Construction and application of bioinspired nanochannels based on two-dimensional materials
-
* Corresponding author.
E-mail address: suixin_1991@126.com (X. Sui).
Citation:
Jinlin Hao, Weijie Wang, Jiawei Zhao, Honglin Che, Lu Chen, Xin Sui. Construction and application of bioinspired nanochannels based on two-dimensional materials[J]. Chinese Chemical Letters,
;2022, 33(5): 2291-2300.
doi:
10.1016/j.cclet.2021.10.011
M.S.P. Sansom, Curr. Biol. 5 (1995) 373–375.
doi: 10.1016/S0960-9822(95)00076-5
K. Sato, M. Pellegrino, T. Nakagawa, et al., Nature 452 (2008) 1002–1006.
doi: 10.1038/nature06850
A. Taruno, V. Vingtdeux, M. Ohmoto, et al., Nature 495 (2013) 223–226.
doi: 10.1038/nature11906
J. Saam, E. Tajkhorshid, S. Hayashi, K. Schulten, Biophys. J. 83 (2002) 3097–3112.
doi: 10.1016/S0006-3495(02)75314-9
Z. Zhang, X.D. Huang, Y.C. Qian, et al., Adv. Mater. 32 (2020) 3300–3305.
P.A. Pappone, M.D. Cahalan, J. Neurosci. 7 (1987) 3300–3305.
doi: 10.1523/jneurosci.07-10-03300.1987
O.F. Mohammed, D. Pines, J. Dreyer, E. Pines, E.T.J. Nibbering, Science 310 (2005) 83–86.
doi: 10.1126/science.1117756
N. Sperelakis, Y. Katsube, H. Yokoshiki, H. Sada, K. Sumii, Molecular, Mol. Cell. Biochem. 164 (1996) 85–98.
K.C. Catania, Brain Behav. Evol. 86 (2015) 38–47.
doi: 10.1159/000435945
K.C. Catania, Nat. Commun. 6 (2015) 1231–1234.
K. Catania, Science 346 (2014) 1231–1234.
doi: 10.1126/science.1260807
X. Hou, L. Jiang, ACS Nano 3 (2009) 3339–3342.
doi: 10.1021/nn901402b
C.R. Martin, Z.S. Siwy, Science 317 (2007) 331–332.
doi: 10.1126/science.1146126
L.P. Wen, X.Q. Zhang, Y. Tian, L. Jiang, Sci. China Mater. 61 (2018) 1027–1032.
doi: 10.1007/s40843-018-9289-2
L.P. Wen, Y. Tian, J. Ma, J. Zhai, L. Jiang, Phys. Chem. Chem. Phys. 14 (2012) 4027–4042.
doi: 10.1039/c2cp23911f
K.Y. Chun, Y.J. Son, C.S. Han, ACS Nano 10 (2016) 4550–4558.
doi: 10.1021/acsnano.6b00582
M. Ali, B. Yameen, R. Neumann, et al., J. Am. Chem. Soc. 130 (2008) 16351–16357.
doi: 10.1021/ja8071258
X. Hou, Adv. Mater. 28 (2016) 7049–7064.
doi: 10.1002/adma.201600797
J. Xu, D.A. Lavan, Nat. Nanotechnol. 3 (2008) 666–670.
doi: 10.1038/nnano.2008.274
M.H. Zhang, X. Hou, J.T. Wang, et al., Adv. Mater. 24 (2012) 2424–2428.
doi: 10.1002/adma.201104536
G.F. Schneider, Q. Xu, S. Hage, et al., Nat. Commun. 4 (2013) 2619.
doi: 10.1038/ncomms3619
X. Hou, Y.H. Hu, A. Grinthal, M. Khan, J. Aizenberg, Nature 519 (2015) 70–73.
doi: 10.1038/nature14253
M. Heiranian, A.B. Farimani, N.R. Aluru, Nat. Commun. 6 (2015) 8616.
doi: 10.1038/ncomms9616
J.R. Burns, A. Seifert, N. Fertig, S. Howorka, Nat. Nanotechnol. 11 (2016) 152–156.
doi: 10.1038/nnano.2015.279
B. Su, Y. Tian, L. Jiang, J. Am. Chem. Soc. 138 (2016) 1727–1748.
doi: 10.1021/jacs.5b12728
Y.L. Tan, C.X. Yang, W.W. Qian, C. Teng, J. Alloy. Compd. 826 (2020) 154133.
doi: 10.1016/j.jallcom.2020.154133
R.B. Schoch, J.Y. Han, P. Renaud, Rev. Mod. Phys. 80 (2008) 839–883.
doi: 10.1103/RevModPhys.80.839
W. Sparreboom, A. van den Berg, J.C.T. Eijkel, Nat. Nanotechnol. 4 (2009) 713–720.
doi: 10.1038/nnano.2009.332
M. Wang, Y.Q. Hou, L.J. Yu, X. Hou, Nano. Lett. 20 (2020) 6937–6946.
doi: 10.1021/acs.nanolett.0c02999
W. Guo, L.X. Cao, J.C. Xia, et al., Adv. Funct. Mater. 20 (2010) 1339–1344.
doi: 10.1002/adfm.200902312
Y.L. Xu, X. Sui, S. Guan, J. Zhai, L.C. Gao, Adv. Mater. 27 (2015) 1851–1855.
doi: 10.1002/adma.201405564
Y.L. Xu, X. Sui, J.Q. Jiang, J. Zhai, L.C. Gao, Adv. Mater. 28 (2016) 10780–10785.
doi: 10.1002/adma.201603478
C.Y. Lee, W. Choi, J.H. Han, M.S. Strano, Science 329 (2010) 1320–1324.
doi: 10.1126/science.1193383
H.W. Liang, X. Cao, W.J. Zhang, et al., Adv. Funct. Mater. 21 (2011) 3851–3858.
doi: 10.1002/adfm.201100983
J. Wu, N. Wang, L. Wang, et al., ACS Appl. Mater. Interfaces 4 (2012) 3207–3212.
doi: 10.1021/am300544d
J.W. Liu, H.W. Liang, S.H. Yu, Chem. Rev. 112 (2012) 4770–4799.
doi: 10.1021/cr200347w
F. Mirri, A.W.K. Ma, T.T. Hsu, et al., ACS Nano 6 (2012) 9737–9744.
doi: 10.1021/nn303201g
R.P. Zhang, J. Liu, H.G. Guo, X.L. Tong, Mater. Lett. 139 (2015) 55–58.
doi: 10.1016/j.matlet.2014.10.039
J.L. Hao, T. Yang, X.L. He, H.Y. Tang, X. Sui, Giant 5 (2021) 100049.
doi: 10.1016/j.giant.2021.100049
H. Ma, S. Wang, B. Yu, et al., Sci. China Mater. 64 (2020) 1320–1342.
G.M. Luz, J.F. Mano, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367 (2009) 1587–1605.
doi: 10.1098/rsta.2009.0007
G.W. Gokel, S. Negin, Accounts Chem. Res. 46 (2013) 2824–2833.
doi: 10.1021/ar400026x
S. Hong, C. Constans, M.V.S. Martins, et al., Nano. Lett. 17 (2017) 728–732.
doi: 10.1021/acs.nanolett.6b03837
L. Ding, D. Xiao, Z. Lu, et al., Angew. Chem. Int. Ed. 59 (2020) 8720–8726.
doi: 10.1002/anie.201915993
S. Hong, F.W. Ming, Y. Shi, et al., ACS Nano 13 (2019) 8917–8925.
doi: 10.1021/acsnano.9b02579
Z. Zhang, P.P. Zhang, S. Yang, et al., Proc. Natl. Acad. Sci. U. S. A. 117 (2020) 13959–13966.
doi: 10.1073/pnas.2003898117
J.D. Feng, M. Graf, K. Liu, et al., Nature 536 (2016) 197–200.
doi: 10.1038/nature18593
C.C. Zhu, P. Liu, B. Niu, et al., J. Am. Chem. Soc. 143 (2021) 1932–1940.
doi: 10.1021/jacs.0c11251
K. Xiao, L. Chen, R.T. Chen, et al., Nat. Commun. 10 (2019) 8117.
M.L. Liu, M. Huang, L.Y. Tian, et al., ACS Appl. Mater. Interfaces 10 (2018) 44915–44923.
doi: 10.1021/acsami.8b17719
J.J. Shao, K. Raidongia, A.R. Koltonow, J.X. Huang, Nat. Commun. 6 (2015) 7602.
doi: 10.1038/ncomms8602
K. Raidongia, J.X. Huang, J. Am. Chem. Soc. 134 (2012) 16528–16531.
doi: 10.1021/ja308167f
J.Z. Ji, Q. Kang, Y. Zhou, et al., Adv. Funct. Mater. 27 (2017) 1603623.
doi: 10.1002/adfm.201603623
L.K. Li, Y.J. Yu, G.J. Ye, et al., Nat. Nanotechnol. 9 (2014) 372–377.
doi: 10.1038/nnano.2014.35
H. Liu, A.T. Neal, Z. Zhu, et al., ACS Nano 8 (2014) 4033–4041.
doi: 10.1021/nn501226z
A.J. Mannix, X.F. Zhou, B. Kiraly, et al., Science 350 (2015) 1513–1516.
doi: 10.1126/science.aad1080
B.J. Feng, J. Zhang, Q. Zhong, et al., Nat. Chem. 8 (2016) 564–569.
S. Kumar, N. Kaur, V. Bhullar, A. Mahajan, Phys. E 128 (2021) 114589.
doi: 10.1016/j.physe.2020.114589
W. Li, Y. Yang, J.K. Weber, G. Zhang, R. Zhou, ACS Nano 10 (2016) 1829–1835.
doi: 10.1021/acsnano.5b05250
J.C. Lao, R.J. Lv, J. Gao, et al., ACS Nano 12 (2018) 12464–12471.
doi: 10.1021/acsnano.8b06708
P. Liu, T. Zhou, Y. Teng, et al., CCS Chem. 3 (2021) 1325–1335.
doi: 10.31635/ccschem.020.202000296
Y.Q. Wang, H.C. Zhang, Y. Kang, et al., ACS Nano 13 (2019) 11793–11799.
doi: 10.1021/acsnano.9b05758
A. Siria, P. Poncharal, A.L. Biance, et al., Nature 494 (2013) 455–458.
doi: 10.1038/nature11876
K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Science 306 (2004) 666–669.
doi: 10.1126/science.1102896
S. Yang, K. Zhang, A.G. Ricciardulli, et al., Angew. Chem. Int. Ed. 57 (2018) 4677–4681.
doi: 10.1002/anie.201801265
K. Liu, J.D. Feng, A. Kis, A. Radenovic, ACS Nano 8 (2014) 2504–2511.
doi: 10.1021/nn406102h
H.B. Yao, Z.H. Tan, H.Y. Fang, S.H. Yu, Angew. Chem. Int. Ed. 49 (2010) 10127–10131.
doi: 10.1002/anie.201004748
Y.F. Lu, Y. Yang, A. Sellinger, et al., Nature 410 (2001) 913–917.
doi: 10.1038/35073544
C.R. Wu, T.L. Xiao, J.D. Tang, et al., Nano Energy 76 (2020) 105113.
doi: 10.1016/j.nanoen.2020.105113
S.K. Hubadillah, M.H.D. Othman, T. Matsuura, et al., Ceram. Int. 44 (2018) 4538–4560.
doi: 10.1016/j.ceramint.2017.12.215
Z.S. Altschuler, H. Kramer, E.J. Dwornik, Science 141 (1963) 148–152.
doi: 10.1126/science.141.3576.148
H.F. Cheng, Y. Zhou, Y.P. Feng, et al., Adv. Mater. 29 (2017) 1700177.
doi: 10.1002/adma.201700177
Z. Zhang, S. Yang, P.P. Zhang, et al., Nat. Commun. 10 (2019) 2920.
doi: 10.1038/s41467-019-10885-8
R.J. Qu, X.H. Zeng, L.X. Lin, et al., ACS Nano 14 (2020) 16654–16662.
doi: 10.1021/acsnano.0c02202
P. Liu, W. Ding, J. Liu, et al., J. Alloy. Compd. 829 (2020) 154634.
doi: 10.1016/j.jallcom.2020.154634
F. Wang, C.H. Yang, M. Duan, Y. Tang, J.F. Zhu, Biosens. Bioelectron. 74 (2015) 1022–1028.
doi: 10.1016/j.bios.2015.08.004
L.Y. Zhou, X. Zhang, L. Ma, J. Gao, Y.J. Jiang, Biochem. Eng. J. 128 (2017) 243–249.
doi: 10.1016/j.bej.2017.10.008
O. Shekhah, J. Liu, R.A. Fischer, C. Woll, Chem. Soc. Rev. 40 (2011) 1081–1106.
doi: 10.1039/c0cs00147c
M.L. Ding, R.W. Flaig, H.L. Jiang, O.M. Yaghi, Chem. Soc. Rev. 48 (2019) 2783–2828.
doi: 10.1039/c8cs00829a
R.R. Li, J.Q. Jiang, Q.Q. Liu, Z.Q. Xie, J. Zhai, Nano Energy 53 (2018) 643–649.
doi: 10.1016/j.nanoen.2018.09.015
A. Pendse, S. Cetindag, P. Rehak, et al., Adv. Funct. Mater. 31 (2021) 2009586.
doi: 10.1002/adfm.202009586
S.F. Wang, L.X. Yang, G.W. He, et al., Chem. Soc. Rev. 49 (2020) 1071–1089.
doi: 10.1039/c9cs00751b
M. Xu, S.S. Yang, Z.Y. Gu, Chem. Eur. J. 24 (2018) 15131–15142.
doi: 10.1002/chem.201800556
B.B. Zhu, Q.C. Chen, S.Y. Jiang, et al., InfoMat 3 (2021) 271–292.
doi: 10.1002/inf2.12169
C.H. Tsou, Q.F. An, S.C. Lo, et al., J. Membr. Sci. 477 (2015) 93–100.
doi: 10.1016/j.memsci.2014.12.039
Z. Liu, Z. Li, Z. Xu, et al., Chem. Mat., 26 (2014) 6786–6795.
doi: 10.1021/cm5033089
K. Xiao, P. Giusto, L.P. Wen, L. Jiang, M. Antonietti, Angew. Chem. Int. Ed. 57 (2018) 10123–10126.
doi: 10.1002/anie.201804299
Y. Sun, S. Chen, X.Y. Chen, et al., Nat. Commun. 10 (2019) 1323.
doi: 10.2147/dddt.s191161
M. Tagliazucchi, O. Azzaroni, I. Szleifer, J. Am. Chem. Soc. 132 (2010) 12404–12411.
doi: 10.1021/ja104152g
X. Hou, W. Guo, F. Xia, et al., J. Am. Chem. Soc. 131 (2009) 7800–7805.
doi: 10.1021/ja901574c
W. Jia, B.H. Wu, S.T. Sun, P.Y. Wu, Nano Res. 13 (2020) 2973–2978.
doi: 10.1007/s12274-020-2959-6
H.W. Liu, J.J. Zhu, L. Hao, et al., J. Membr. Sci. 587 (2019) 117163.
doi: 10.1016/j.memsci.2019.06.003
K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto, Science 353 (2016) aac9439.
doi: 10.1126/science.aac9439
G.G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones, Rep. Prog. Phys. 80 (2017) 1–62.
S.L. Yu, X.Q. Wu, Y.P. Wang, X. Guo, L.M. Tong, Adv. Mater. 29 (2017) 1606128.
doi: 10.1002/adma.201606128
H.J. Zhang, G. Yang, X.Q. Zuo, et al., J. Mater. Chem. A 4 (2016) 12913–12920.
doi: 10.1039/C6TA04628B
K. Hantanasirisakul, Y. Gogotsi, Adv. Mater. 30 (2018) 1804779.
doi: 10.1002/adma.201804779
M. Graf, M. Lihter, D. Unuchek, et al., Joule 3 (2019) 1549–1564.
doi: 10.1016/j.joule.2019.04.011
L.L. Wang, Y.P. Feng, Y. Zhou, et al., Chem. Sci. 8 (2017) 4381–4386.
doi: 10.1039/C7SC00153C
E. Ahn, H. Gaiji, T. Kim, et al., J. Membr. Sci. 585 (2019) 191–198.
doi: 10.1016/j.memsci.2019.05.035
C. Zhang, W. Chen, Y. Hong, X. Wang, Langmuir 37 (2021) 4632–4638.
doi: 10.1021/acs.langmuir.1c00320
D. Crespy, R.N. Rossi, Polym. Int. 56 (2007) 1461–1468.
doi: 10.1002/pi.2277
J.T. Sun, Z.Q. Yu, C.Y. Hong, C.Y. Pan, Macromol. Rapid Commun. 33 (2012) 811–818.
doi: 10.1002/marc.201100876
Y. Kotsuchibashi, Polym. J. 52 (2020) 681–689.
doi: 10.1038/s41428-020-0330-0
J.M. Shen, K. Han, E.J. Martin, et al., J. Mater. Chem. A 2 (2014) 18204–18207.
doi: 10.1039/C4TA04852K
D. Wu, W.W. Xin, X.Y. Kong, et al., Mater. Horiz. 7 (2020) 2702–2709.
doi: 10.1039/d0mh00979b
Q. Zhang, W.J. Wang, J.Q. Zhang, X.H. Zhu, L. Fu, Adv. Mater. 30 (2018) 1704587.
doi: 10.1002/adma.201704587
S.F. Wang, L.X. Yang, G.W. He, et al., Chem. Soc. Rev. 49 (2020) 1071–1089.
doi: 10.1039/c9cs00751b
X.L. Wu, X.L. Cui, W.J. Wu, et al., Angew. Chem. Int. Ed. 58 (2019) 18524–18529.
doi: 10.1002/anie.201912570
R.K. Joshi, P. Carbone, F.C. Wang, et al., Science 343 (2014) 752–754.
doi: 10.1126/science.1245711
B.X. Mi, Science 343 (2014) 740–742.
doi: 10.1126/science.1250247
S. Kim, J. Nham, Y.S. Jeong, et al., Chem. Mat. 27 (2015) 1255–1261.
doi: 10.1021/cm504212j
K. Xiao, L. Jiang, M. Antonietti, Joule 3 (2019) 2364–2380.
doi: 10.1016/j.joule.2019.09.005
B.E. Logan, M. Elimelech, Nature 488 (2012) 313–319.
doi: 10.1038/nature11477
S. Loeb, Science 189 (1975) 654–655.
doi: 10.1126/science.189.4203.654
R.E. Pattle, Nature 174 (1954) 660-660.
doi: 10.1038/174660a0
D.A. Vermaas, J. Veerman, N.Y. Yip, et al., ACS Sustain. Chem. Eng. 1 (2013) 1295–1302.
doi: 10.1021/sc400150w
N.Y. Yip, D.A. Vermaas, K. Nijmeijer, M. Elimelech, Environ. Sci. Technol. 48 (2014) 4925–4936.
doi: 10.1021/es5005413
P. Dlugolecki, K. Nymeijer, S. Metz, M. Wessling, J. Membr. Sci. 319 (2008) 214–222.
doi: 10.1016/j.memsci.2008.03.037
G.Z. Ramon, B.J. Feinberg, E.M.V. Hoek, Energy Environ. Sci. 4 (2011) 4423–4434.
doi: 10.1039/c1ee01913a
Y.L. Xu, Y.J. Song, F. Xu, Nano Energy 79 (2021) 105468.
doi: 10.1016/j.nanoen.2020.105468
Z. Zhang, L.P. Wen, L. Jiang, Nat. Rev. Mater. 18 (2021) 1–18.
X. Tong, X. Wang, S. Liu, et al., Carbon N Y 138 (2018) 410–418.
doi: 10.1016/j.carbon.2018.07.064
P.Z. Sun, F. Zheng, M. Zhu, et al., Sci. Rep. 4 (2014) 5528.
F.H.J. van der Heyden, D.J. Bonthuis, D. Stein, C. Meyer, C. Dekker, Nano Lett. 6 (2006) 2232–2237.
doi: 10.1021/nl061524l
J. Zhang, K. Zhan, S.L. Wang, X. Hou, Soft Matter 16 (2020) 2915–2927.
doi: 10.1039/c9sm02506e
S. Qin, D. Liu, G. Wang, et al., J. Mater. Chem. 139 (2017) 6314–6320.
doi: 10.1021/jacs.6b11100
X.P. Zhang, Q. Wen, L.L. Wang, et al., ACS Nano 13 (2019) 4238–4245.
doi: 10.1021/acsnano.8b09285
D.Y. Ji, Q. Wen, L.X. Cao, et al., Adv. Mater. Technol. 4 (2019) 1800742.
doi: 10.1002/admt.201800742
L.P. Wen, X. Hou, Y. Tian, et al., Adv. Mater. 22 (2010) 1021–1024.
doi: 10.1002/adma.200903161
L.P. Wen, X. Hou, Y. Tian, J. Zhai, L. Jiang, Adv. Funct. Mater. 20 (2010) 2636–2642.
doi: 10.1002/adfm.201000239
J.L. Yang, X.Y. Hu, X. Kong, et al., Nat. Commun. 10 (2019) 1171.
doi: 10.1038/s41467-019-09178-x
Dong-Xue Jiao , Hui-Li Zhang , Chao He , Si-Yu Chen , Ke Wang , Xiao-Han Zhang , Li Wei , Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304
Xiaoming Fu , Haibo Huang , Guogang Tang , Jingmin Zhang , Junyue Sheng , Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214
Tianhao Li , Wenguang Tu , Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195
Zhao Li , Huimin Yang , Wenjing Cheng , Lin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Guilong Li , Wenbo Ma , Jialing Zhou , Caiqin Wu , Chenling Yao , Huan Zeng , Jian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449
Li Li , Xue Ke , Shan Wang , Zhuo Jiang , Yuzheng Guo , Chunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423
Jijoe Samuel Prabagar , Kumbam Lingeshwar Reddy , Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564
Zongyi Huang , Cheng Guo , Quanxing Zheng , Hongliang Lu , Pengfei Ma , Zhengzhong Fang , Pengfei Sun , Xiaodong Yi , Zhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580
Jieqiong Qin , Zhi Yang , Jiaxin Ma , Liangzhu Zhang , Feifei Xing , Hongtao Zhang , Shuxia Tian , Shuanghao Zheng , Zhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Liyong Ding , Zhenhua Pan , Qian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125
Wenhao Chen , Muxuan Wu , Han Chen , Lue Mo , Yirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698
Yan-Jiang Li , Shu-Lei Chou , Yao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389
Yuan Teng , Zichun Zhou , Jinghua Chen , Siying Huang , Hongyan Chen , Daibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430
Zhenhao Wang , Yuliang Tang , Ruyu Li , Shuai Tian , Yu Tang , Dehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247
Chaozheng He , Jia Wang , Ling Fu , Wei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037
Jaeyong Ahn , Zhenping Li , Zhiwei Wang , Ke Gao , Huagui Zhuo , Wanuk Choi , Gang Chang , Xiaobo Shang , Joon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777
Lili Wang , Ya Yan , Rulin Li , Xujie Han , Jiahui Li , Ting Ran , Jialu Li , Baichuan Xiong , Xiaorong Song , Zhaohui Yin , Hong Wang , Qingjun Zhu , Bowen Cheng , Zhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011