2018.11.021
N. Farhadi, T. Tabatabaie, B. Ramavandi, F. Amiri, Ultrason. Sonochem. 67 (2020) 105122.
doi: 10.1016/j.ultsonch.2020.105122
H. Wang, Y. Wu, M. Feng, et al., Water. Res. 144 (2018) 215–225.
doi: 10.1016/j.watres.2018.07.025
S. Yu, J. Sun, Y. Shi, et al., Environ. Sci. Ecotechnol. 5 (2021) 100077.
doi: 10.1016/j.ese.2020.100077
M. Ahmad, A.R.A. Aziz, S.A. Mazari, A.G. Baloch, S. Nizamuddin, Environ. Sci. Pollut. Res. Int. 27 (2020) 26239–26248.
doi: 10.1007/s11356-020-08940-9
H. Ramirez, M.M.G. Nunez, A.B. Bogoya, et al., Environ. Sci. Pollut. Res. Int. 26 (2019) 4277–4287.
doi: 10.1007/s11356-018-3315-1
S.L. Hailu, B.U. Nair, M. Redi-Abshiro, et al., Chin. J. Catal. 37 (2016) 135–145.
doi: 10.1016/S1872-2067(15)61010-5
W. Li, G. Li, C. Jin, X. Liu, J. Wang, J. Mater. Chem. A 3 (2015) 14786–14793.
doi: 10.1039/C5TA02662H
Q. Guo, G. Li, D. Liu, Y. Wei, Solid. State. Sci. 91 (2019) 89–95.
doi: 10.1016/j.solidstatesciences.2019.03.016
D.J. Perisic, V. Gilja, M.N. Stankov, et al., J. Photochem. Photobiol. A: Chem. 321 (2016) 238–247.
doi: 10.1016/j.jphotochem.2016.01.030
O. Makhotkina, E. Kuznetsova, S. Preis, Appl. Catal. B: Environ. 68 (2006) 85–91.
doi: 10.1016/j.apcatb.2006.07.008
J. Zhu, X. Meng, F. Xiao, Front. Chem. Sci. Eng. 7 (2013) 233–248.
doi: 10.1007/s11705-013-1329-2
K.A. Sashkina, V.S. Labko, N.A. Rudina, V.N. Parmon, E.V. Parkhomchuk, J. Catal. 299 (2013) 44–52.
doi: 10.1016/j.jcat.2012.11.028
D.J. de Ridder, J.Q.J.C. Verberk, S.G.J. Heijman, G.L. Amy, J.C. van Dijk, Sep. Purif. Technol. 89 (2012) 71–77.
doi: 10.1016/j.seppur.2012.01.025
X. Yang, X. Cheng, A.A. Elzatahry, et al., Chin. Chem. Lett. 30 (2019) 324–330.
doi: 10.1016/j.cclet.2018.06.026
E. Güvenç, M.G. Ahunbay, J. Phys. Chem. C 116 (2012) 21836–21843.
doi: 10.1021/jp3067052
Gupta Ghaffari, Kim Bae, Catalysts 9 (2019) 859.
doi: 10.3390/catal9100859
K.A. Sashkina, E.V. Parkhomchuk, N.A. Rudina, V.N. Parmon, Micropor. Mwsopor. Mat. 189 (2014) 181–188.
doi: 10.1016/j.micromeso.2013.11.033
J. He, X. Yang, B. Men, D. Wang, J. Environ. Sci. (China) 39 (2016) 97–109.
doi: 10.1016/j.jes.2015.12.003
A. Cihanoglu, G. Gündüz, M. Dükkancı, Appl. Catal. B: Environ. 165 (2015) ˘ 687–699.
doi: 10.1016/j.apcatb.2014.10.073
M. Wang, G. Fang, P. Liu, et al., Appl. Catal. B: Environ. 188 (2016) 113–122.
doi: 10.1016/j.apcatb.2016.01.071
M. Aleksic, H. Kušić, N. Koprivanac, D. Leszczynska, A.L. Božić, Desalination 257 (2010) 22–29.
doi: 10.1016/j.desal.2010.03.016
R. Gonzalez-Olmos, F. Holzer, F.D. Kopinke, A. Georgi, Appl. Catal. A 398 (2011) 44–53.
doi: 10.1016/j.apcata.2011.03.005
M. Hartmann, S. Kullmann, H. Keller, J. Mater. Chem. 20 (2010) 9002.
doi: 10.1039/c0jm00577k
L. Qin, Z. Wang, Y. Fu, et al., J. Hazard. Mater. 414 (2021) 125448.
doi: 10.1016/j.jhazmat.2021.125448
S.S. Lin, M.D. Gurol, Environ. Sci. Technol. 32 (1998) 1417–1423.
doi: 10.1021/es970648k
B. Shi, C. Zhao, Y. Ji, J. Shi, H. Yang, Appl. Surf. Sci. 508 (2020) 145298.
doi: 10.1016/j.apsusc.2020.145298
R. Davarnejad, B. Soofi, F. Farghadani, R. Behfar, Environ. Technol. Inno. 11 (2018) 308–320.
doi: 10.1016/j.eti.2018.06.011
F. Tavasol, T. Tabatabaie, B. Ramavandi, F. Amiri, Ultrason. Sonochem. 65 (2020) 105062.
doi: 10.1016/j.ultsonch.2020.105062
S. Mompelat, B. Le Bot, O. Thomas, Environ. Int. 35 (2009) 803–814.
doi: 10.1016/j.envint.2008.10.008
F. Velichkova, H. Delmas, C. Julcour, B. Koumanova, AICHE J. 63 (2017) 669–679.
doi: 10.1002/aic.15369
S. Adityosulindro, C. Julcour, L. Barthe, J. Environ. Chem. Eng. 6 (2018) 5920–5928.
doi: 10.1016/j.jece.2018.09.007
Y. Lan, L. Barthe, A. Azais, C. Causserand, Sep. Purif. Technol. 231 (2020) 115920.
doi: 10.1016/j.seppur.2019.115920
S. Buttha, S. Youngme, J. Wittayakun, S. Loiha, Mol. Catal. 461 (2018) 26–33.
doi: 10.1016/j.mcat.2018.09.016
Z. Han, F. Zhang, X. Zhao, Micropor. Mwsopor. Mat. 290 (2019) 109679.
doi: 10.1016/j.micromeso.2019.109679
S. Zhou, B. Shao, W. Jin, et al., Appl. Catal. A 575 (2019) 159–169.
doi: 10.1016/j.apcata.2019.02.022
I. Kuźniarska-Biernacka, M.M.M. Raposo, R. Batista, et al., Micropor. Mwsopor. Mat. 227 (2016) 272–280.
doi: 10.1016/j.micromeso.2016.03.003
C. Shen, J. Ma, W. Liu, Y. Wen, S. Rashid, Chemosphere 161 (2016) 446–453.
doi: 10.1016/j.chemosphere.2016.07.038
K.M. Valkaj, A. Katović, S. Zrnčevi ć, Ind. Eng. Chem. Res. 50 (2011) 4390–4397. ´
doi: 10.1021/ie102223g
M. Dükkancı, G. Gündüz, S. Yılmaz, R.V. Prihod'ko, J. Hazard. Mater. 181 (2010) 343–350.
doi: 10.1016/j.jhazmat.2010.05.016
R. Salazar, E. Brillas, I. Sirés, Appl. Catal. B: Environ. 115-116 (2012) 107–116.
doi: 10.1016/j.apcatb.2011.12.026
A.N. Pham, G. Xing, C.J. Miller, T.D. Waite, J. Catal. 301 (2013) 54–64.
doi: 10.1016/j.jcat.2013.01.025
X. Liang, S. Zhu, Y. Zhong, Appl. Catal. B: Environ. 97 (2010) 151–159.
doi: 10.1016/j.apcatb.2010.03.035
L. Singh, P. Rekha, S. Chand, J. Environ. Manage. 215 (2018) 1–12.
doi: 10.1016/j.jenvman.2018.03.021
X. Li, S. Zeng, X. Qu, et al., Chem. Res. Chin. Univ. 35 (2019) 363–369.
doi: 10.1007/s40242-019-8362-8
S.O. Ganiyu, M. Zhou, C.A. Martínez-Huitle, Appl. Catal. B: Environ. 235 (2018) 103–129.
doi: 10.1016/j.apcatb.2018.04.044
E. Brillas, S. Garcia-Segura, Sep. Purif. Technol. 237 (2020) 116337.
doi: 10.1016/j.seppur.2019.116337
S. Navalon, M. Alvaro, H. Garcia, Appl. Catal. B: Environ. 99 (2010) 1–26.
doi: 10.1016/j.apcatb.2010.07.006
L. Jiang, X. Yuan, G. Zeng, et al., J. Colloid. Interface. Sci. 536 (2019) 17–29.
doi: 10.1016/j.jcis.2018.10.033
L. Jiang, X. Yuan, G. Zeng, et al., Appl. Catal. B: Environ. 221 (2018) 715–725.
doi: 10.1016/j.apcatb.2017.09.059
J. Zhang, M. Si, L. Jiang, et al., Chem. Eng. J. 410 (2021) 128336.
doi: 10.1016/j.cej.2020.128336
J. Zhong, H. Jiang, Z. Wang, et al., Environ. Sci. Ecotechnol. 5 (2021) 100079.
doi: 10.1016/j.ese.2021.100079
P. Manickam-Periyaraman, J.C. Espinosa, B. Ferrer, et al., Chem. Eng. J. 393 (2020) 11.
S.Q. Huang, Y.G. Xu, T. Zhou, et al., Appl. Catal. B: Environ. 225 (2018) 40–50.
doi: 10.1016/j.apcatb.2017.11.045
Y. Ahmed, Z. Yaakob, P. Akhtar, Catal. Sci. Technol. 6 (2016) 1222–1232.
doi: 10.1039/C5CY01494H
G.K. Zhang, Y.Y. Gao, Y.L. Zhang, Y.D. Guo, Environ. Sci. Technol. 44 (2010) 6384–6389.
doi: 10.1021/es1011093
A. Nezamzadeh-Ejhieh, S. Khorsandi, J. Ind. Eng. Chem. 20 (2014) 937–946.
doi: 10.1016/j.jiec.2013.06.026
T.T.N. Phan, A.N. Nikoloski, P.A. Bahri, D. Li, J. Environ. Manage. 233 (2019) 471–480.
doi: 10.1016/j.jenvman.2018.12.051
G. Gao, Q. Zhang, Z. Hao, C.D. Vecitis, Environ. Sci. Technol. 49 (2015) 2375–2383.
doi: 10.1021/es505679e
W.L. Jiang, X. Xia, J.L. Han, et al., Environ. Sci. Technol. 52 (2018) 9972–9982.
doi: 10.1021/acs.est.8b01894
C. Trellu, N. Oturan, F.K. Keita, et al., Environ. Sci. Technol. 52 (2018) 7450–7457.
doi: 10.1021/acs.est.8b01554
Y. Zhu, R. Zhu, Y. Xi, et al., Appl. Catal. B: Environ. 255 (2019) 117739.
doi: 10.1016/j.apcatb.2019.05.041
S.O. Ganiyu, T.X. Huong Le, M. Bechelany, et al., J. Mater. Chem. A 5 (2017) 3655–3666.
doi: 10.1039/C6TA09100H
I. Ouiriemmi, A. Karrab, N. Oturan, et al., J. Electroanal. Chem. 797 (2017) 69–77.
doi: 10.1016/j.jelechem.2017.05.028
M.H. Zhang, H. Dong, L. Zhao, D.X. Wang, D. Meng, Sci. Total. Environ. 670 (2019) 110–121.
doi: 10.1016/j.scitotenv.2019.03.180
S. Qiu, L. Yu, D. Tang, et al., Ind. Eng. Chem. Res. 57 (2018) 4907–4915.
doi: 10.1021/acs.iecr.7b05380
T. Sruthi, R. Gandhimathi, S.T. Ramesh, P.V. Nidheesh, Chemosphere 210 (2018) 38–43.
doi: 10.1016/j.chemosphere.2018.06.172
T.X. Huong Le, M. Bechelany, M. Cretin, Carbon 122 (2017) 564–591.
doi: 10.1016/j.carbon.2017.06.078
T.X.H. Le, M. Bechelany, J. Champavert, M. Cretin, RSC Adv. 5 (2015) 42536–42539.
doi: 10.1039/C5RA04811G
T. Torres-Blancas, G. Roa-Morales, F. Ureña-Núñez, et al., J. Taiwan Inst. Chem. E. 74 (2017) 225–232.
doi: 10.1016/j.jtice.2017.02.025
H. Jin, X. Tian, Y. Nie, Z. Zhou, C. Yang, Y. Li, L. Lu, Environ. Sci. Technol. 51 (2017) 12699–12706.
doi: 10.1021/acs.est.7b04503
W.J. Liu, T.T. Qian, H. Jiang, Chem. Eng. J. 236 (2014) 448–463.
doi: 10.1016/j.cej.2013.10.062
L. Xu, L. Zhao, Y. Mao, Z. Zhou, D. Wu, Sep. Purif. Technol. 253 (2020) 117550.
doi: 10.1016/j.seppur.2020.117550
L. Luo, C. Dai, A. Zhang, J. Wang, M. Liu, C. Song, X. Guo, Catal. Sci. Technol. 5 (2015) 3159–3165.
doi: 10.1039/C5CY00242G
C. Dai, A. Zhang, L. Luo, et al., Catal. Today 297 (2017) 335–343.
doi: 10.1016/j.cattod.2017.02.001
L. Huang, L. Zhang, D. Li, et al., J. Environ. Chem. Eng. 8 (2020) 103933.
doi: 10.1016/j.jece.2020.103933
X. Li, Z. Tian, K. Liang, Y. Wang, J. Photochem. Photobiol. A: Chem. 379 (2019) 79–87.
doi: 10.1016/j.jphotochem.2019.04.032
A.A. Zahrani, B. Ayati, Chemosphere 256 (2020) 127049.
doi: 10.1016/j.chemosphere.2020.127049
Y. Zhong, X. Liang, W. Tan, et al., J. Mol. Catal. A: Chem. 372 (2013) 29–34.
doi: 10.1016/j.molcata.2013.01.038
N. Liu, H. Xie, J. Wei, et al., J. Environ. Chem. Eng. 7 (2019) 102930.
doi: 10.1016/j.jece.2019.102930
A. Changduang, T. Limpiyakorn, P. Punyapalakul, P. Thayanukul, J. Environ. Manage. 298 (2021) 113435.
doi: 10.1016/j.jenvman.2021.113435
X. Wang, W. Liu, J. Qin, L. Lei, Ind. Eng. Chem. Res. 59 (2020) 2192–2202.
doi: 10.1021/acs.iecr.9b06091
M.V. Morales, K. Góra-Marek, H. Musch, et al., Appl. Catal. A 562 (2018) 215–222.
doi: 10.1016/j.apcata.2018.06.008
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Menglu Guo , Ying-Qi Song , Junfei Cheng , Guoqiang Dong , Xun Sun , Chunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392
Yunlong Sun , Wei Ding , Yanhao Wang , Zhening Zhang , Ruyun Wang , Yinghui Guo , Zhiyuan Gao , Haiyan Du , Dong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Chu Chu , Yuancheng Qin , Cailing Ni , Jianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616
Ming-Zhen Li , Yang Zhang , Kun Li , Ya-Nan Shang , Yi-Zhen Zhang , Yu-Jiao Kan , Zhi-Yang Jiao , Yu-Yuan Han , Xiao-Qiang Cao . In situ regeneration of catalyst for Fenton-like degradation by photogenerated electron transportation: Characterization, performance and mechanism comparison. Chinese Chemical Letters, 2025, 36(1): 109885-. doi: 10.1016/j.cclet.2024.109885
Tianyao He , Gan Li , Xiaoqiang Xie , Dong Han , Yunyue Leng , Qiuli Zhang , Wenming Liu , Guobo Li , Hongxiang Zhang , Shan Huang , Ting Huang , Honggen Peng . Design of highly active meso-zeolite enveloping Pt–Ni bimetallic catalysts for degradation of toluene. Chinese Chemical Letters, 2025, 36(4): 110137-. doi: 10.1016/j.cclet.2024.110137
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Hui Wang , Haodong Ji , Dandan Zhang , Xudong Yang , Hanchun Chen , Chunqian Jiang , Weiliang Sun , Jun Duan , Wen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200
Mengmeng Ao , Jian Wei , Chuan-Shu He , Heng Zhang , Zhaokun Xiong , Yonghui Song , Bo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882
Min Chen , Boyu Peng , Xuyun Guo , Ye Zhu , Hanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Haibo Ye , Qianyu Li , Juan Li , Didi Li , Zhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385