Citation: Juan Wang, Peng-Bo Bai, Shang-Dong Yang. Palladium-catalyzed relay C–H functionalization to construct novel hybrid-arylcyclophosphorus ligand precursors[J]. Chinese Chemical Letters, ;2022, 33(5): 2397-2401. doi: 10.1016/j.cclet.2021.10.019 shu

Palladium-catalyzed relay C–H functionalization to construct novel hybrid-arylcyclophosphorus ligand precursors

    * Corresponding author.
    E-mail address: yangshd@lzu.edu.cn (S.-D. Yang).
    1 These two authors contributed equally to this work.
  • Received Date: 16 July 2021
    Revised Date: 6 October 2021
    Accepted Date: 11 October 2021
    Available Online: 17 October 2021

Figures(8)

  • A new relay C–H functionalization of di([1, 1′-biphenyl]-2-yl)phosphine oxide to obtain esterified and hydroxylated products with different hypervalent iodines as oxidants under palladium catalysis is disclosed. This reaction provides a more effective and concise strategy for the synthesis of novel structural hybrid-arylcyclophosphorus ligand precursors with a wide range of substrates and good functional group tolerance.
  • The selective hydrogenation of α, β-unsaturated aldehyde (UAL) to unsaturated alcohol (UOL) is a significant process in petrochemicals, pharmaceuticals and fragrances [1-4]. Nevertheless, since the production of saturated aldehydes is more favorable over unsaturated alcohols from the view of thermodynamics [5, 6], it is extremely difficult to achieve high selectivity to UOL. Significant efforts have been devoted towards the development of highly UOL-selective catalysts [7-13], among which a great amount of noble metal based catalysts for selective hydrogenation of UAL have been made great progress. Among the noble metals, iridium (Ir) possesses the highest intrinsic selectivity to UOL [14]. However, pure Ir nanoparticles still showed unsatisfied selectivity in selective hydrogenation of UAL. In addition, the surface energy of metal nanoclusters (NCs) is very high, pure metal NCs are easy to aggregate in the reaction process, leading to a loss of activity [15-18].

    Recently, metal-organic frameworks (MOFs) supported metal nanoparticles have attracted tremendous research interest because the micropores of MOFs can not only prevent the nanoparticles from aggregation and growth but also serve as a transfer path for the reaction substrates/products [19-26]. Moreover, compared with other porous materials such as zeolites and porous carbons, MOFs contain a large number of metal centers, which may interact with reactants to improve selectivity or catalyze the reaction directly [27-35]. Tang's group synthesized MIL-101(Fe)@Pt and achieved 86.4% selectivity to UOL, further suggested that MIL-101(Fe) can serve as effective selectivity regulator [28]. Hence, with MIL-101(Fe) as a protective layer and selectivity regulator, Ir NCs hybridized with MIL-101(Fe) were expected to exhibit an excellent activity and selectivity for hydrogenation of UAL to obtain high yield of UOL.

    Herein, we have synthesized the hollow MIL-101(Fe) on preformed Ir NCs to generate Ir@MIL-101(Fe) composite. The obtained Ir@MIL-101(Fe) exhibits excellent performance in selective hydrogenation of a model molecule of α, β-unsaturated aldehyde, cinnamaldehyde (CAL), with 93.9% conversion in 4 h and 96.2% selectivity towards cinnamyl alcohol (COL), as well as high durability after 5 successive cycles, all which are much better than those of Ir NCs and physical mixture Ir/MIL-101(Fe) catalysts. On one hand, the Lewis acid sites in MIL-101(Fe) are capable to interact with the aldehyde group in CAL and electropositive Ir NCs might preferential absorb the electronegative oxygen atom in C=O group, both of which can promote the selectivity for COL. On the other hand, the special hollow structure of MIL-101(Fe) shortens the diffusion distance of reactants and remained the excellent hydrogenation.

    As schematically illustrated in Scheme 1, the Ir@MIL-101(Fe) was synthesized by two processes. Firstly, the metal precursor salt was reduced using PVP as stabilizer and ethylene glycol as reductant and solvent to obtain Ir NCs, with the average size of 1.7 nm (Fig. S1 in Supporting information). Then the MIL-101(Fe) was grown in situ with the addition of Ir NCs in the precursor solution to obtain Ir NCs confined into hollow MIL-101(Fe) [29]. The structures and morphologies of as-prepared specimens were examined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). As shown in Fig. S2a (Supporting information), the XRD pattern of Ir@MIL-101(Fe) matched well with the MIL-101(Fe), no clear diffraction peaks of the Ir NCs were observed, due to the ultrafine size of the nanoclusters, which was consistent with HRTEM images (Fig. 1a) [30, 36]. As for morphology, the surface of Ir@MIL-101(Fe) was a little bit rough compared with MIL-101(Fe) (Figs. S2b and S3 in Supporting information), owing to the existence of Ir NCs may slightly affecting the nucleation process of MOFs. The HRTEM images showed a lattice fringe of 0.22 nm corresponding to the (111) plane of the Ir metallic, and no observable aggregation on the external surface of MIL-101(Fe) (Figs. 1a and b). To test the element distribution of Ir@MIL-101(Fe), energy-dispersive X-ray spectroscopy (EDS) elemental mappings were carried out, and the Ir element was found to be mainly distributed on the near-surface of MIL-101(Fe) (Fig. 1c), which might shorten the diffusion distance of reactants on the surface of MIL-101(Fe) to the metal active site and thus facilitate the reaction rate. The actual Ir content in Ir@MIL-101(Fe) was quantitatively determined to be 5.3 wt% by inductively coupled plasma mass spectrometry (ICP-MS), listed in Table S1 (Supporting information). According to the N2 adsorption isotherms (Fig. S4a in Supporting information), the Brunauer–Emmett–Teller (BET) surface area and total pore volume of Ir@MIL-101(Fe) decreased to 42.2 m2/g and 0.09 cm3/g, compared to pure MIL-101(Fe) (664.1 m2/g and 0.38 cm3/g), attributed to the formation of mesoporous in MIL-101(Fe). Furthermore, the pore-size distribution curve in Fig. S4b (Supporting information) also displayed the existence of mesoporous [30, 37]. These results confirmed that most of the Ir NCs were indeed encapsulated inside the MOFs [38]. Moreover, Ir@MIL-101(Fe) with different hydrothermal times were synthesized. As shown in Fig. S5 (Supporting information), with the increase of hydrothermal time, the inner part of MIL-101(Fe) gradually became transparent, indicating hollow MOFs were formed. Since there is PVP on the surface of Ir NCs, PVP will dissolve in the growth solution during the hydrothermal reaction, and then act as metal-coordinating bulky polymer during the formation of MIL-101(Fe) domains to induce partial disruption of imidazole-Fe(Ⅲ) catenation process and generate high mesoporosity in the resulting MIL-101(Fe) [39], which was consistent with pore-size distribution curve of Ir@MIL-101(Fe) (Fig. S4b in Supporting information).

    Scheme 1

    Scheme 1.  Synthetic route to generating hollow Ir@MIL-101(Fe).

    Figure 1

    Figure 1.  (a, b) HRTEM images of Ir@MIL-101(Fe) samples. (c) HAADF-STEM image and the corresponding elemental mapping images of Ir@MIL-101(Fe).

    To demonstrate the generality of our approach, Rh NCs confined within MIL-101(Fe) were also synthesized. The synthesis method of Rh@MIL-101(Fe) was similar to that of Ir@MIL-101(Fe), in which MIL-101(Fe) was in situ growth with the Rh NCs in the precursor solution to build hollow Rh@MIL-101(Fe) structures. The XRD patterns, SEM and HRTEM images, and N2 adsorption isotherms of Rh@MIL-101(Fe) were shown in Figs. S6, S7 and S10 (Supporting information). Resembled to that of Ir@MIL-101(Fe), the BET surface areas of Rh@MIL-101(Fe) (Table S2 in Supporting information) was far less than those of the parent MIL-101(Fe), due to the formation of mesoporous MIL-101(Fe), which illustrated the generality of our new strategy for preparing the hollow metal@MIL-101(Fe) catalysts. In order to explore the role of MOFs, Ir@UIO-66(Zr) was synthesized for comparison [40]. The detailed information of Ir@UIO-66(Zr) was shown in Figs. S8-S10 (Supporting information).

    Selective hydrogenation of α, β-unsaturated aldehyde is very important in chemical industry. The hydrogenation of an α, β-unsaturated aldehyde, CAL, is selected to explore the possible catalytic performance of Ir@MIL-101(Fe). As illustrated in Fig. 2a, CAL is hydrogenated to COL or hydrocinnamaldehyde (HCAL), and subsequently further hydrogenated to hydrocinnamyl alcohol (HCOL). Here, the hydrogenation of CAL was carried out under 1 bar H2 pressure at room temperature. The conversion of CAL and selectivity for COL as a function of reaction time over Ir@MIL-101(Fe) were shown in Fig. 2b. After 4 h reaction, the conversion of CAL achieved 93.9%, with high selectivity of desired product COL (96.2%). When the reaction time was prolonged, the overhydrogenated product HCOL could not be observed, confirming the extraordinary product selectivity. As shown in Table S3 (Supporting information), the selectivity of Ir@MIL-101(Fe) is better than that of the Ir-based catalyst reported previously, which is comparable to the most advanced catalyst reported recently. To investigate whether the Ir active site was decreased after covering MOFs, Ir/MIL-101(Fe) was prepared by just mechanically mixing the pre-synthesized Ir NCs and MIL-101(Fe) (Fig. S11 in Supporting information). As observed in Fig. 2c, the similar catalytic activity of Ir/MIL-101(Fe) compared to Ir@MIL-101(Fe) inferred that the Ir NCs inside hollow MIL-101(Fe) maintained instinct catalytic ability, which attributed to the fasten transport speed and the shorten diffusion distance of reactants to the metal active site [36, 41]. Moreover, Ir@MIL-101(Fe) and Ir/MIL-101(Fe) gave the higher selectivity for COL over pure Ir NCs (47.2%), Rh@MIL-101(Fe) (40.3%) and Ir@UIO-66(Zr) (4.6%) (Fig. 2d). Besides, less than 1% conversion of CAL was detected when catalyzed by MIL-101(Fe), which could be considered as a negligible influence on the hydrogenation reaction. The detailed catalysis results were listed in Table S4 (Supporting information). Above results indicated that synergistic effect of Ir NCs and the MIL-101(Fe) support may be the key factor for high yield of COL.

    Figure 2

    Figure 2.  (a) Schematic CAL hydrogenation. CAL hydrogenation performances of (b) Ir@MIL-101(Fe) and (c) Ir/MIL-101(Fe). (d) Product selectivity (Sel.) and conversion (Conv.) at 4 h for the CAL hydrogenation over different catalysts. (e) Recyclability of Ir@MIL-101(Fe) and (f) Ir/MIL-101(Fe) for hydrogenation of CAL. Reaction condition: Cinnamyl aldehyde (0.1 mmol), catalyst (15 mg), isopropanol (2.5 mL), water (2.5 mL), 30 ℃, 1 bar H2 atmosphere, 4 h.

    For the recyclability was another critical factor to evaluate the catalytic performance of catalysts, the stability tests of Ir@MIL- 101(Fe) and Ir/MIL-101(Fe) for selective hydrogenation of CAL were carried out. As seen in Fig. 2e, no appreciable loss in activity and selectivity was observed in Ir@MIL-101(Fe) in up to five runs. On the contrary, when it came to the third cycle, the activity of Ir/MIL-101(Fe) declined sharply and the selectivity dropped to 81.0% (Fig. 2f). This is because the Ir active sites in Ir/MIL-101(Fe) probably leached and aggregated during the reaction [42], while the Ir NCs confined within MIL-101(Fe) were immune to this problem, leading to great recyclability. It is worth mentioning that confining Ir NCs within MIL-101(Fe) cavities did not sacrifice their activity, since the turnover frequency (TOF) values of Ir@MIL-101(Fe) and Ir/MIL-101(Fe) were similar (Fig. S12 in Supporting information). The mesopores in MIL-101(Fe) provided enough space for the transport and diffusion of substrates and products, thus ensuring the efficient reaction [39]. Another factor attributed to high activity was that Ir NCs were mainly loaded in the near surface of MIL-101(Fe), which afforded a short diffusion distance of the reactants from the MIL-101(Fe) surface to the highly exposed NCs active sites [43]. In addition, though some active sites of Ir NCs were covered when loaded in or on the MIL-101(Fe), the TOF of Ir@MIL-101(Fe) and Ir/MIL-101(Fe) outperformed pure Ir NCs (Fig. S12), which may be attributed to hydrogen spillover effect on the surface of MIL-101(Fe) [44]. To investigate the universality of Ir@MIL-101(Fe), hydrogenation of different α, β-unsaturated aldehydes were tested. As shown in Table 1, almost all the substrates can reach over 90% selectivity to corresponding UOL. Above results fully suggest that Ir@MIL-101(Fe) is an excellent catalyst for selective hydrogenation of α, β-unsaturated aldehydes.

    Table 1

    Table 1.  Hydrogenation of α, β-unsaturated aldehyde catalyzed by Ir@MIL-101(Fe).
    DownLoad: CSV

    Since surface chemical structure of catalysts have a considerable influence on the catalytic behavior [45, 46], the electronic properties of Ir and Fe were characterized by X-ray photoelectron spectroscopy (XPS). Ir 4f spectrum of Ir@MIL-101(Fe) and Ir NCs clearly demonstrated that most of Iridium remained Ir0 valance but a portion of Ir3+ material existed on the surface, due to the oxidation in the air (Fig. 3a) [47]. The Fourier transforms of extended X-ray absorption fine structure (FT-EXAFS) further verified the existence of Ir metallic and oxide, since the peak of Ir-Ir bond and Ir-O bond were clearly found in the Ir L3-edge (Fig. S13 in Supporting information). Compared with the binding energy of Ir0 in Ir NCs (63.1 eV, 4f5/2), the higher binding energy in Ir@MIL-101(Fe) (64.1 eV, 4f5/2) indicated the lower electron density of Ir after confining within the hollow MIL-101(Fe). As for the binding energy of Fe3+ in Ir@MIL-101(Fe), the peak of Fe 2p3/2 obviously shifted from 716.0 eV to 714.5 eV after immobilization of Ir NCs, confirmed the electron transfer from Ir to MIL-101(Fe) (Fig. 3b). Since the O atom in C=O was electronegative, electropositive Ir NCs in Ir@MIL-101(Fe) may be able to absorb the C=O bond to activate it [48, 49], resulting in high selectivity towards COL.

    Figure 3

    Figure 3.  XPS profiles of Ir and Fe in different catalysts. (a) Ir 4f level. (b) Fe 2p level. The catalysts investigated were pure Ir NCs, MIL-101(Fe) and Ir@MIL-101(Fe). (c) HCAL and COL hydrogenation performances of Ir@MIL-101(Fe). (d) FT-IR spectra for CAL adsorption on Ir@MIL-101(Fe).

    In order to deeply investigate the reason for excellent COL selectivity, hydrogenation using COL and HCAL as the substrate were performed over Ir@MIL-101(Fe). As expected, the hydrogenation rate of C=O bond was clearly faster than that of C=C bond (Fig. 3c), attributing to enhance the selectivity of COL and avoid the over hydrogenation to a great extent. To find out the mechanism for selective hydrogenation of CAL, the Fourier transform infrared (FT-IR) spectroscopy was used to examine the adsorption of CAL on Ir@MIL-101(Fe). As shown in Fig. 3d, FT-IR survey showed an obvious redshift of the υC=O bond of CAL after mixing with Ir@MIL-101(Fe), confirming strong interaction between the C=O bond of CAL and Ir@MIL-101(Fe) [28, 50]. Similar adsorption behaviors were also observed when mixing CAL with Ir/MIL-101(Fe) and MIL-101(Fe) (Fig. S14 in Supporting information). These revealed that the synergistic effect of electropositive Ir NCs and the aldehyde activator MIL-101(Fe) was key to preferentially hydrogenate aldehyde group and maintaining high selectivity towards COL.

    In summary, we have successfully developed a new method for confining metal NCs within hollow MOFs via in-situ growth of MOFs with metal NCs in the precursor solution. Interestingly, as-prepared Ir@MIL-101(Fe) exhibited impressive activity (93.9%), selectivity (96.2%) as well as great recyclability for the hydrogenation of CAL to COL under mild conditions. The electropositive Ir NCs, owing to the electron transfer from Ir to MIL-101(Fe), prefer to interact with oxygen lone pairs of aldehyde group and the Lewis acid sites in MIL-101(Fe) can strongly interact with C=O bond, both factors are attributed to high selectivity to COL. This work provides an efficient strategy to prepare promising materials for enhanced selective hydrogenation of α, β-unsaturated aldehyde.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This work was supported by National Key R&D Program of China (No. 2018YFA0108300), the Overseas High-level Talents Plan of China and Guangdong Province, the 100 Talents Plan Foundation of Sun Yat-sen University, the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (No. 2017ZT07C069), the Fundamental Research Funds for the Central Universities, and the NSFC Projects (Nos. 21905315 and 22075321).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.06.047.


    1. [1]

      Y. Uozumi, N. Suzuki, A. Ogiwara, T. Hayashi, Tetrahedron50 (1994) 4293–4302.  doi: 10.1016/S0040-4020(01)89366-2

    2. [2]

      T. Hayashi, Catal. Today62 (2000) 3–15.  doi: 10.1016/S0920-5861(00)00404-1

    3. [3]

      T. Hayashi, Acc. Chem. Res. 33 (2000) 354–362.  doi: 10.1021/ar990080f

    4. [4]

      T. Morimoto, N. Mochizuki, M. Suzuki, Tetrahedron Lett. 45 (2004) 5717–5722.  doi: 10.1016/j.tetlet.2004.05.101

    5. [5]

      M. Berthod, G. Mignani, G. Woodward, M. Lemaire, Chem. Rev. 105 (2005) 1801–1836.  doi: 10.1021/cr040652w

    6. [6]

      S. Wang, J. Li, Miao, L. Qiu, et al., Org. Lett. 14 (2012) 1966–1969.  doi: 10.1021/ol300721p

    7. [7]

      Y. Zhou, X. Zhang, L. Qiu, et al., ACS Catal. 4 (2014) 1390–1397.  doi: 10.1021/cs500208n

    8. [8]

      Y.N. Ma, S.D. Yang, Chem. Eur. J. 21 (2015) 6673–6677.  doi: 10.1002/chem.201406554

    9. [9]

      Q.J. Wang, H.H. Wu, J.L. Zhang. ACS Catal. 10 (2020) 1548–1554.  doi: 10.3390/polym12071548

    10. [10]

      H. Tsuji, K. Sato, Y. Sato, E. Nakamura, Chem. Asian J. 5 (2010) 1294–1297.

    11. [11]

      Y. Matano, A. Saito, T. Fukushima, et al., Angew. Chem. Int. Ed. 50 (2011) 8016–8020.  doi: 10.1002/anie.201102782

    12. [12]

      M. Stolar, T. Baumgartner, Chem. Asian J. 9 (2014) 1212–1225.  doi: 10.1002/asia.201301670

    13. [13]

      F. Bu, E. Wang, B.Z. Tang, et al., Chem. Eur. J. 21 (2015) 4440–4449.  doi: 10.1002/chem.201405902

    14. [14]

      E. Yamaguchi, C. Wang, A. Fukazawa, M. Taki, et al., Angew. Chem. Int. Ed. 54 (2015) 4539–4543.  doi: 10.1002/anie.201500229

    15. [15]

      C. Fave, T.Y. Cho, M. Hissler, et al., J. Am. Chem. Soc. 125 (2003) 9254–9255.  doi: 10.1021/ja035155w

    16. [16]

      Y. Makioka, T. Hayashi, M. Tanaka, Chem. Lett. 33 (2004) 44–45.  doi: 10.1246/cl.2004.44

    17. [17]

      F. Mathey, Acc. Chem. Res. 37 (2004) 954–960.  doi: 10.1021/ar030118v

    18. [18]

      H.C. Su, O. Fadhel, C.J. Yang, T.Y. Cho, et al., J. Am. Chem. Soc. 128 (2006) 983–995.  doi: 10.1021/ja0567182

    19. [19]

      T. Baumgartner, R. Reau, Chem. Rev. 106 (2006) 4681–4727.  doi: 10.1021/cr040179m

    20. [20]

      H. Tsuji, K. Sato, Y. Sato, E. Nakamura, J. Mater. Chem. 19 (2009) 3364–3366.  doi: 10.1039/b906197e

    21. [21]

      Y. Matano, A. Saito, Y. Suzuki et al., Chem. Asian J. 7 (2012) 2305–2312.  doi: 10.1002/asia.201200492

    22. [22]

      H. Tsuji, S. Komatsu, Y. Kanda, T. Umehara, et al., Chem. Lett. 35 (2006) 758–759.  doi: 10.1246/cl.2006.758

    23. [23]

      Y. Dienes, M. Eggenstein, T. Karpati, et al., Chem. Eur. J. 14 (2008) 9878–9889.  doi: 10.1002/chem.200801549

    24. [24]

      A. Fukazawa, M. Hara, T. Okamoto, et al., Org. Lett. 10 (2008) 913–916.  doi: 10.1021/ol7030608

    25. [25]

      T. Sanji, K. Shiraishi, T. Kashiwabara, M. Tanaka, Org. Lett. 10 (2008) 2689–2692.  doi: 10.1021/ol800841v

    26. [26]

      Y. Matano, A. Saito, T. Fukushima, et al. Angew. Chem. Int. Ed. 50 (2011) 8016–8020.  doi: 10.1002/anie.201102782

    27. [27]

      Y. Ren, T. Baumgartner, J. Am. Chem. Soc. 133 (2011) 1328–1340.  doi: 10.1021/ja108081b

    28. [28]

      A. Bruch, A. Fukazawa, E. Yamaguchi, et al., Angew. Chem. Int. Ed. 50 (2011) 12094–12098.  doi: 10.1002/anie.201104114

    29. [29]

      Y. Hayashi, Y. Matano, K. Suda, et al., Chem. Eur. J. 18 (2012) 15972–15983.  doi: 10.1002/chem.201203047

    30. [30]

      Y. Sawada, S. Furumi, A. Takai, et al., J. Am. Chem. Soc. 134 (2012) 4080–4083.  doi: 10.1021/ja300278e

    31. [31]

      B. Wu, M. Santra, N. Yoshikai, Angew. Chem. Int. Ed. 53 (2014) 7543–7546.  doi: 10.1002/anie.201404019

    32. [32]

      B. Li, M.K. Zhang, X.L. Huang, Z.H. Gu, Org. Chem. Front. 4 (2017) 1854–1857.  doi: 10.1039/C7QO00310B

    33. [33]

      E. Si, P. Zhao, L.L. Wang, Z. Duan, F. Mathey, Eur. J. Org. Chem. 2020 (2020) 697–701.  doi: 10.1002/ejoc.201901753

    34. [34]

      H. Fujimoto, M. Kusano, T. Kodama, M. Tobisu, Org. Lett. 22 (2020) 2293–2297.  doi: 10.1021/acs.orglett.0c00489

    35. [35]

      K. Nishimura, K. Hirano, M. Miura, Org. Lett. 22 (2020) 3185–3189.  doi: 10.1021/acs.orglett.0c00944

    36. [36]

      Y. Kurimoto, J. Yamashita, K. Mitsudo, E. Sato, S. Suga, Org. Lett. 23 (2021) 3120–3124.  doi: 10.1021/acs.orglett.1c00807

    37. [37]

      D. Alberico, M.E. Scott, M. Lautens, Chem. Rev. 107 (2007) 174–238.  doi: 10.1021/cr0509760

    38. [38]

      T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010) 1147–1169.  doi: 10.1021/cr900184e

    39. [39]

      C.L. Sun, B.J. Li, Z.J. Shi, Chem. Rev. 111 (2011) 1293–1314.  doi: 10.1021/cr100198w

    40. [40]

      K.M. Engle, T.S. Mei, M. Wasa, J.Q. Yu, Acc. Chem. Res. 45 (2011) 788–802.

    41. [41]

      N. Kuhl, M.N. Hopkinson, J.W. Delord, F. Glorius, Angew. Chem. Int. Ed. 51 (2012) 10236–10254.  doi: 10.1002/anie.201203269

    42. [42]

      J.K. Wang, Y.X. Zong, G.R. Yue, et al., Chin. Chem. Lett. 26 (2015) 1376–1380.  doi: 10.1016/j.cclet.2015.08.001

    43. [43]

      C. Wang, L. Luo, H. Yamamoto, Acc. Chem. Res. 49 (2016) 193–204.  doi: 10.1021/acs.accounts.5b00428

    44. [44]

      J.A. Labinger, Chem. Rev. 117 (2017) 8483–8496.  doi: 10.1021/acs.chemrev.6b00583

    45. [45]

      M. Parasram, V. Gevorgyan, Acc. Chem. Res. 50 (2017) 2038–2053.  doi: 10.1021/acs.accounts.7b00306

    46. [46]

      C. Sambiagio, D. Schönbauer, M. Schnürch, et al., Chem. Soc. Rev. 47 (2018) 6603–6743.

    47. [47]

      Q. Shao, K. Wu, Z. Zhuang, S. Qian, J.Q. Yu, Acc. Chem. Res. 53 (2020) 833–851.  doi: 10.1021/acs.accounts.9b00621

    48. [48]

      K.J. Jiao, Y.K. Xing, Q.L. Yang, H. Qiu, T.S. Mei, Acc. Chem. Res. 53 (2020) 300–310.  doi: 10.1021/acs.accounts.9b00603

    49. [49]

      K. Yang, Y. Li, M. Song, et al., Chin. Chem. Lett. 32 (2021) 146–149.  doi: 10.1016/j.cclet.2020.11.036

    50. [50]

      L. Liu, H. Liu, Z. Zuo et al., Chin. Chem. Lett. 32 (2021) 239–242.

    51. [51]

      K. Baba, M. Tobisu, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11892–11895.  doi: 10.1002/anie.201307115

    52. [52]

      S. Hashimoto, S. Nakatsuka, M. Nakamura, T. Hatakeyama, Angew. Chem. Int. Ed. 53 (2014) 14074–14076.  doi: 10.1002/anie.201408390

    53. [53]

      S. Furukawa, S. Haga, J. Kobayashi, T. Kawashima, Org. Lett. 16 (2014) 3228–3231.  doi: 10.1021/ol501189u

    54. [54]

      Z. Lian, B.N. Bhawal, P. Yu, B. Morandi, Science. 356 (2017) 1059–1063.  doi: 10.1126/science.aam9041

    55. [55]

      K. Nishimura, K. Hirano, M. Miura, Org. Lett. 21 (2019) 1467–1470.  doi: 10.1021/acs.orglett.9b00219

    56. [56]

      H. Fujimoto, M. Kusano, T. Kodama, M. Tobisu, Org. Lett. 21 (2019) 4177–4181.  doi: 10.1021/acs.orglett.9b01355

    57. [57]

      Y. Kuninobu, T. Yoshida, K. Takai, J. Org. Chem. 76 (2011) 7370–7376.  doi: 10.1021/jo201030j

    58. [58]

      Y.M. Cui, L.Z. Fu, J. Cao, et al., Adv. Synth. Catal. 356 (2014) 1217–1222.  doi: 10.1002/adsc.201301081

    59. [59]

      K. Baba, M. Tobisu, N. Chatani, Org. Lett. 17 (2015) 70–73.  doi: 10.1021/ol503252t

    60. [60]

      Y. Lin, W.Y. Ma, Q.Y. Sun, Y.M. Cui, L.W. Xu, Synlett28 (2017) 1432–1436.  doi: 10.1055/s-0036-1588983

    61. [61]

      Z. Li, Z.Q. Lin, C.G. Yan, W.L. Duan, Organometallics38 (2019) 3916–3920.  doi: 10.1021/acs.organomet.9b00216

    62. [62]

      Y.R. Chen, W.L. Duan, J. Am. Chem. Soc. 135 (2013) 16754–16757.  doi: 10.1021/ja407373g

    63. [63]

      Y. Unoh, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 52 (2013) 12975–12979.  doi: 10.1002/anie.201307211

    64. [64]

      P. Zhang, Y. Gao, L. Zhang, et al., Adv. Synth. Catal. 358 (2016) 138–142.  doi: 10.1002/adsc.201500667

    65. [65]

      D.M. Ma, W.Z. Chen, Y.F. Zhao, et al., Green Chem. 18 (2016) 3522–3526.  doi: 10.1039/C6GC01009A

    66. [66]

      V. Quint, F. MorletSavary, J.F. Lohier, et al., J. Am. Chem. Soc. 138 (2016) 7436–7441.  doi: 10.1021/jacs.6b04069

    67. [67]

      J. Li, W.W. Zhang, X.J. Wei, B. Jiang, et al., Org. Lett. 19 (2017) 4512–4515.  doi: 10.1021/acs.orglett.7b02071

    68. [68]

      D. M Ma, J.T. Pan, Y.F. Zhao, et al., Org. Lett. 20 (2018) 3455–3459.  doi: 10.1021/acs.orglett.8b01108

    69. [69]

      K. Nishimura, Y. Unoh, K. Hirano, M. Miura, Chem. Eur. J. 24 (2018) 13089–13092.  doi: 10.1002/chem.201803225

    70. [70]

      L.X. Liu, J.Y. Dong, Y.B. Zhou, et al., Chem. Commun. 55 (2019) 233–236.  doi: 10.1039/c8cc08689c

    71. [71]

      H. Hou, Y. Xu, H.B. Yang, S.Q. Zhu, et al., Org. Biomol. Chem. 17 (2019) 8175–8184.  doi: 10.1039/c9ob01585j

    72. [72]

      W.Q. Liu, T. Lei, S. Zhou, L.Z. Wu, et al., J. Am. Chem. Soc. 141 (2019) 13941–13947.  doi: 10.1021/jacs.9b06920

    73. [73]

      D. Zhao, C. Nimphius, M. Lindale, F. Glorius, Org. Lett. 15 (2013) 4504–4507.  doi: 10.1021/ol402053n

    74. [74]

      D. Eom, Y. Jeong, P.H. Lee, et al., Org. Lett. 15 (2013) 5210–5213.  doi: 10.1021/ol402736v

    75. [75]

      L.Y. Chan, L. Cheong, S. Kim, Org. Lett. 15 (2013) 2186–2189.  doi: 10.1021/ol400732q

    76. [76]

      L. Liu, H. Yuan, T. Fu, Y.J. Zhao, et al., J. Org. Chem. 79 (2014) 80–87.

    77. [77]

      D. Gwon, D. Lee, J. Kim, S. Park, S. Chang, Chem. Eur. J. 20 (2014) 12421–12425.  doi: 10.1002/chem.201404151

    78. [78]

      K.M. Crawford, T.R. Ramseyer, C.J.A. Daley, T.B. Clark, Angew. Chem. Int. Ed. 53 (2014) 7589–7593.  doi: 10.1002/anie.201402868

    79. [79]

      X.H. Hu, X.F. Yang, T.P. Loh, Angew. Chem. Int. Ed. 54 (2015) 15535–15539.  doi: 10.1002/anie.201506437

    80. [80]

      Y. Unoh, T. Satoh, K. Hirano, M. Miura, ACS Catal. 5 (2015) 6634–6639.  doi: 10.1021/acscatal.5b01896

    81. [81]

      Z.J. Du, J. Guan, F.S. Han, J. Am. Chem. Soc. 137 (2015) 632–635.  doi: 10.1021/ja512029x

    82. [82]

      T.T. Nguyen, L. Grigorjeva, O. Daugulis, ACS Catal. 6 (2016) 551–554.  doi: 10.1021/acscatal.5b02391

    83. [83]

      Y. Yang, X. Qiu, Z. Shi, J. Am. Chem. Soc. 138 (2016) 495–498.  doi: 10.1021/jacs.5b11569

    84. [84]

      Y.S. Jang, M. Dieckmann, N. Cramer, Angew. Chem. Int. Ed. 56 (2017) 15088–15092.  doi: 10.1002/anie.201708440

    85. [85]

      S.X. Li, Y.N. Ma, S.D. Yang, Org. Lett. 19 (2017) 1842–1845.  doi: 10.1021/acs.orglett.7b00608

    86. [86]

      Y.N. Ma, S.X. Li, S.D. Yang, Acc. Chem. Res. 50 (2017) 1480–1492.  doi: 10.1021/acs.accounts.7b00167

    87. [87]

      C. Li, X.Y. Qiang, Z.C. Qi, S.D. Yang, Org. Lett. 21 (2019) 7138–7142.  doi: 10.1021/acs.orglett.9b02697

    88. [88]

      Y. Niu, Z.C. Qi, Q.X. Lou, P.B. Bai, S.D. Yang, Chem. Commun. 56 (2020) 14721–14724.  doi: 10.1039/d0cc06639g

    89. [89]

      Z.C. Qi, Q.X. Lou, Y. Niu, S.D. Yang, Chem. Commun. 57 (2021) 2021–2024.  doi: 10.1039/d0cc07596e

    90. [90]

      H.Y. Zhang, H.M. Yi, G.W. Wang, B. Yang, S.D. Yang, Org. Lett. 15 (2013) 6186–6189.  doi: 10.1021/ol403028a

    91. [91]

      H. Zhang, R.B. Hu, X.Y. Zhang, S.X. Li, S.D. Yang, Chem. Commun. 50 (2014) 4686–4689.  doi: 10.1039/C4CC01238K

    1. [1]

      Y. Uozumi, N. Suzuki, A. Ogiwara, T. Hayashi, Tetrahedron50 (1994) 4293–4302.  doi: 10.1016/S0040-4020(01)89366-2

    2. [2]

      T. Hayashi, Catal. Today62 (2000) 3–15.  doi: 10.1016/S0920-5861(00)00404-1

    3. [3]

      T. Hayashi, Acc. Chem. Res. 33 (2000) 354–362.  doi: 10.1021/ar990080f

    4. [4]

      T. Morimoto, N. Mochizuki, M. Suzuki, Tetrahedron Lett. 45 (2004) 5717–5722.  doi: 10.1016/j.tetlet.2004.05.101

    5. [5]

      M. Berthod, G. Mignani, G. Woodward, M. Lemaire, Chem. Rev. 105 (2005) 1801–1836.  doi: 10.1021/cr040652w

    6. [6]

      S. Wang, J. Li, Miao, L. Qiu, et al., Org. Lett. 14 (2012) 1966–1969.  doi: 10.1021/ol300721p

    7. [7]

      Y. Zhou, X. Zhang, L. Qiu, et al., ACS Catal. 4 (2014) 1390–1397.  doi: 10.1021/cs500208n

    8. [8]

      Y.N. Ma, S.D. Yang, Chem. Eur. J. 21 (2015) 6673–6677.  doi: 10.1002/chem.201406554

    9. [9]

      Q.J. Wang, H.H. Wu, J.L. Zhang. ACS Catal. 10 (2020) 1548–1554.  doi: 10.3390/polym12071548

    10. [10]

      H. Tsuji, K. Sato, Y. Sato, E. Nakamura, Chem. Asian J. 5 (2010) 1294–1297.

    11. [11]

      Y. Matano, A. Saito, T. Fukushima, et al., Angew. Chem. Int. Ed. 50 (2011) 8016–8020.  doi: 10.1002/anie.201102782

    12. [12]

      M. Stolar, T. Baumgartner, Chem. Asian J. 9 (2014) 1212–1225.  doi: 10.1002/asia.201301670

    13. [13]

      F. Bu, E. Wang, B.Z. Tang, et al., Chem. Eur. J. 21 (2015) 4440–4449.  doi: 10.1002/chem.201405902

    14. [14]

      E. Yamaguchi, C. Wang, A. Fukazawa, M. Taki, et al., Angew. Chem. Int. Ed. 54 (2015) 4539–4543.  doi: 10.1002/anie.201500229

    15. [15]

      C. Fave, T.Y. Cho, M. Hissler, et al., J. Am. Chem. Soc. 125 (2003) 9254–9255.  doi: 10.1021/ja035155w

    16. [16]

      Y. Makioka, T. Hayashi, M. Tanaka, Chem. Lett. 33 (2004) 44–45.  doi: 10.1246/cl.2004.44

    17. [17]

      F. Mathey, Acc. Chem. Res. 37 (2004) 954–960.  doi: 10.1021/ar030118v

    18. [18]

      H.C. Su, O. Fadhel, C.J. Yang, T.Y. Cho, et al., J. Am. Chem. Soc. 128 (2006) 983–995.  doi: 10.1021/ja0567182

    19. [19]

      T. Baumgartner, R. Reau, Chem. Rev. 106 (2006) 4681–4727.  doi: 10.1021/cr040179m

    20. [20]

      H. Tsuji, K. Sato, Y. Sato, E. Nakamura, J. Mater. Chem. 19 (2009) 3364–3366.  doi: 10.1039/b906197e

    21. [21]

      Y. Matano, A. Saito, Y. Suzuki et al., Chem. Asian J. 7 (2012) 2305–2312.  doi: 10.1002/asia.201200492

    22. [22]

      H. Tsuji, S. Komatsu, Y. Kanda, T. Umehara, et al., Chem. Lett. 35 (2006) 758–759.  doi: 10.1246/cl.2006.758

    23. [23]

      Y. Dienes, M. Eggenstein, T. Karpati, et al., Chem. Eur. J. 14 (2008) 9878–9889.  doi: 10.1002/chem.200801549

    24. [24]

      A. Fukazawa, M. Hara, T. Okamoto, et al., Org. Lett. 10 (2008) 913–916.  doi: 10.1021/ol7030608

    25. [25]

      T. Sanji, K. Shiraishi, T. Kashiwabara, M. Tanaka, Org. Lett. 10 (2008) 2689–2692.  doi: 10.1021/ol800841v

    26. [26]

      Y. Matano, A. Saito, T. Fukushima, et al. Angew. Chem. Int. Ed. 50 (2011) 8016–8020.  doi: 10.1002/anie.201102782

    27. [27]

      Y. Ren, T. Baumgartner, J. Am. Chem. Soc. 133 (2011) 1328–1340.  doi: 10.1021/ja108081b

    28. [28]

      A. Bruch, A. Fukazawa, E. Yamaguchi, et al., Angew. Chem. Int. Ed. 50 (2011) 12094–12098.  doi: 10.1002/anie.201104114

    29. [29]

      Y. Hayashi, Y. Matano, K. Suda, et al., Chem. Eur. J. 18 (2012) 15972–15983.  doi: 10.1002/chem.201203047

    30. [30]

      Y. Sawada, S. Furumi, A. Takai, et al., J. Am. Chem. Soc. 134 (2012) 4080–4083.  doi: 10.1021/ja300278e

    31. [31]

      B. Wu, M. Santra, N. Yoshikai, Angew. Chem. Int. Ed. 53 (2014) 7543–7546.  doi: 10.1002/anie.201404019

    32. [32]

      B. Li, M.K. Zhang, X.L. Huang, Z.H. Gu, Org. Chem. Front. 4 (2017) 1854–1857.  doi: 10.1039/C7QO00310B

    33. [33]

      E. Si, P. Zhao, L.L. Wang, Z. Duan, F. Mathey, Eur. J. Org. Chem. 2020 (2020) 697–701.  doi: 10.1002/ejoc.201901753

    34. [34]

      H. Fujimoto, M. Kusano, T. Kodama, M. Tobisu, Org. Lett. 22 (2020) 2293–2297.  doi: 10.1021/acs.orglett.0c00489

    35. [35]

      K. Nishimura, K. Hirano, M. Miura, Org. Lett. 22 (2020) 3185–3189.  doi: 10.1021/acs.orglett.0c00944

    36. [36]

      Y. Kurimoto, J. Yamashita, K. Mitsudo, E. Sato, S. Suga, Org. Lett. 23 (2021) 3120–3124.  doi: 10.1021/acs.orglett.1c00807

    37. [37]

      D. Alberico, M.E. Scott, M. Lautens, Chem. Rev. 107 (2007) 174–238.  doi: 10.1021/cr0509760

    38. [38]

      T.W. Lyons, M.S. Sanford, Chem. Rev. 110 (2010) 1147–1169.  doi: 10.1021/cr900184e

    39. [39]

      C.L. Sun, B.J. Li, Z.J. Shi, Chem. Rev. 111 (2011) 1293–1314.  doi: 10.1021/cr100198w

    40. [40]

      K.M. Engle, T.S. Mei, M. Wasa, J.Q. Yu, Acc. Chem. Res. 45 (2011) 788–802.

    41. [41]

      N. Kuhl, M.N. Hopkinson, J.W. Delord, F. Glorius, Angew. Chem. Int. Ed. 51 (2012) 10236–10254.  doi: 10.1002/anie.201203269

    42. [42]

      J.K. Wang, Y.X. Zong, G.R. Yue, et al., Chin. Chem. Lett. 26 (2015) 1376–1380.  doi: 10.1016/j.cclet.2015.08.001

    43. [43]

      C. Wang, L. Luo, H. Yamamoto, Acc. Chem. Res. 49 (2016) 193–204.  doi: 10.1021/acs.accounts.5b00428

    44. [44]

      J.A. Labinger, Chem. Rev. 117 (2017) 8483–8496.  doi: 10.1021/acs.chemrev.6b00583

    45. [45]

      M. Parasram, V. Gevorgyan, Acc. Chem. Res. 50 (2017) 2038–2053.  doi: 10.1021/acs.accounts.7b00306

    46. [46]

      C. Sambiagio, D. Schönbauer, M. Schnürch, et al., Chem. Soc. Rev. 47 (2018) 6603–6743.

    47. [47]

      Q. Shao, K. Wu, Z. Zhuang, S. Qian, J.Q. Yu, Acc. Chem. Res. 53 (2020) 833–851.  doi: 10.1021/acs.accounts.9b00621

    48. [48]

      K.J. Jiao, Y.K. Xing, Q.L. Yang, H. Qiu, T.S. Mei, Acc. Chem. Res. 53 (2020) 300–310.  doi: 10.1021/acs.accounts.9b00603

    49. [49]

      K. Yang, Y. Li, M. Song, et al., Chin. Chem. Lett. 32 (2021) 146–149.  doi: 10.1016/j.cclet.2020.11.036

    50. [50]

      L. Liu, H. Liu, Z. Zuo et al., Chin. Chem. Lett. 32 (2021) 239–242.

    51. [51]

      K. Baba, M. Tobisu, N. Chatani, Angew. Chem. Int. Ed. 52 (2013) 11892–11895.  doi: 10.1002/anie.201307115

    52. [52]

      S. Hashimoto, S. Nakatsuka, M. Nakamura, T. Hatakeyama, Angew. Chem. Int. Ed. 53 (2014) 14074–14076.  doi: 10.1002/anie.201408390

    53. [53]

      S. Furukawa, S. Haga, J. Kobayashi, T. Kawashima, Org. Lett. 16 (2014) 3228–3231.  doi: 10.1021/ol501189u

    54. [54]

      Z. Lian, B.N. Bhawal, P. Yu, B. Morandi, Science. 356 (2017) 1059–1063.  doi: 10.1126/science.aam9041

    55. [55]

      K. Nishimura, K. Hirano, M. Miura, Org. Lett. 21 (2019) 1467–1470.  doi: 10.1021/acs.orglett.9b00219

    56. [56]

      H. Fujimoto, M. Kusano, T. Kodama, M. Tobisu, Org. Lett. 21 (2019) 4177–4181.  doi: 10.1021/acs.orglett.9b01355

    57. [57]

      Y. Kuninobu, T. Yoshida, K. Takai, J. Org. Chem. 76 (2011) 7370–7376.  doi: 10.1021/jo201030j

    58. [58]

      Y.M. Cui, L.Z. Fu, J. Cao, et al., Adv. Synth. Catal. 356 (2014) 1217–1222.  doi: 10.1002/adsc.201301081

    59. [59]

      K. Baba, M. Tobisu, N. Chatani, Org. Lett. 17 (2015) 70–73.  doi: 10.1021/ol503252t

    60. [60]

      Y. Lin, W.Y. Ma, Q.Y. Sun, Y.M. Cui, L.W. Xu, Synlett28 (2017) 1432–1436.  doi: 10.1055/s-0036-1588983

    61. [61]

      Z. Li, Z.Q. Lin, C.G. Yan, W.L. Duan, Organometallics38 (2019) 3916–3920.  doi: 10.1021/acs.organomet.9b00216

    62. [62]

      Y.R. Chen, W.L. Duan, J. Am. Chem. Soc. 135 (2013) 16754–16757.  doi: 10.1021/ja407373g

    63. [63]

      Y. Unoh, K. Hirano, T. Satoh, M. Miura, Angew. Chem. Int. Ed. 52 (2013) 12975–12979.  doi: 10.1002/anie.201307211

    64. [64]

      P. Zhang, Y. Gao, L. Zhang, et al., Adv. Synth. Catal. 358 (2016) 138–142.  doi: 10.1002/adsc.201500667

    65. [65]

      D.M. Ma, W.Z. Chen, Y.F. Zhao, et al., Green Chem. 18 (2016) 3522–3526.  doi: 10.1039/C6GC01009A

    66. [66]

      V. Quint, F. MorletSavary, J.F. Lohier, et al., J. Am. Chem. Soc. 138 (2016) 7436–7441.  doi: 10.1021/jacs.6b04069

    67. [67]

      J. Li, W.W. Zhang, X.J. Wei, B. Jiang, et al., Org. Lett. 19 (2017) 4512–4515.  doi: 10.1021/acs.orglett.7b02071

    68. [68]

      D. M Ma, J.T. Pan, Y.F. Zhao, et al., Org. Lett. 20 (2018) 3455–3459.  doi: 10.1021/acs.orglett.8b01108

    69. [69]

      K. Nishimura, Y. Unoh, K. Hirano, M. Miura, Chem. Eur. J. 24 (2018) 13089–13092.  doi: 10.1002/chem.201803225

    70. [70]

      L.X. Liu, J.Y. Dong, Y.B. Zhou, et al., Chem. Commun. 55 (2019) 233–236.  doi: 10.1039/c8cc08689c

    71. [71]

      H. Hou, Y. Xu, H.B. Yang, S.Q. Zhu, et al., Org. Biomol. Chem. 17 (2019) 8175–8184.  doi: 10.1039/c9ob01585j

    72. [72]

      W.Q. Liu, T. Lei, S. Zhou, L.Z. Wu, et al., J. Am. Chem. Soc. 141 (2019) 13941–13947.  doi: 10.1021/jacs.9b06920

    73. [73]

      D. Zhao, C. Nimphius, M. Lindale, F. Glorius, Org. Lett. 15 (2013) 4504–4507.  doi: 10.1021/ol402053n

    74. [74]

      D. Eom, Y. Jeong, P.H. Lee, et al., Org. Lett. 15 (2013) 5210–5213.  doi: 10.1021/ol402736v

    75. [75]

      L.Y. Chan, L. Cheong, S. Kim, Org. Lett. 15 (2013) 2186–2189.  doi: 10.1021/ol400732q

    76. [76]

      L. Liu, H. Yuan, T. Fu, Y.J. Zhao, et al., J. Org. Chem. 79 (2014) 80–87.

    77. [77]

      D. Gwon, D. Lee, J. Kim, S. Park, S. Chang, Chem. Eur. J. 20 (2014) 12421–12425.  doi: 10.1002/chem.201404151

    78. [78]

      K.M. Crawford, T.R. Ramseyer, C.J.A. Daley, T.B. Clark, Angew. Chem. Int. Ed. 53 (2014) 7589–7593.  doi: 10.1002/anie.201402868

    79. [79]

      X.H. Hu, X.F. Yang, T.P. Loh, Angew. Chem. Int. Ed. 54 (2015) 15535–15539.  doi: 10.1002/anie.201506437

    80. [80]

      Y. Unoh, T. Satoh, K. Hirano, M. Miura, ACS Catal. 5 (2015) 6634–6639.  doi: 10.1021/acscatal.5b01896

    81. [81]

      Z.J. Du, J. Guan, F.S. Han, J. Am. Chem. Soc. 137 (2015) 632–635.  doi: 10.1021/ja512029x

    82. [82]

      T.T. Nguyen, L. Grigorjeva, O. Daugulis, ACS Catal. 6 (2016) 551–554.  doi: 10.1021/acscatal.5b02391

    83. [83]

      Y. Yang, X. Qiu, Z. Shi, J. Am. Chem. Soc. 138 (2016) 495–498.  doi: 10.1021/jacs.5b11569

    84. [84]

      Y.S. Jang, M. Dieckmann, N. Cramer, Angew. Chem. Int. Ed. 56 (2017) 15088–15092.  doi: 10.1002/anie.201708440

    85. [85]

      S.X. Li, Y.N. Ma, S.D. Yang, Org. Lett. 19 (2017) 1842–1845.  doi: 10.1021/acs.orglett.7b00608

    86. [86]

      Y.N. Ma, S.X. Li, S.D. Yang, Acc. Chem. Res. 50 (2017) 1480–1492.  doi: 10.1021/acs.accounts.7b00167

    87. [87]

      C. Li, X.Y. Qiang, Z.C. Qi, S.D. Yang, Org. Lett. 21 (2019) 7138–7142.  doi: 10.1021/acs.orglett.9b02697

    88. [88]

      Y. Niu, Z.C. Qi, Q.X. Lou, P.B. Bai, S.D. Yang, Chem. Commun. 56 (2020) 14721–14724.  doi: 10.1039/d0cc06639g

    89. [89]

      Z.C. Qi, Q.X. Lou, Y. Niu, S.D. Yang, Chem. Commun. 57 (2021) 2021–2024.  doi: 10.1039/d0cc07596e

    90. [90]

      H.Y. Zhang, H.M. Yi, G.W. Wang, B. Yang, S.D. Yang, Org. Lett. 15 (2013) 6186–6189.  doi: 10.1021/ol403028a

    91. [91]

      H. Zhang, R.B. Hu, X.Y. Zhang, S.X. Li, S.D. Yang, Chem. Commun. 50 (2014) 4686–4689.  doi: 10.1039/C4CC01238K

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    3. [3]

      Yu PengYue WangTian-Jiao ChenJing-Jing ChenJin-Ling YangTing GongPing Zhu . A fungal CYP from Beauveria bassiana with promiscuous steroid hydroxylation capabilities. Chinese Chemical Letters, 2024, 35(5): 108818-. doi: 10.1016/j.cclet.2023.108818

    4. [4]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    5. [5]

      Yaping ZhangWei ZhouMingchun GaoTianqi LiuBingxin LiuChang-Hua DingBin Xu . Oxidative cyclization of allyl compounds and isocyanide: A facile entry to polysubstituted 2-cyanopyrroles. Chinese Chemical Letters, 2024, 35(4): 108836-. doi: 10.1016/j.cclet.2023.108836

    6. [6]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    7. [7]

      Fengqing WangChangxing QiChunmei ChenQin LiQingyi TongWeiguang SunZhengxi HuMinyan WangHucheng ZhuLianghu GuYonghui Zhang . Discovery and enantioselective total synthesis of antitumor agent asperfilasin A via a regio- and diastereoselective Nazarov cyclization. Chinese Chemical Letters, 2025, 36(6): 110252-. doi: 10.1016/j.cclet.2024.110252

    8. [8]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    9. [9]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    10. [10]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    11. [11]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    12. [12]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    13. [13]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    14. [14]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    15. [15]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    16. [16]

      Zili Ma Zeyu Li Jun Lv . Shortening the formation time of oxide thin film photoelectrodes from hours to seconds. Chinese Journal of Structural Chemistry, 2025, 44(4): 100450-100450. doi: 10.1016/j.cjsc.2024.100450

    17. [17]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    18. [18]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    19. [19]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    20. [20]

      Xiaohui FuYanping ZhangJuan LiaoZhen-Hua WangYong YouJian-Qiang ZhaoMingqiang ZhouWei-Cheng Yuan . Palladium-catalyzed enantioselective decarboxylation of vinyl cyclic carbamates: Generation of amide-based aza-1,3-dipoles and application to asymmetric 1,3-dipolar cycloaddition. Chinese Chemical Letters, 2024, 35(12): 109688-. doi: 10.1016/j.cclet.2024.109688

Metrics
  • PDF Downloads(7)
  • Abstract views(1614)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return