Encapsulation strategies on 2D materials for field effect transistors and photodetectors
-
* Corresponding authors.
E-mail addresses: xchen@wit.edu.cn (X. Chen), zhaity@hust.edu.cn (T. Zhai).
Citation:
Wenjuan Huang, Yue Zhang, Mengting Song, Bugao Wang, Huayi Hou, Xiaozong Hu, Xiangbai Chen, Tianyou Zhai. Encapsulation strategies on 2D materials for field effect transistors and photodetectors[J]. Chinese Chemical Letters,
;2022, 33(5): 2281-2290.
doi:
10.1016/j.cclet.2021.08.086
H. Liu, A.T. Neal, P.D. Ye, ACS Nano 6 (2012) 8563-8569.
doi: 10.1021/nn303513c
G.E. Moore, Proc. IEEE 86 (1998) 82-85.
doi: 10.1109/JPROC.1998.658762
L.K. Li, Y.J. Yu, G.J. Ye, et al., Nat. Nanotechnol. 9 (2014) 372-377.
doi: 10.1038/nnano.2014.35
F. Wang, Z.X. Wang, C. Jiang, et al., Small 13 (2017) 1604298.
doi: 10.1002/smll.201604298
Y.B. Zhao, H. Hu, X.X. Yang, et al., Small 12 (2016) 4471-4476.
doi: 10.1002/smll.201601354
L.X. Liu, T.Y. Zhai, Infomat 3 (2021) 3-21.
doi: 10.1002/inf2.12164
M.Q. Li, C.Y. Lin, S.H. Yang, et al., Adv. Mater. 30 (2018) 1803690.
doi: 10.1002/adma.201803690
S.J. Liang, B. Cheng, X. Cui, et al., Adv. Mater. 32 (2020) 1903800.
K. Novoselov, A. Geim, S. Morozov, et al., Nat. Mater. 6 (2004) 666-669.
F. Xia, T. Mueller, Y.M. Lin, et al., Nat. Nanotechnol. 4 (2009) 839-843.
doi: 10.1038/nnano.2009.292
M.S. Jang, H. Kim, Y.W. Son, et al., PNAS 110 (2013) 8786-8789.
doi: 10.1073/pnas.1305416110
F. Wang, Z.X. Wang, L. Yin, et al., Chem. Soc. Rev. 47 (2018) 6296-6341.
doi: 10.1039/C8CS00255J
N. Youngblood, C. Chen, S.J. Koester, et al., Nat. Photonics 9 (2015) 247-252.
doi: 10.1038/nphoton.2015.23
W.J. Huang, X.B. Chen, H.Y. Hou, et al., Chem. J. Chin. Univ. 41 (2020) 682-689.
Z.Y. Hu, Y.C. Ding, X.M. Hu, et al., Nanotechnology 30 (2019).
doi: 10.1088/1361-6528/ab07d9
B. Radisavljevic, A. Radenovic, J. Brivio, et al., Nat. Nanotechnol. 6 (2011) 147-150.
doi: 10.1038/nnano.2010.279
X.W. Wang, Y.H. Sun, K. Liu, 2D Mater. 6 (2019) 042001.
doi: 10.1088/2053-1583/ab20d6
J. Gao, B.C. Li, J.W. Tan, et al., ACS Nano 10 (2016) 2628-2635.
doi: 10.1021/acsnano.5b07677
W.J. Huang, M. Song, Y. Zhang, et al., Opt. Mater. 119 (2021) 111372.
doi: 10.1016/j.optmat.2021.111372
Q.H. Zhou, Q. Chen, Y.L. Tong, et al., Angew. Chem. Int. Ed. 55 (2016) 11437-11441.
doi: 10.1002/anie.201605168
Z. Hu, Q. Li, B. Lei, et al., Angew. Chem. Int. Ed. 56 (2017) 9131-9135.
doi: 10.1002/anie.201705012
A. Favron, E. Gaufrès, F. Fossard, et al., Nat. Mater. 14 (2015) 826-832.
doi: 10.1038/nmat4299
Z. Liu, Y. Gong, W. Zhou, et al., Nat. Commun. 4 (2013) 2541.
doi: 10.1038/ncomms3541
Y. Liu, C. Tan, H. Chou, et al., Nano Lett. 15 (2015) 4979-4984.
doi: 10.1021/acs.nanolett.5b02069
A.A. Kistanov, Y. Cai, K. Zhou, et al., J. Mater. Chem. C 6 (2018) 518-525.
doi: 10.1039/C7TC04738J
L. Shi, Q. Li, Y.X. Ouyang, et al., Nanoscale 10 (2018) 12180-12186.
doi: 10.1039/C8NR01533C
A. Piazza, F. Giannazzo, G. Buscarino, et al., J. Phys. Chem. C 119 (2015) 22718-22723.
doi: 10.1021/acs.jpcc.5b07301
P.H. Ho, Y.R. Chang, Y.C. Chu, et al., ACS Nano 11 (2017) 7362-7370.
doi: 10.1021/acsnano.7b03531
Y. Cai, G. Zhang, Y.W. Zhang, J. Phys. Chem. C 121 (2017) 10182-10193.
doi: 10.1021/acs.jpcc.7b02286
A. Politano, G. Chiarello, R. Samnakay, et al., Nanoscale 8 (2016) 8474-8479.
doi: 10.1039/C6NR01262K
C. Li, X.Y. Hu, T.Y. He, et al., J. Shenzhen. Univ. Sci. Technol. 35 (2018) 257-266.
G. -H. Lee, X. Cui, Y.D. Kim, et al., ACS Nano 9 (2015) 7019-7026.
doi: 10.1021/acsnano.5b01341
X.L. Chen, Y.Y. Wu, Z.F. Wu, et al., Nat. Commun. 6 (2015) 7315.
doi: 10.1038/ncomms8315
Y. Son, D. Kozawa, A.T. Liu, et al., 2D Mater. 4 (2017) 025091.
doi: 10.1088/2053-1583/aa6e35
W.G. Liao, W. Wei, Y. Tong, et al., Appl. Phys. Lett. 111 (2017) 082105.
doi: 10.1063/1.4993233
B. Sirota, N. Glavin, S. Krylyuk, et al., Sci. Rep. 8 (2018) 8668.
doi: 10.1038/s41598-018-26751-4
S. Liu, K. Yuan, X.L. Xu, et al., Adv. Electron. Mater. 5 (2019) 1800419.
doi: 10.1002/aelm.201800419
H.S. Ra, A.Y. Lee, D.H. Kwak, et al., ACS Appl. Mater. Interfaces 10 (2018) 925-932.
doi: 10.1021/acsami.7b16809
R. Doganov, E. O'Farrell, S. Koenig, et al., Nat. Commun. 6 (2015) 6647.
doi: 10.1038/ncomms7647
G. Long, S.G. Xu, J.Y. Shen, et al., 2D Mater. 3 (2016) 031001.
doi: 10.1088/2053-1583/3/3/031001
H. Arora, Y. Jung, T. Venanzi, et al., ACS Appl. Mater. Interfaces 11 (2019) 43480-43487.
doi: 10.1021/acsami.9b13442
D.A. Bandurin, A.V. Tyurnina, G.L. Yu, et al., Nat. Nanotechnol. 12 (2016) 223–227.
Y. Liu, B.N. Shivananju, Y.S. Wang, et al., ACS Appl. Mater. Interfaces 9 (2017) 36137-36145.
doi: 10.1021/acsami.7b09889
J. Kim, S.K. Baek, K.S. Kim, et al., Curr. Appl. Phys. 16 (2016) 165-169.
doi: 10.1016/j.cap.2015.11.010
S. Ahn, G. Kim, P.K. Nayak, et al., ACS Nano 10 (2016) 8973-8979.
doi: 10.1021/acsnano.6b05042
E. Mercado, Y. Zhou, Y. Xie, et al., ACS Omega 4 (2019) 18002-18010.
doi: 10.1021/acsomega.9b01752
T.S. Ghiasi, J. Quereda, B.J. van Wees, 2D Mater. 6 (2019) 015002.
J.L. Doherty, S.G. Noyce, Z. Cheng, et al., ACS Appl. Mater. Interfaces 12 (2020) 35698-35706.
doi: 10.1021/acsami.0c08647
J.F. Jiang, Y. Zhang, A.Z. Wang, et al., ACS Appl. Electron. Mater. 2 (2020) 2132-2140.
doi: 10.1021/acsaelm.0c00347
J. Roh, I.T. Cho, H. Shin, et al., Nanotechnology 26 (2015) 455201.
doi: 10.1088/0957-4484/26/45/455201
Y.Y. Illarionov, M. Waltl, G. Rzepa, et al., ACS Nano 10 (2016) 9543-9549.
doi: 10.1021/acsnano.6b04814
B. Jiang, H. Huang, R. Chen, et al., Appl. Phys. Lett. 117 (2020) 111602.
doi: 10.1063/5.0021335
Y.C. Kung, N. Hosseini, D. Dumcenco, et al., Adv. Electron. Mater. 5 (2019) 1800492.
doi: 10.1002/aelm.201800492
X. Xu, Z.F. Chen, B.L. Sun, et al., Sci. Bull. 64 (2019) 1700-1706.
doi: 10.1016/j.scib.2019.09.009
J. Jia, S.K. Jang, S. Lai, et al., ACS Nano 9 (2015) 8729-8736.
doi: 10.1021/acsnano.5b04265
V. Tayari, N. Hemsworth, I. Fakih, et al., Nat. Commun. 6 (2015) 7702.
doi: 10.1038/ncomms8702
Y.Y. Li, S.H. Lin, Y.H. Liu, et al., 2D Mater. 6 (2019) 024001.
doi: 10.1088/2053-1583/aafd3c
G.C. Wang, L.H. Bao, T.F. Pei, et al., Nano Lett. 16 (2016) 6870-6878.
doi: 10.1021/acs.nanolett.6b02704
J. Ma, K.Y. Choi, S.H. Kim, et al., Appl. Phys. Lett. 113 (2018) 013102.
doi: 10.1063/1.5036556
C.J.L. de la Rosa, A. Nourbakhsh, M. Heyne, et al., Nanoscale 9 (2017) 258-265.
doi: 10.1039/C6NR06980K
Y. Du, H. Liu, A.T. Neal, et al., IEEE Electr. Device L. 34 (2013) 1328-1330.
doi: 10.1109/LED.2013.2277311
S.H.H. Shokouh, P.J. Jeon, A. Pezeshki, et al., Adv. Funct. Mater. 25 (2015) 7208-7214.
doi: 10.1002/adfm.201502008
S. Choi, S.G. Seo, H.R. Yu, et al., Phys. Status Solidi-R 14 (2020) 1900492.
doi: 10.1002/pssr.201900492
S.M. George, Chem. Rev. 110 (2010) 111-131.
doi: 10.1021/cr900056b
J.D. Wood, S.A. Wells, D. Jariwala, et al., Nano Lett. 14 (2014) 6964-6970.
doi: 10.1021/nl5032293
R. Galceran, E. Gaufres, A. Loiseau, et al., Appl. Phys. Lett. 111 (2017) 243101.
doi: 10.1063/1.5008484
S.A. Wells, A. Henning, J.T. Gish, et al., Nano Lett. 18 (2018) 7876-7882.
doi: 10.1021/acs.nanolett.8b03689
W.J. Woo, I. -K. Oh, B. -E. Park, et al., 2D Mater. 6 (2018) 015019.
doi: 10.1088/2053-1583/aaef1e
M.J. Hollander, M. LaBella, Z.R. Hughes, et al., Nano Lett. 11 (2011) 3601-3607.
doi: 10.1021/nl201358y
X.Z. Hu, P. Huang, B. Jin, et al., J. Am. Chem. Soc. 140 (2018) 12909-12914.
doi: 10.1021/jacs.8b07383
K.M. Price, S. Najmaei, C.E. Ekuma, et al., ACS Appl. Nano Mater. 2 (2019) 4085-4094.
doi: 10.1021/acsanm.9b00505
S. Sucharitakul, N.J. Goble, U.R. Kumar, et al., Nano Lett. 15 (2015) 3815-3819.
doi: 10.1021/acs.nanolett.5b00493
Y.Y. Illarionov, M. Waltl, G. Rzepa, et al., NPJ 2D Mater. Appl. 1 (2017) 23.
doi: 10.1038/s41699-017-0025-3
A. Castellanos-Gomez, L. Vicarelli, E. Prada, et al., 2D Mater. 1 (2014) 025001.
doi: 10.1088/2053-1583/1/2/025001
S. McDonnell, B. Brennan, A. Azcatl, et al., ACS Nano 7 (2013) 10354-10361.
doi: 10.1021/nn404775u
H. Liu, K. Xu, X. Zhang, et al., Appl. Phys. Lett. 100 (2012) 152115.
doi: 10.1063/1.3703595
B. Lee, S.Y. Park, H.C. Kim, et al., Appl. Phys. Lett. 92 (2008) 203102.
doi: 10.1063/1.2928228
S. Jeong, N. Liu, H. Park, et al., Appl. Sci. 8 (2018) 424.
doi: 10.3390/app8030424
A. Khosravi, R. Addou, M. Catalano, et al., Mater. 12 (2019) 1056.
doi: 10.3390/ma12071056
X.J. Song, L.C. Xu, H.F. Bai, et al., J. Appl. Phys. 121 (2017) 144505.
doi: 10.1063/1.4980171
S. Hong, H. Im, Y.K. Hong, et al., Adv. Electron. Mater. 4 (2018) 1800308.
doi: 10.1002/aelm.201800308
J. Batey, E. Tierney, J. Appl. Phys. 60 (1986) 3136-3145.
doi: 10.1063/1.337726
T.H. Tsai, F.S. Yang, P.H. Ho, et al., ACS Appl. Mater. Interfaces 11 (2019) 35969-35976.
doi: 10.1021/acsami.9b11052
J.E. Kim, V.T. Vu, T.T.H. Vu, et al., Appl. Sci. 10 (2020) 7598.
doi: 10.3390/app10217598
Q. Zhao, W. Wang, F. Carrascoso-Plana, et al., Mater. Horizons (2020) 252-262.
doi: 10.1039/c9mh01020c
X.M. Zheng, X.A. Zhang, Y.H. Wei, et al., Nano Res. 13 (2020) 952-958.
doi: 10.1007/s12274-020-2724-x
J.J. Guo, B.C. Yang, Z.M. Zheng, et al., Phys. E 87 (2017) 150-154.
doi: 10.1016/j.physe.2016.12.004
M. Kang, H.I. Yang, W. Choi, J Phys. D 52 (2019) 505105.
doi: 10.1088/1361-6463/ab42b0
H. Kwon, S.W. Seo, T.G. Kim, et al., ACS Nano 10 (2016) 8723-8731.
doi: 10.1021/acsnano.6b04194
H.Y. Nan, X.Y. Wang, J. Jiang, et al., Appl. Surf. Sci. 537 (2021) 147850.
doi: 10.1016/j.apsusc.2020.147850
H.Y. Nan, S.J. Guo, S. Cai, et al., Semicond. Sci. Technol. 33 (2018) 074002.
doi: 10.1088/1361-6641/aac3e6
J.J. Pei, X. Gai, J. Yang, et al., Nat. Comm. 7 (2016) 10450.
doi: 10.1038/ncomms10450
Y.R. Chang, P.H. Ho, C.Y. Wen, et al., ACS Photonics 4 (2017) 2930-2936.
doi: 10.1021/acsphotonics.7b01030
A.N. Hoffman, M.G. Stanford, M.G. Sales, et al., 2D Mater. 6 (2019).
doi: 10.1088/2053-1583/ab2fa7
M.H. Jeong, D.H. Kwak, H.S. Ra, et al., ACS Appl. Mater. Interfaces 10 (2018) 19069-19075.
doi: 10.1021/acsami.8b04627
J. Pető, T. Ollár, P. Vancsó, et al., Nat. Chem. 10 (2018) 1246-1251.
doi: 10.1038/s41557-018-0136-2
Y.Y. Liu, P. Stradins, S.H. Wei, Angew. Chem. Int. Ed. 55 (2016) 965-968.
doi: 10.1002/anie.201508828
H.Y. Nan, Z.L. Wang, W.H. Wang, et al., ACS Nano 8 (2014) 5738-5745.
doi: 10.1021/nn500532f
J. Sun, Y. Choi, Y.J. Choi, et al., Adv. Mater. 31 (2019) 1803831.
doi: 10.1002/adma.201803831
S. Bertolazzi, M. Gobbi, Y. Zhao, et al., Chem. Soc. Rev. 47 (2018) 6845-6888.
doi: 10.1039/C8CS00169C
Y.L. Huang, Y.J. Zheng, Z. Song, et al., Chem. Soc. Rev. 47 (2018) 3241-3264.
doi: 10.1039/c8cs00159f
J. Azadmanjiri, P. Kumar, V.K. Srivastava, et al., ACS Appl. Nano Mater. 3 (2020) 3116-3143.
doi: 10.1021/acsanm.0c00120
Y.S. Yang, X.G. Yang, X.Y. Fang, et al., Adv. Sci. 5 (2018) 1801187.
doi: 10.1002/advs.201801187
B. Zhou, D.P. Yan, Angew. Chem. Int. Ed. 58 (2019) 15128.
doi: 10.1002/anie.201909760
D.K. Sang, H. Wang, Z. Guo, et al., Adv. Funct. Mater. 29 (2019) 1903419.
doi: 10.1002/adfm.201903419
K. Cho, J. Pak, J.K. Kim, et al., Adv. Mater. 30 (2018) 1705540.
doi: 10.1002/adma.201705540
S.H. Jo, D.H. Kang, J. Shim, et al., Adv. Mater. 28 (2016) 4824-4831.
doi: 10.1002/adma.201600032
B.H. Kang, S.J. Jung, S. Hong, et al., J. Inf. Disp. 21 (2020) 123-130.
doi: 10.1080/15980316.2019.1710585
Y.L. Hsieh, W.H. Su, C.C. Huang, et al., ACS Appl. Mater. Interfaces 12 (2020) 37375-37383.
doi: 10.1021/acsami.0c11129
S. Wei, C.Y. Ge, L.J. Zhou, et al., ACS Appl. Electron. Mater. 1 (2019) 2380-2388.
doi: 10.1021/acsaelm.9b00550
D. Kiriya, M. Tosun, P.D. Zhao, et al., J. Am. Chem. Soc. 136 (2014) 7853-7856.
doi: 10.1021/ja5033327
G. Abellán, V. Lloret, U. Mundloch, et al., Angew. Chem. Int. Ed. 55 (2016) 14557-14562.
doi: 10.1002/anie.201604784
J. Pak, M. Min, K. Cho, et al., Appl. Phys. Lett. 109 (2016) 183502.
doi: 10.1063/1.4966668
Y. Zhao, S.M. Gali, C. Wang, et al., Adv. Funct. Mater. 30 (2020) 2005045.
doi: 10.1002/adfm.202005045
W.S. Li, J. Zhou, S.H. Cai, et al., Nat. Electron. 2 (2019) 563-571.
doi: 10.1038/s41928-019-0334-y
A.O.A. Tanoh, J. Alexander-Webber, J. Xiao, et al., Nano Lett. 19 (2019) 6299-6307.
doi: 10.1021/acs.nanolett.9b02431
C.J.L. d. l. Rosa, R. Phillipson, J. Teyssandier, et al., Appl. Phys. Lett. 109 (2016) 253112.
doi: 10.1063/1.4972781
A.I. Pointon, N.E. Grant, R.S. Bonilla, et al., ACS Appl. Electron. Mater. 1 (2019) 1322-1329.
doi: 10.1021/acsaelm.9b00251
Z.N. Guo, S. Chen, Z.Z. Wang, et al., Adv. Mater. 29 (2017) 1703811.
doi: 10.1002/adma.201703811
Y.T. Zhao, H.Y. Wang, H. Huang, et al., Angew. Chem. Int. Ed. 55 (2016) 5003-5007.
doi: 10.1002/anie.201512038
X.J. Zhu, T.M. Zhang, D.C. Jiang, et al., Nat. Commun. 9 (2018) 4177.
doi: 10.1038/s41467-018-06437-1
C. Ryder, J. Wood, S. Wells, et al., Nat. Chem. 8 (2016) 597–602.
doi: 10.1038/nchem.2505
Z. Sofer, J. Luxa, D. Bouša, et al., Angew. Chem. Int. Ed. 56 (2017) 9891.
doi: 10.1002/anie.201705722
Y.J. Liu, P.F. Gao, T.M. Zhang, et al., Angew. Chem. Int. Ed. 58 (2019) 1479-1483.
doi: 10.1002/anie.201813218
K. Cho, M. Min, T.Y. Kim, et al., ACS Nano 9 (2015) 8044-8053.
doi: 10.1021/acsnano.5b04400
H. Lu, A. Kummel, J. Robertson, APL Mater. 6 (2018) 066104.
doi: 10.1063/1.5030737
X.K. Zhang, Q.L. Liao, S. Liu, et al., Nat. Comm. 8 (2017) 15881.
doi: 10.1038/ncomms15881
A. Khosravi, R. Addou, C.M. Smyth, et al., APL Mater. 6 (2018) 026603.
doi: 10.1063/1.5002132
D.O. Li, M.S. Gilliam, X.S. Chu, et al., Mol. Syst. Des. Eng. 4 (2019) 962-973.
doi: 10.1039/c9me00045c
S.Y. Lei, H.Y. Shen, Y.Y. Sun, et al., RSC Adv. 8 (2018) 14676-14683.
doi: 10.1039/c8ra00560e
B.C. Yang, B.S. Wan, Q.H. Zhou, et al., Adv. Mater. 28 (2016) 9408-9415.
doi: 10.1002/adma.201603723
Y.J. Xu, J. Yuan, L.F. Fei, et al., Small 12 (2016) 5000-5007.
doi: 10.1002/smll.201600692
P. Zhao, D. Kiriya, A. Azcatl, et al., ACS Nano 8 (2014) 10808-10814.
doi: 10.1021/nn5047844
S. Thurakkal, X.Y. Zhang, Adv. Sci. 7 (2020) 1902359.
doi: 10.1002/advs.201902359
C. Su, Z.Y. Yin, Q.B. Yan, et al., P Natl. Acad. Sci. USA 116 (2019) 20844-20849.
doi: 10.1073/pnas.1909500116
X.C. Yu, S.L. Zhang, H.B. Zeng, et al., Nano Energy 25 (2016) 34-41.
doi: 10.1016/j.nanoen.2016.04.030
D. Yue, C. Kim, K.Y. Lee, et al., Adv. Funct. Mater. 29 (2019) 1807338.
doi: 10.1002/adfm.201807338
D.H. Kang, J. Shim, S.K. Jang, et al., ACS Nano 9 (2015) 1099-1107.
doi: 10.1021/nn5074435
D.H. Kang, M.S. Kim, J. Shim, et al., Adv. Funct. Mater. 25 (2015) 4219-4227.
doi: 10.1002/adfm.201501170
V. Artel, Q. Guo, H. Cohen, et al., NPJ 2D Mater. Appl. 1 (2017) 6.
doi: 10.1038/s41699-017-0004-8
C.R. Paul Inbaraj, V.K. Gudelli, R.J. Mathew, et al., ACS Appl. Mater. Interfaces 11 (2019) 24269-24278.
doi: 10.1021/acsami.9b06433
Y. Jing, Q. Tang, P. He, et al., Nanotechnology 26 (2015) 095201.
doi: 10.1088/0957-4484/26/9/095201
N. Peimyoo, W.H. Yang, J.Z. Shang, et al., ACS Nano 8 (2014) 11320-11329.
doi: 10.1021/nn504196n
C.Y. Xu, H.Z. Zhang, D.Q. Li, et al., Appl. Phys. Express 13 (2020) 111005.
doi: 10.35848/1882-0786/abc291
W.L. Chow, P. Yu, F.C. Liu, et al., Adv. Mater. 29 (2017) 1602969.
doi: 10.1002/adma.201602969
L. Yu, A. Zubair, E.J.G. Santos, et al., Nano Lett. 15 (2015) 4928-4934.
doi: 10.1021/acs.nanolett.5b00668
S. Mouri, Y. Miyauchi, K. Matsuda, Nano Lett. 13 (2013) 5944-5948.
doi: 10.1021/nl403036h
K. Heo, S.H. Jo, J. Shim, et al., ACS Appl. Mater. Interfaces 10 (2018) 32765-32772.
doi: 10.1021/acsami.8b06767
S.Q. Fan, W.F. Shen, J. Liu, et al., ACS Appl. Mater. Interfaces 10 (2018) 39890-39897.
doi: 10.1021/acsami.8b14887
R. Guo, Y. Zheng, Z.R. Ma, et al., Appl. Surf. Sci. 496 (2019) 143688.
doi: 10.1016/j.apsusc.2019.143688
S. Wild, V. Lloret, V. Vega-Mayoral, et al., RSC Adv. 9 (2019) 3570-3576.
doi: 10.1039/c8ra09069f
V. Lloret, E. Nuin, M. Löffler, et al., Adv. Mater. Interfaces 7 (2020) 2001290.
doi: 10.1002/admi.202001290
D.W. He, Y.L. Wang, Y. Huang, et al., Nano Lett. 19 (2019) 331-337.
doi: 10.1021/acs.nanolett.8b03940
S. Walia, S. Balendhran, T. Ahmed, et al., Adv. Mater. 29 (2017) 1700152.
doi: 10.1002/adma.201700152
G. Abellán, S. Wild, V. Lloret, et al., J. Am. Chem. Soc. 139 (2017) 10432-10440.
doi: 10.1021/jacs.7b04971
C.J. Benjamin, S. Zhang, Z.H. Chen, Nanoscale 10 (2018) 5148-5153.
doi: 10.1039/C7NR08497H
J.H. Park, A. Sanne, Y.Z. Guo, et al., Sci. Adv. 3 (2017) e1701661.
doi: 10.1126/sciadv.1701661
G. Nazir, A. Rehman, S.J. Park, ACS Appl. Mater. Interfaces 12 (2020) 47127-47163.
doi: 10.1021/acsami.0c10213
L. Lv, F.W. Zhuge, F.J. Xie, et al., Nat. Comm. 10 (2019) 3331.
doi: 10.1038/s41467-019-11328-0
H. Qiu, L.J. Pan, Z.N. Yao, et al., Appl. Phys. Lett. 100 (2012) 123104.
doi: 10.1063/1.3696045
G.H. Lee, Y.J. Yu, X. Cui, et al., ACS Nano 7 (2013) 7931-7936.
doi: 10.1021/nn402954e
F.G. Yan, Z.M. Wei, X. Wei, et al., Small Methods 2 (2018) 1700349.
doi: 10.1002/smtd.201700349
Y. Huang, F.W. Zhuge, J.X. Hou, et al., ACS Nano 12 (2018) 4062-4073.
doi: 10.1021/acsnano.8b02380
Y. Wang, Y. Zheng, C. Han, et al., Nano Res. 14 (2020) 1682–1697.
doi: 10.3390/sym12101682
Wenli Xu , Yingzhao Zhang , Rui Wang , Chenyang Liu , Jialin Liu , Xiangyu Huo , Xinying Liu , He Zhang , Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Xingang Kong , Yabei Su , Cuijuan Xing , Weijie Cheng , Jianfeng Huang , Lifeng Zhang , Haibo Ouyang , Qi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428
Husitu Lin , Shuangkun Zhang , Dianfa Zhao , Yongkang Wang , Wei Liu , Fan Yang , Jianjun Liu , Dongpeng Yan , Zhanpeng Wu . Flexible polyphosphazene nanocomposite films: Enhancing stability and luminescence of CsPbBr3 perovskite nanocrystals. Chinese Chemical Letters, 2025, 36(4): 109795-. doi: 10.1016/j.cclet.2024.109795
Yongkang Yue , Zhou Xu , Kaiqing Ma , Fangjun Huo , Xuemei Qin , Kuanshou Zhang , Caixia Yin . HSA shrinkage optimizes the photostability of embedded dyes fundamentally to amplify their efficiency as photothermal materials. Chinese Chemical Letters, 2024, 35(8): 109223-. doi: 10.1016/j.cclet.2023.109223
Menglu Guo , Ying-Qi Song , Junfei Cheng , Guoqiang Dong , Xun Sun , Chunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392
Yunlong Sun , Wei Ding , Yanhao Wang , Zhening Zhang , Ruyun Wang , Yinghui Guo , Zhiyuan Gao , Haiyan Du , Dong Ma . New insight into manganese-enhanced abiotic degradation of microplastics: Processes and mechanisms. Chinese Chemical Letters, 2025, 36(3): 109941-. doi: 10.1016/j.cclet.2024.109941
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
Xinlong Zheng , Zhongyun Shao , Jiaxin Lin , Qizhi Gao , Zongxian Ma , Yiming Song , Zhen Chen , Xiaodong Shi , Jing Li , Weifeng Liu , Xinlong Tian , Yuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533
Shuo Li , Xinran Liu , Yongjie Zheng , Jun Ma , Shijie You , Heshan Zheng . Effective peroxydisulfate activation by CQDs-MnFe2O4@ZIF-8 catalyst for complementary degradation of bisphenol A by free radicals and non-radical pathways. Chinese Chemical Letters, 2024, 35(5): 108971-. doi: 10.1016/j.cclet.2023.108971
Rui Liu , Yue Yu , Lu Deng , Maoxia Xu , Haorong Ren , Wenjie Luo , Xudong Cai , Zhenyu Li , Jingyu Chen , Hua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545
Jingyuan Yang , Xinyu Tian , Liuzhong Yuan , Yu Liu , Yue Wang , Chuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745
Ting Wang , Xin Yu , Yaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320
Qiyan Wu , Ruixin Zhou , Zhangyi Yao , Tanyuan Wang , Qing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416
Ziyang Yin , Lingbin Xie , Weinan Yin , Ting Zhi , Kang Chen , Junan Pan , Yingbo Zhang , Jingwen Li , Longlu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628
Xinpin Pan , Yongjian Cui , Zhe Wang , Bowen Li , Hailong Wang , Jian Hao , Feng Li , Jing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567
Guang-Xu Duan , Queting Chen , Rui-Rui Shao , Hui-Huang Sun , Tong Yuan , Dong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751
Zimo Yang , Yan Tong , Yongbo Liu , Qianlong Liu , Zhihao Ni , Yuna He , Yu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577
Yinyin Xu , Yuanyuan Li , Jingbo Feng , Chen Wang , Yan Zhang , Yukun Wang , Xiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838
Hongmei Yu , Baoxi Zhang , Meiju Liu , Cheng Xing , Guorong He , Li Zhang , Ningbo Gong , Yang Lu , Guanhua Du . Theoretical and experimental cocrystal screening of temozolomide with a series of phenolic acids, promising cocrystal coformers. Chinese Chemical Letters, 2024, 35(5): 109032-. doi: 10.1016/j.cclet.2023.109032