Applications of ambient electric arc ionization mass spectrometry in saline samples
-
* Corresponding author.
E-mail address: panyuanjiang@zju.edu.cn (Y. Pan).
1 These authors contributed equally to this work.
Citation:
Yuan Li, Yuanji Gao, Binpeng Zhan, Weiwei Chen, Fengjian Chu, Hongru Feng, Zhan Gao, Zihan Ma, Yuanjiang Pan. Applications of ambient electric arc ionization mass spectrometry in saline samples[J]. Chinese Chemical Letters,
;2022, 33(5): 2708-2710.
doi:
10.1016/j.cclet.2021.08.119
T.M. Annesley, Clin. Chem.49 (2003) 1041-1044.
doi: 10.1373/49.7.1041
J. Hu, Q.Y. Guan, J. Wang, et al., Anal. Chem. 89 (2017) 1838-1845.
doi: 10.1021/acs.analchem.6b04218
Z. Wang, H.J. Zhu, G.M. Huang, Rapid Commun. Mass Spectrom. 31 (2017) 1957-1962.
doi: 10.1002/rcm.7977
R. Juraschek, T. Dülcks, M. Karas, J. Am. Soc. Mass Spectrom. 10 (1999) 300-308.
doi: 10.1016/S1044-0305(98)00157-3
D.Y. Chang, C.C. Lee, J. Shiea, Anal. Chem. 74 (2002) 2465.
doi: 10.1021/ac010788j
K.J. Fountain, M. Gilar, J.C. Gebler, Rapid Commun. Mass Spectrom. 18 (2004) 1295-1302.
doi: 10.1002/rcm.1481
A.U. Jackson, N. Talaty, R.G. Cooks, G. J. Van Berkel, J. Am. Soc. Mass Spectrom. 18 (2007) 2218-2225.
doi: 10.1016/j.jasms.2007.09.018
N. Na, M.X. Zhao, S.C. Zhang, C.D. Yang, X.R. Zhang, J. Am. Soc. Mass Spectrom. 18 (2007) 1859-1862.
doi: 10.1016/j.jasms.2007.07.027
G.Y. Li, G.M. Huang, J. Mass Spectrom. 49 (2014), 639-645.
doi: 10.1002/jms.3385
B.W.J. Pirok, D.R. Stoll, P.J. Schoenmakers, Anal. Chem. 91 (2019) 240-263.
doi: 10.1021/acs.analchem.8b04841
Z. Takats, J.M. Wiseman, B. Gologan, R.G. Cooks, Science306 (2004) 471-473.
doi: 10.1126/science.1104404
I.L. Arnaud, J. Josserand, H. Jensen, et al., Electrophoresis26 (2005) 1650-1658.
doi: 10.1002/elps.200410294
H.W. Chen, A. Venter, R.G. Cooks, Chem. Commun. 19 (2006) 2042-2044.
doi: 10.1039/b602614a
K. Hiraoka, K. Nishidate, K. Mori, D. Asakawa, S. Suzuki, Rapid Commun. Mass Spectrom. 21 (2007) 3139-3144.
doi: 10.1002/rcm.3201
A. Venter, M. Nefliu, R.G. Cooks, Trends Anal. Chem. 27 (2008) 284-290.
doi: 10.1016/j.trac.2008.01.010
M.K. Mandal, L.C. Chen, Y. Hashimoto, Z. Yuac, K. Hiraoka, Anal. Methods2 (2010) 1905-1912.
doi: 10.1039/c0ay00530d
H. Wang, J.J. Liu, R.G. Cooks, Z. Ouyang, Angew. Chem., Int. Ed. Engl. 49 (2010) 877-880.
doi: 10.1002/anie.200906314
Y. Akiyama, Y. Takahashi, I. Akutagawa, et al., Int. J. Mass Spectrom. 306 (2011) 37-43.
doi: 10.1016/j.ijms.2011.06.005
Y.D. Zhang, X.J. Li, H.G. Nie, et al., Anal. Chem. 87 (2015) 6505-6509.
doi: 10.1021/acs.analchem.5b01272
S.T. Xu, Y.D. Zhang, L.N. Xu, Y. Bai, H.W. Liu, Analyst141 (2016) 5913-5921.
doi: 10.1039/C6AN01705C
L. Hartmanová, P. Fryčák, M. Soural, et al., J. Mass Spectrom. 49 (2014), 750-754.
doi: 10.1002/jms.3383
Y.D. Zhang, W.P. Ai, Y. Bai, et al., Anal. Bioanal. Chem. 408 (2016) 8655-8661.
doi: 10.1007/s00216-016-9822-3
W.H. Wu, D.X. Zhang, K.X. Chen, et al., Anal. Chem. 90 (2018) 14395-14401.
doi: 10.1021/acs.analchem.8b03934
S.Z. Zhu, L. Zhang, J. Zhang, Y.L. Guo, Anal. Chem. 92 (2020) 14633-14639.
doi: 10.1021/acs.analchem.0c03127
J. Heberlein, J. Mentel, E. Pfender, J. Phys. D: Appl. Phys. 43 (2010) 023001.
doi: 10.1088/0022-3727/43/2/023001
J.H. Gross, Anal. Bioanal. Chem. 406 (2013), 63-80.
X.J. Li, X. Wang, L.N. Li, Y. Bai, H.W. Liu, Mass Spectrom. Lett., 6 (2015), 1-6.
doi: 10.5478/MSL.2015.6.1.1
X.P. Liu, H.Y. Wang, J.T. Zhang, et al., Sci. Rep. 5 (2015) 16893.
doi: 10.1038/srep16893
H. Lu, Y.Y. Yin, J.H. Sun, et al., Chin. Chem. Lett. 32 (2021) 3457–3462.
doi: 10.1016/j.cclet.2021.05.074
Y.J. Gao, Y. Li, B.P. Zhan, et al., Analyst 146 (2021) 5682–5690.
doi: 10.1039/d1an00872b
R. Chen, L. Li, J. Am. Soc. Mass Spectrom. 12 (2001) 832-839.
doi: 10.1016/S1044-0305(01)00261-6
J.Y. Pei, K.F. Yu, Y.H. Wang, RSC Adv. 6 (2016), 2496-2499.
doi: 10.1039/C5RA22626K
X.P. Liu, H.Y. Wang, G.Q. Dong, et al., J. Am. Soc. Mass Spectrom. 29 (2018) 1319-1322.
doi: 10.1007/s13361-018-1962-6
Tian Feng , Yun-Ling Gao , Di Hu , Ke-Yu Yuan , Shu-Yi Gu , Yao-Hua Gu , Si-Yu Yu , Jun Xiong , Yu-Qi Feng , Jie Wang , Bi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259
Cheng Guo , Xiaoxiao Zhang , Xiujuan Hong , Yiqiu Hu , Lingna Mao , Kezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867
Junmeng Luo , Qiongqiong Wan , Suming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836
Keqiang Shi , Xiujuan Hong , Dongyan Xu , Tao Pan , Huiwen Wang , Hongru Feng , Cheng Guo , Yuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079
Yang Feng , Yang-Qing Tian , Yong-Qiang Zhao , Sheng-Jun Chen , Bi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656
Qiongqiong Wan , Yanan Xiao , Guifang Feng , Xin Dong , Wenjing Nie , Ming Gao , Qingtao Meng , Suming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775
Yao-Hua Gu , Yu Chen , Qing Li , Neng-Bin Xie , Xue Xing , Jun Xiong , Min Hu , Tian-Zhou Li , Ke-Yu Yuan , Yu Liu , Tang Tang , Fan He , Bi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627
Lu Huang , Jiang Wang , Hong Jiang , Lanfang Chen , Huanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896
Haiyan Lu , Jiayue Ye , Yiping Wei , Hua Zhang , Konstantin Chingin , Vladimir Frankevich , Huanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077
Wen Su , Siying Liu , Qingfu Zhang , Zhongyan Zhou , Na Wang , Lei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237
Wei Shao , Wanqun Zhang , Pingping Zhu , Wanqun Hu , Qiang Zhou , Weiwei Li , Kaiping Yang , Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048
Yanhua Chen , Xian Ding , Jun Zhou , Zhaoying Wang , Yunhai Bo , Ying Hu , Qingce Zang , Jing Xu , Ruiping Zhang , Jiuming He , Fen Yang , Zeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351
Feng-Qing Huang , Yu Wang , Ji-Wen Wang , Dai Yang , Shi-Lei Wang , Yuan-Ming Fan , Raphael N. Alolga , Lian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670
Wengao Zeng , Yuchen Dong , Xiaoyuan Ye , Ziying Zhang , Tuo Zhang , Xiangjiu Guan , Liejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252
Ying Chen , Xingyuan Xia , Lei Tian , Mengying Yin , Ling-Ling Zheng , Qian Fu , Daishe Wu , Jian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789
Shudi Yu , Jie Li , Jiongting Yin , Wanyu Liang , Yangping Zhang , Tianpeng Liu , Mengyun Hu , Yong Wang , Zhengying Wu , Yuefan Zhang , Yukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Jing Chen , Peisi Xie , Pengfei Wu , Yu He , Zian Lin , Zongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895
Hui Wang , Haodong Ji , Dandan Zhang , Xudong Yang , Hanchun Chen , Chunqian Jiang , Weiliang Sun , Jun Duan , Wen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200