Construction of a low-valent thiolate-bridged dicobalt platform and its reactivity toward hydrogen activation and evolution
-
* Corresponding author.
E-mail address: yangdw@dlut.edu.cn (D. Yang).
Citation:
Tao Mei, Dawei Yang, Linan Su, Baomin Wang, Jingping Qu. Construction of a low-valent thiolate-bridged dicobalt platform and its reactivity toward hydrogen activation and evolution[J]. Chinese Chemical Letters,
;2022, 33(5): 2477-2480.
doi:
10.1016/j.cclet.2021.11.014
K. Gao, N. Yoshikai, Acc. Chem. Res.47 (2014) 1208–1219.
doi: 10.1021/ar400270x
T.J. Hadlington, M. Driess, C. Jones, Chem. Soc. Rev. 47 (2018) 4176–4197.
doi: 10.1039/C7CS00649G
S. Yoshioka, S. Saito, Chem. Commun. 54 (2018) 13319–13330.
doi: 10.1039/c8cc06543h
C. -. S. Cao, Y. Shi, H. Xu, B. Zhao, Coord. Chem. Rev. 365 (2018) 122–144.
doi: 10.1016/j.ccr.2018.03.017
Y. Liu, J. Cheng, L. Deng, Acc. Chem. Res. 53 (2020) 244–254.
doi: 10.1021/acs.accounts.9b00492
J.C. Fontecilla-Camps, A. Volbeda, C. Cavazza, Y. Nicolet, Chem. Rev. 107 (2007) 4273–4303.
doi: 10.1021/cr050195z
W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 114 (2014) 4081–4148.
doi: 10.1021/cr4005814
J.L. Dempsey, B.S. Brunschwig, J.R. Winkler, H.B. Gray, Acc. Chem. Res. 42 (2009) 1995–2004.
doi: 10.1021/ar900253e
N. Queyriaux, R.T. Jane, J. Massin, V. Artero, M. Chavarot-Kerlidou, Coord. Chem. Rev. 304-305 (2015) 3–19.
doi: 10.1016/j.ccr.2015.03.014
D.Z. Zee, T. Chantarojsiri, J.R. Long, C.J. Chang, Acc. Chem. Res. 48 (2015) 2027–2036.
doi: 10.1021/acs.accounts.5b00082
N.K. Szymczak, L.A. Berben, J.C. Peters, Chem. Commun. (2009) 6729–6731.
doi: 10.1039/b913946j
S. Mandal, S. Shikano, Y. Yamada, et al., J. Am. Chem. Soc. 135 (2013) 15294–15297.
doi: 10.1021/ja408080z
S. Kal, A.S. Filatov, P.H. Dinolfo, Inorg. Chem. 53 (2014) 7137–7145.
doi: 10.1021/ic500121f
C. Di Giovanni, C. Gimbert-Surinach, M. Nippe, et al., Chem. Eur. J. 22 (2016) 361–369.
doi: 10.1002/chem.201503567
P. Tong, W. Xie, D. Yang, et al., Dalton Trans. 45 (2016) 18559–18565.
doi: 10.1039/C6DT03275C
K.K. Kpogo, S. Mazumder, D. Wang, et al., Chem. -Eur. J. 23 (2017) 9272–9279.
doi: 10.1002/chem.201701982
Y. Zhang, P. Tong, D. Yang, et al., Chem. Commun. 53 (2017) 9854–9857.
doi: 10.1039/C7CC05092E
C. Wang, J. Li, D. Yang, et al., Eur. J. Inorg. Chem. (2020) 2757–2764.
doi: 10.1002/ejic.202000369
A.D. Wilson, R.H. Newell, M.J. McNevin, et al., J. Am. Chem. Soc. 128 (2006) 358–366.
doi: 10.1021/ja056442y
Y. Maenaka, T. Suenobu, S. Fukuzumi, J. Am. Chem. Soc. 134 (2012) 367–374.
doi: 10.1021/ja207785f
A.Z. Haddad, D. Kumar, K. Ouch Sampson, et al., J. Am. Chem. Soc. 137 (2015) 9238–9241.
doi: 10.1021/jacs.5b05561
Y. Chen, Y. Zhou, P. Chen, et al., J. Am. Chem. Soc. 130 (2008) 15250–15251.
doi: 10.1021/ja805025w
Y. Chen, L. Liu, Y. Peng, et al., J. Am. Chem. Soc. 133 (2011) 1147–1149.
doi: 10.1021/ja105948r
Y. Li, Y. Li, B. Wang, et al., Nature Chem. 5 (2013) 320–326.
doi: 10.1038/nchem.1594
P. Tong, D. Yang, Y. Li, B. Wang, J. Qu, Organometallics 34 (2015) 3571–3576.
doi: 10.1021/acs.organomet.5b00387
X. Zhao, D. Yang, Y. Zhang, B. Wang, J. Qu, Chem. Commun. 54 (2018) 11112–11115.
doi: 10.1039/c8cc05738a
Y. Zhang, D. Yang, Y. Li, et al., Catal. Sci. Technol. 9 (2019) 6492–6502.
doi: 10.1039/c9cy01667h
N. Wei, D. Yang, J. Zhao, et al., Organometallics 40 (2021) 1434–1442.
doi: 10.1021/acs.organomet.1c00031
H. Wu, J. Li, D. Yang, et al., Inorg. Chem. Front. 6 (2019) 2185–2193.
doi: 10.1039/c9qi00423h
J. Li, D. Yang, P. Tong, et al., Inorg. Chem. 59 (2020) 8203–8212.
doi: 10.1021/acs.inorgchem.0c00542
J.J. Schneider, U. Specht, Z. Naturforsch. 50b (1995) 684–686.
doi: 10.1515/znb-1995-0436
S. Venkataramani, U. Jana, M. Dommaschk, et al., Science 331 (2011) 445–448.
doi: 10.1126/science.1201180
N.A. Arnet, T.R. Dugan, F.S. Menges, et al., J. Am. Chem. Soc. 137 (2015) 13220–13223.
doi: 10.1021/jacs.5b06841
D. Yang, Y. Li, B. Wang, et al., Inorg. Chem. 54 (2015) 10243–10249.
doi: 10.1021/acs.inorgchem.5b01508
J.J. Warren, T.A. Tronic, J.M. Mayer, Chem. Rev. 110 (2010) 6961–7001.
doi: 10.1021/cr100085k
I.M. Riddlestone, N.A. Rajabi, J.P. Lowe, et al., J. Am. Chem. Soc. 138 (2016) 11081–11084.
doi: 10.1021/jacs.6b05243
P.I. Georgakaki, L.M. Thomson, E.J. Lyon, M.B. Hal, M.Y. Darensbourg, Coord. Chem. Rev. 238-239 (2003) 255–266.
doi: 10.1016/S0010-8545(02)00326-0
J.F. Capon, F. Gloaguen, F.Y. Pétillon, P. Schollhammer, J. Talarmin, Coord. Chem. Rev. 253 (2009) 1476–1494.
doi: 10.1016/j.ccr.2008.10.020
D. Schilter, J.M. Camara, M.T. Huynh, S. Hammes-Schiffer, T.B. Rauchfuss, Chem. Rev. 116 (2016) 8693–8749.
doi: 10.1021/acs.chemrev.6b00180
S. Ogo, Coord. Chem. Rev. 334 (2017) 43–53.
doi: 10.1016/j.ccr.2016.07.001
D.J. Elliot, D.G. Holah, A.N. Hughes, H.A. Mirza, E. Zawada, J. Chem. Soc., Chem. Commun. (1990) 32–33.
T.E. Bitterwolf, J. Organomet. Chem. 363 (1989) 189–195.
doi: 10.1016/0022-328X(89)88053-2
C. Tejel, M.A. Ciriano, M. Millaruelo, et al., Inorg. Chem. 42 (2003) 4750–4758.
doi: 10.1021/ic034225x
G.A.N. Felton, R.S. Glass, D.L. Lichtenberger, D.H. Evans, Inorg. Chem. 45 (2006) 9181–9184.
doi: 10.1021/ic060984e
B.E. Barton, T.B. Rauchfuss, J. Am. Chem. Soc. 132 (2010) 14877–14885.
doi: 10.1021/ja105312p
M.E. Carroll, B.E. Barton, T.B. Rauchfuss, P.J. Carroll, J. Am. Chem. Soc. 134 (2012) 18843–18852.
doi: 10.1021/ja309216v
M. Wang, L. Chen, L. Sun, Energy Environ. Sci. 5 (2012) 6763–6778.
doi: 10.1039/c2ee03309g
M.E. Ahmed, S. Dey, M.Y. Darensbourg, A. Dey, J. Am. Chem. Soc. 140 (2018) 12457–12468.
doi: 10.1021/jacs.8b05983
P. Sun, D. Yang, Y. Li, B. Wang, J. Qu, Dalton Trans. 49 (2020) 2151–2158.
doi: 10.1039/c9dt04493k
V. Artero, M. Fontecave, Chem. Soc. Rev. 4 (2013) 2338–2356.
M. Fang, M.H. Engelhard, Z. Zhu, M.L. Helm, J.A.S. Roberts, ACS Catal. 4 (2013) 90–98.
Zhen Shi , Wei Jin , Yuhang Sun , Xu Li , Liang Mao , Xiaoyan Cai , Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201
Xingyan Liu , Chaogang Jia , Guangmei Jiang , Chenghua Zhang , Mingzuo Chen , Xiaofei Zhao , Xiaocheng Zhang , Min Fu , Siqi Li , Jie Wu , Yiming Jia , Youzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455
Jieshuai Xiao , Yuan Zheng , Yue Zhao , Zhuangzhi Shi , Minyan Wang . Asymmetric Nozaki-Hiyama-Kishi (NHK)-type reaction of isatins with aromatic iodides by cobalt catalysis. Chinese Chemical Letters, 2025, 36(5): 110243-. doi: 10.1016/j.cclet.2024.110243
Peng Guo , Shicheng Dong , Xiang-Gui Zhang , Bing-Bin Yang , Jun Zhu , Ke-Yin Ye . Cobalt-catalyzed migratory carbon-carbon cross-coupling of borabicyclo[3.3.1]nonane (9-BBN) borates. Chinese Chemical Letters, 2025, 36(4): 110052-. doi: 10.1016/j.cclet.2024.110052
Hongliang Zeng , Yuan Ji , Jinfeng Wen , Xu Li , Tingting Zheng , Qiu Jiang , Chuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686
Haiyan Yin , Abdusalam Ablez , Zhuangzhuang Wang , Weian Li , Yanqi Wang , Qianqian Hu , Xiaoying Huang . Novel open-framework chalcogenide photocatalysts: Cobalt cocatalyst valence state modulating critical charge transfer pathways towards high-efficiency hydrogen evolution. Chinese Journal of Structural Chemistry, 2025, 44(4): 100560-100560. doi: 10.1016/j.cjsc.2025.100560
Qin Li , Huihui Zhang , Huajun Gu , Yuanyuan Cui , Ruihua Gao , Wei-Lin Dai . In situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016
Shuai Li , Liuting Zhang , Fuying Wu , Yiqun Jiang , Xuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566
Honglin Gao , Chunlin Yuan , Hongyu Chen , Aiyi Dong , Pan Gao , Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561
Bicheng Zhu , Jingsan Xu . S-scheme heterojunction photocatalyst for H2 evolution coupled with organic oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100327-100327. doi: 10.1016/j.cjsc.2024.100327
Haibin Yang , Duowen Ma , Yang Li , Qinghe Zhao , Feng Pan , Shisheng Zheng , Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
Yi Herng Chan , Zhe Phak Chan , Serene Sow Mun Lock , Chung Loong Yiin , Shin Ying Foong , Mee Kee Wong , Muhammad Anwar Ishak , Ven Chian Quek , Shengbo Ge , Su Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Xiangyuan Zhao , Jinjin Wang , Jinzhao Kang , Xiaomei Wang , Hong Yu , Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159
Jiao Li , Chenyang Zhang , Chuhan Wu , Yan Liu , Xuejian Zhang , Xiao Li , Yongtao Li , Jing Sun , Zhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782
Bin Dong , Ning Yu , Qiu-Yue Wang , Jing-Ke Ren , Xin-Yu Zhang , Zhi-Jie Zhang , Ruo-Yao Fan , Da-Peng Liu , Yong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Xinyu Hou , Xuelian Yu , Meng Liu , Hengxing Peng , Lijuan Wu , Libing Liao , Guocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845
Tengjia Ni , Xianbiao Hou , Huanlei Wang , Lei Chu , Shuixing Dai , Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210