Citation: Guoping Yang, Xuanjie Xie, Mengyuan Cheng, Xiaofei Gao, Xiaoling Lin, Ke Li, Yuanyuan Cheng, Yufeng Liu. H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3, 4-disubstituted 1H-pyrazoles[J]. Chinese Chemical Letters, ;2022, 33(3): 1483-1487. doi: 10.1016/j.cclet.2021.08.037 shu

H4SiW12O40-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides: An efficient synthesis of 3, 4-disubstituted 1H-pyrazoles

Figures(6)

  • A simple and efficient method for the synthesis of pyrazoles through a silicotungstic acid (H4SiW12O40)-catalyzed cyclization of epoxides/aldehydes and sulfonyl hydrazides has been developed. Various epoxides/aldehydes were smoothly reacted with sulfonyl hydrazides to furnish regioselectivity 3, 4-disubstituted 1H-pyrazoles. The application of such an earth-abundant, readily accessible, and nontoxic catalyst provides a green approach for the construction of 3, 4-disubstituted 1H-pyrazoles. A plausible reaction mechanism has been proposed on the basis of control experiments, GC-MS and DFT calculations.
  • In recent decades, the Daphniphyllum alkaloids have drawn a lot of interest from our community due to their intriguing biological activity and fascinating cage-like structures [1-9]. The groups of Heathcock [10-13], Carreira [14], Li [15-19], Smith [20,21], Hanessian [22], Fukuyama/Yokoshima [23], Dixon [24,25], Zhai [26,27], Qiu [28,29], Gao [30], Sarpong [31,32], Li [33], Lu [34] and Li [35] successively reported their impressive synthesis of more than thirty Daphniphyllum alkaloids. Also, our group accomplished the total synthesis of ten Daphniphyllum alkaloids from six different subfamilies, including himalensine A, 10-deoxydaphnipaxianine A, daphlongamine E and calyciphylline R (calyciphylline A-type), dapholdhamine B (daphnezomine A-type), caldaphnidine O (bukittinggine-type), caldaphnidine J (yuzurimine-type), daphnezomine L methyl ester and calyciphylline K (daphnezomine L-type) and caldaphnidine D (secodaphniphylline-type) [36-41].

    Since Hirata's seminal discovery in 1966, nearly fifty yuzurimine-type (or macrodaphniphyllamine-type) alkaloids—or about one-sixth of all Daphniphyllum alkaloids now known—have been identified (Fig. 1). It is acknowledged that the individuals within this subfamily possess intricate and caged hexacyclic skeleton, thus presents significant synthetic challenge. In 2020, our group achieved the first total synthesis of a member within this subfamily, caldaphnidine J [39]. Later, Li reported their impressive total synthesis of five macrodaphniphyllamine-type alkaloids [19].

    Figure 1

    Figure 1.  Representative yuzurimine-type alkaloids.

    Based on the biosynthetic pathway of yuzurimine-type alkaloids [6,8], it is reasonable to assume that C14epi-deoxycalyciphylline H could be an actual member of the yuzurimine-type alkaloid subfamily, yet to be isolated. As our interests in natural product synthesis continues [42-44], we wish to describe here our endeavor towards the total synthesis of calyciphylline H [45] that led us to finally access one of its close derivatives, C14epi-deoxycalyciphylline H.

    As depicted in Scheme 1, the retrosynthetic analysis of calyciphylline H indicated that it could be derived from C14epi-deoxycalyciphylline H via C-14 epimerization and a Polonovski reaction [19]. Next, we envisioned that an enyne cycloisomerization of compound 1 would allow facile access to the key tetrahydropyrrole motif as well as the C3-C4 alkene motif in our target molecules. Next, it was envisaged that compound 1 could be synthesized from compound 2 via homologation and propargylation. One of the critical five-membered rings in compound 2 could be fabricated via a Prins reaction from aldehyde 3. This aldehyde compound was envisioned to be derived from the tetracyclic compound 4, which can be produced from tricycle 5 through our previously reported procedures [37-39].

    Scheme 1

    Scheme 1.  Retrosynthetic analysis.

    Our study commenced from known tricyclic compound 5, which was converted to vicinal diol 4 via a 7-step procedure involving ring-expansion and cyclopentane formation (Scheme 2) [37-39]. Then, under Ando's olefination conditions (p-TSA, CH(OMe)3; then Ac2O, 150 ℃) [46], alkene 6 was effectively derivatized from diol 4 in excellent yield (93%). Removal of the benzyl group in compound 6 suffered partial N-detosylation under sodium naphthalene conditions, hence, re-tosylation was necessary to provide a satisfactory yield of compound 7. A facile Dess-Martin oxidation of the primary hydroxyl group in compound 7 furnished aldehyde 3 in nearly quantitative yield. Next, under the acidic conditions (TfOH, 0 ℃), a Prins reaction was triggered between the aldehyde motif and the alkene motif in compound 3, fabricating alcohols 2a (56%) and 2b (38%). The absolute stereochemical configuration of 2a was unambiguously assigned via a single-crystal X-Ray diffraction (CCDC: 2258010), while that of 2b was assigned by its conversion to 2a via oxidation and reduction. At this point, a homologation was required for introducing the C-14 carboxylic acid ester moiety. To this end, a Dess-Martin oxidation of the mixture of 2a and 2b yielded the corresponding ketone compound, which unfortunately failed to react under various homologation conditions (Wittig, Peterson, MeLi, MeMgBr, Nysted, Van Leusen). Gratifyingly, treating it with Horner-Wadsworth-Emmons conditions (8, n-BuLi) [37-39,41] successfully gave homologated product 9. Following hydrolysis of the ketene dithioacetal moiety in compound 9 yielded compound 10 with an α-faced carboxylic acid ester at C-14. This outcome was attributed to its thermodynamically favored stereochemistry, which was assigned by a single-crystal XRD (CCDC: 2258012). Replacement of the N-tosyl group with the propargyl group afforded enyne compound 1 in 92% yield. Finally, a Pd-catalyzed enyne cycloisomerization [47] produced key tetrahydropyrrole motif as well as the C3-C4 alkene motif in the corresponding diene, which was further selectively hydrogenated (H2, Crabtree's catalyst) to yield C14epi-deoxycalyciphylline H. In addition, transformation of this compound to natural calyciphylline H is currently under investigation.

    Scheme 2

    Scheme 2.  Total synthesis of C14epi-deoxycalyciphylline H, a putative yuzurimine-type alkaloid and synthetic study towards the daphnezomine L-type alkaloid paxdaphnidine A.

    Next, our attention turned to a complex member of daphnezomine L-type alkaloids, paxdaphnidine A. It was envisioned that a SN2-substitution reaction using a cyanide anion may set the desired stereogenic configuration at C-14. Bearing this in mind, alcohol 2a was converted to its epimer, 2b, which was then sulfonylated to give compound 11. Heating this compound with NBu4CN in DMF produced nitrile 12 with the desired stereogenic outcome, which was also unambiguously confirmed by a single-crystal XRD (CCDC: 2258013). It should be noted that other attempts of this type of transformation gave lower yields (-OMs, NaCN, DMSO, 120 ℃, 41%; -OEs, NaCN, DMF or DMSO, 130 ℃, < 10%; -OTs, NaCN, DMF, 130 ℃, 43%; -OTs, NaCN, DMSO, 130 ℃, 26%). More experimental evidence further indicated the thermodynamical bias at C-14. When subjecting nitrile 12 to DIBAL-H (−78 ℃ to 0 ℃) followed by a Pinnick oxidation (0 ℃ to room temperature) and methylation, compound 10 with the undesired C-14 stereogenic center was produced as the main product. However, when the DIBAL-H reduction as well as the Pinnick oxidation was carefully performed at −78 ℃, compound 13 was successfully produced with the desired C-14 stereochemistry. Afterwards, detosylation and propargylation of compound 13 produced tertiary amine 14. Next, a Pd-catalyzed enyne cycloisomerization forged the tetrahydropyrrole ring. The so-afforded hexacyclic diene was then subjected to the von Braun reaction conditions (BrCN, K2CO3) [41,48,49] to cleave the C—N bond in a regioselective manner to give compound 15. This regioselectivity was likely dominated by the drastically different steric hindrances between three C—N bonds. The final-stage transformation of compound 15 to paxdaphnidine A, is still under investigation in our laboratory.

    In summary, the total synthesis of C14epi-deoxycalyciphylline H, a possible yuzurimine-type alkaloid family member and a close derivative of its natural congener calyciphylline H, was accomplished. Key cyclization methods, such as Prins reaction and enyne cycloisomerization paved the road to the target molecule. Synthesis towards a daphnezomine L-type alkaloid, paxdaphnidine A, was also studied, featuring a late-stage von Braun reaction. Our findings may benefit the research in this active field—Daphniphyllum alkaloid synthesis.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Financial support from the National Natural Science Foundation of China (Nos. 21971104 and 22271136), Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis (No. ZDSYS20190902093215877), Guangdong Provincial Key Laboratory of Catalysis (No. 2020B121201002), Guangdong Innovative Program (No. 2019BT02Y335), Education Department of Guangdong Province, Key research projects in colleges and universities in Guangdong Province (No. 2021ZDZX2035), Shenzhen Nobel Prize Scientists Laboratory Project (No. C17783101) and Innovative Team of Universities in Guangdong Province (No. 2020KCXTD016) is greatly appreciated. We also thank SUSTech CRF NMR facility and Dr. Yang Yu (SUSTech) for HRMS analysis. We also thank Dr. X. Chang (SUSTech) for single crystal X-ray diffraction analysis.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108733.


    1. [1]

      A. Ansari, A. Ali, M. Asif, et al., New J. Chem. 41(2017) 16-41.  doi: 10.1039/C6NJ03181A

    2. [2]

      J.V. Faria, P.F. Vegi, A.G.C. Miguita, et al., Biorg. Med. Chem. 25(2017) 5891-5903.  doi: 10.1016/j.bmc.2017.09.035

    3. [3]

      D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, et al., J. Med. Chem. 55(2012) 8630-8641.  doi: 10.1021/jm300789g

    4. [4]

      Ş. G. Küçükgüzel, S. Şenkardeş, Eur. J. Med. Chem. 97(2015) 786-815.  doi: 10.1016/j.ejmech.2014.11.059

    5. [5]

      V. Kumar, K. Kaur, G.K. Gupta, et al., Eur. J. Med. Chem. 69(2013) 735-753.  doi: 10.1016/j.ejmech.2013.08.053

    6. [6]

      X.H. Lv, Z.L. Ren, D.D. Li, et al., Chin. Chem. Lett. 28(2017) 377-382.  doi: 10.1016/j.cclet.2016.10.029

    7. [7]

      L. Catala, K. Wurst, D.B. Amabilino, et al., J. Mater. Chem. 16(2006) 2736-2745.  doi: 10.1039/b604598g

    8. [8]

      I.L. Dalinger, A.V. Kormanov, K.Y. Suponitsky, et al., Chem. Asian J. 13(2018) 1165-1172.  doi: 10.1002/asia.201800214

    9. [9]

      A.L. Rheingold, L.N. Zakharov, S. Trofimenko, Inorg. Chem. 42(2003) 827-833.  doi: 10.1021/ic0205280

    10. [10]

      U.P. Singh, S. Kashyap, H.J. Singh, et al., CrystEngComm 13(2011) 4110-4120.  doi: 10.1039/c0ce00820f

    11. [11]

      P. Yin, C. He, J.N.M. Shreeve, J. Mater. Chem. A 4(2016) 1514-1519.  doi: 10.1039/C5TA09999D

    12. [12]

      S. Fustero, M. Sánchez-Roselló, P. Barrio, et al., Chem. Rev. 111(2011) 6984-7034.  doi: 10.1021/cr2000459

    13. [13]

      Y.L. Janin, Chem. Rev. 112(2012) 3924-3958.  doi: 10.1021/cr200427q

    14. [14]

      M. Li, B.X. Zhao, Eur. J. Med. Chem. 85(2014) 311-340.  doi: 10.1016/j.ejmech.2014.07.102

    15. [15]

      P. Zhao, Z. Zeng, X. Feng, et al., Chin. Chem. Lett. 32(2021) 132-135.  doi: 10.1016/j.cclet.2020.11.053

    16. [16]

      L. Hao, H. Liu, Z. Zhang, et al., Chin. Chem. Lett. 32(2021) 2309-2312.  doi: 10.1016/j.cclet.2021.02.025

    17. [17]

      M. Zora, A. Kivrak, C. Yazici, J. Org. Chem. 76(2011) 6726-6742.  doi: 10.1021/jo201119e

    18. [18]

      B.H. Zhang, L.S. Lei, S.Z. Liu, et al., Chem. Commun. 53(2017) 8545-8548.  doi: 10.1039/C7CC04610C

    19. [19]

      Q. Wang, L. He, K.K. Li, et al., Org. Lett. 19(2017) 658-661.  doi: 10.1021/acs.orglett.6b03822

    20. [20]

      G. Ji, X. Wang, S. Zhang, et al., Chem. Commun. 50(2014) 4361-4363.  doi: 10.1039/C4CC01280A

    21. [21]

      X. Deng, N.S. Mani, Org. Lett. 10(2008) 1307-1310.  doi: 10.1021/ol800200j

    22. [22]

      J. Sun, J.K. Qiu, Y.L. Zhu, et al., J. Org. Chem. 80(2015) 8217-8224.  doi: 10.1021/acs.joc.5b01280

    23. [23]

      S. Zhao, K. Chen, L. Zhang, et al., Adv. Synth. Catal. 362(2020) 3516-3541.  doi: 10.1002/adsc.202000466

    24. [24]

      C. Zhu, H. Zeng, C. Liu, et al., Org. Lett. 22(2020) 809-813.  doi: 10.1021/acs.orglett.9b04228

    25. [25]

      Y.Q. Jiang, J. Li, Z.W. Feng, et al., Adv. Synth. Catal. 362(2020) 2609-2614.  doi: 10.1002/adsc.202000233

    26. [26]

      Z. Wang, W.M. He, Chin. J. Org. Chem. 39(2019) 3594-3595.  doi: 10.6023/cjoc201900002

    27. [27]

      J. Zhang, Y. Shao, H. Wang, et al., Org. Lett. 16(2014) 3312-3315.  doi: 10.1021/ol501312s

    28. [28]

      G.P. Yang, S.X. Shang, B. Yu, et al., Inorg. Chem. Front. 5(2018) 2472-2477.  doi: 10.1039/C8QI00678D

    29. [29]

      G.P. Yang, X. He, B. Yu, et al., Appl. Organomet. Chem. 32(2018) e4532.  doi: 10.1002/aoc.4532

    30. [30]

      T. Zhang, Y. Meng, J. Lu, et al., Adv. Synth. Catal. 360(2018) 3063-3068.  doi: 10.1002/adsc.201701200

    31. [31]

      H. Zhang, Q. Wei, G. Zhu, et al., Tetrahedron Lett. 57(2016) 2633-2637.  doi: 10.1016/j.tetlet.2016.05.020

    32. [32]

      J. Wen, Y. Fu, R.Y. Zhang, et al., Tetrahedron 67(2011) 9618-9621.  doi: 10.1016/j.tet.2011.09.074

    33. [33]

      L. Tang, M. Ma, Q. Zhang, et al., Adv. Synth. Catal. 359(2017) 2610-2620.  doi: 10.1002/adsc.201700196

    34. [34]

      Y. Guo, G. Wang, L. Wei, et al., J. Org. Chem. 84(2019) 2984-2990.  doi: 10.1021/acs.joc.8b02897

    35. [35]

      M. Yoshimatsu, K. Ohta, N. Takahashi, Chem. Eur J. 18(2012) 15602-15606.  doi: 10.1002/chem.201202828

    36. [36]

      S.X. Xu, L. Hao, T. Wang, et al., Org. Biomol. Chem. 11(2013) 294-298.  doi: 10.1039/C2OB27016A

    37. [37]

      L. Wu, M. Shi, J. Org. Chem. 75(2010) 2296-2301.  doi: 10.1021/jo100105k

    38. [38]

      W.M. Shu, K.L. Zheng, J.R. Ma, et al., Org. Lett. 17(2015) 1914-1917.  doi: 10.1021/acs.orglett.5b00605

    39. [39]

      M.C. Pérez-Aguilar, C. Valdés, Angew. Chem. Int. Ed. 52(2013) 7219-7223.  doi: 10.1002/anie.201301284

    40. [40]

      G.P. Yang, Y.F. Liu, K. Li, et al., Chin. Chem. Lett. 31(2020) 3233-3236.  doi: 10.1016/j.cclet.2020.07.018

    41. [41]

      G.P. Yang, Y.F. Liu, X.L. Lin, et al., Chin. Chem. Lett. 33(2022) 354-357.  doi: 10.1016/j.cclet.2021.05.008

    42. [42]

      G.P. Yang, X. Wu, B. Yu, et al., ACS Sustain. Chem. Eng. 7(2019) 3727-3732.  doi: 10.1021/acssuschemeng.8b06445

    43. [43]

      M.T. Lv, Y.F. Liu, K. Li, et al., Tetrahedron Lett. 65(2021) 152757.  doi: 10.1016/j.tetlet.2020.152757

    44. [44]

      M. Smith, R. Hunter, N. Stellenboom, et al., Biochim. Biophys. Acta Gen. Subj. 1860(2016) 1439-1449.  doi: 10.1016/j.bbagen.2016.03.032

    45. [45]

      Z. Lian, B.N. Bhawal, P. Yu, et al., Science 356(2017) 1059-1063.  doi: 10.1126/science.aam9041

    46. [46]

      Y. Shi, S. Li, Y. Lu, et al., Chem. Commun. 56(2020) 2131-2134.  doi: 10.1039/C9CC09262E

    47. [47]

      J. Meinwald, S.S. Labana, M.S. Chadha, J. Am. Chem. Soc. 85(1963) 582-585.  doi: 10.1021/ja00888a022

    1. [1]

      A. Ansari, A. Ali, M. Asif, et al., New J. Chem. 41(2017) 16-41.  doi: 10.1039/C6NJ03181A

    2. [2]

      J.V. Faria, P.F. Vegi, A.G.C. Miguita, et al., Biorg. Med. Chem. 25(2017) 5891-5903.  doi: 10.1016/j.bmc.2017.09.035

    3. [3]

      D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, et al., J. Med. Chem. 55(2012) 8630-8641.  doi: 10.1021/jm300789g

    4. [4]

      Ş. G. Küçükgüzel, S. Şenkardeş, Eur. J. Med. Chem. 97(2015) 786-815.  doi: 10.1016/j.ejmech.2014.11.059

    5. [5]

      V. Kumar, K. Kaur, G.K. Gupta, et al., Eur. J. Med. Chem. 69(2013) 735-753.  doi: 10.1016/j.ejmech.2013.08.053

    6. [6]

      X.H. Lv, Z.L. Ren, D.D. Li, et al., Chin. Chem. Lett. 28(2017) 377-382.  doi: 10.1016/j.cclet.2016.10.029

    7. [7]

      L. Catala, K. Wurst, D.B. Amabilino, et al., J. Mater. Chem. 16(2006) 2736-2745.  doi: 10.1039/b604598g

    8. [8]

      I.L. Dalinger, A.V. Kormanov, K.Y. Suponitsky, et al., Chem. Asian J. 13(2018) 1165-1172.  doi: 10.1002/asia.201800214

    9. [9]

      A.L. Rheingold, L.N. Zakharov, S. Trofimenko, Inorg. Chem. 42(2003) 827-833.  doi: 10.1021/ic0205280

    10. [10]

      U.P. Singh, S. Kashyap, H.J. Singh, et al., CrystEngComm 13(2011) 4110-4120.  doi: 10.1039/c0ce00820f

    11. [11]

      P. Yin, C. He, J.N.M. Shreeve, J. Mater. Chem. A 4(2016) 1514-1519.  doi: 10.1039/C5TA09999D

    12. [12]

      S. Fustero, M. Sánchez-Roselló, P. Barrio, et al., Chem. Rev. 111(2011) 6984-7034.  doi: 10.1021/cr2000459

    13. [13]

      Y.L. Janin, Chem. Rev. 112(2012) 3924-3958.  doi: 10.1021/cr200427q

    14. [14]

      M. Li, B.X. Zhao, Eur. J. Med. Chem. 85(2014) 311-340.  doi: 10.1016/j.ejmech.2014.07.102

    15. [15]

      P. Zhao, Z. Zeng, X. Feng, et al., Chin. Chem. Lett. 32(2021) 132-135.  doi: 10.1016/j.cclet.2020.11.053

    16. [16]

      L. Hao, H. Liu, Z. Zhang, et al., Chin. Chem. Lett. 32(2021) 2309-2312.  doi: 10.1016/j.cclet.2021.02.025

    17. [17]

      M. Zora, A. Kivrak, C. Yazici, J. Org. Chem. 76(2011) 6726-6742.  doi: 10.1021/jo201119e

    18. [18]

      B.H. Zhang, L.S. Lei, S.Z. Liu, et al., Chem. Commun. 53(2017) 8545-8548.  doi: 10.1039/C7CC04610C

    19. [19]

      Q. Wang, L. He, K.K. Li, et al., Org. Lett. 19(2017) 658-661.  doi: 10.1021/acs.orglett.6b03822

    20. [20]

      G. Ji, X. Wang, S. Zhang, et al., Chem. Commun. 50(2014) 4361-4363.  doi: 10.1039/C4CC01280A

    21. [21]

      X. Deng, N.S. Mani, Org. Lett. 10(2008) 1307-1310.  doi: 10.1021/ol800200j

    22. [22]

      J. Sun, J.K. Qiu, Y.L. Zhu, et al., J. Org. Chem. 80(2015) 8217-8224.  doi: 10.1021/acs.joc.5b01280

    23. [23]

      S. Zhao, K. Chen, L. Zhang, et al., Adv. Synth. Catal. 362(2020) 3516-3541.  doi: 10.1002/adsc.202000466

    24. [24]

      C. Zhu, H. Zeng, C. Liu, et al., Org. Lett. 22(2020) 809-813.  doi: 10.1021/acs.orglett.9b04228

    25. [25]

      Y.Q. Jiang, J. Li, Z.W. Feng, et al., Adv. Synth. Catal. 362(2020) 2609-2614.  doi: 10.1002/adsc.202000233

    26. [26]

      Z. Wang, W.M. He, Chin. J. Org. Chem. 39(2019) 3594-3595.  doi: 10.6023/cjoc201900002

    27. [27]

      J. Zhang, Y. Shao, H. Wang, et al., Org. Lett. 16(2014) 3312-3315.  doi: 10.1021/ol501312s

    28. [28]

      G.P. Yang, S.X. Shang, B. Yu, et al., Inorg. Chem. Front. 5(2018) 2472-2477.  doi: 10.1039/C8QI00678D

    29. [29]

      G.P. Yang, X. He, B. Yu, et al., Appl. Organomet. Chem. 32(2018) e4532.  doi: 10.1002/aoc.4532

    30. [30]

      T. Zhang, Y. Meng, J. Lu, et al., Adv. Synth. Catal. 360(2018) 3063-3068.  doi: 10.1002/adsc.201701200

    31. [31]

      H. Zhang, Q. Wei, G. Zhu, et al., Tetrahedron Lett. 57(2016) 2633-2637.  doi: 10.1016/j.tetlet.2016.05.020

    32. [32]

      J. Wen, Y. Fu, R.Y. Zhang, et al., Tetrahedron 67(2011) 9618-9621.  doi: 10.1016/j.tet.2011.09.074

    33. [33]

      L. Tang, M. Ma, Q. Zhang, et al., Adv. Synth. Catal. 359(2017) 2610-2620.  doi: 10.1002/adsc.201700196

    34. [34]

      Y. Guo, G. Wang, L. Wei, et al., J. Org. Chem. 84(2019) 2984-2990.  doi: 10.1021/acs.joc.8b02897

    35. [35]

      M. Yoshimatsu, K. Ohta, N. Takahashi, Chem. Eur J. 18(2012) 15602-15606.  doi: 10.1002/chem.201202828

    36. [36]

      S.X. Xu, L. Hao, T. Wang, et al., Org. Biomol. Chem. 11(2013) 294-298.  doi: 10.1039/C2OB27016A

    37. [37]

      L. Wu, M. Shi, J. Org. Chem. 75(2010) 2296-2301.  doi: 10.1021/jo100105k

    38. [38]

      W.M. Shu, K.L. Zheng, J.R. Ma, et al., Org. Lett. 17(2015) 1914-1917.  doi: 10.1021/acs.orglett.5b00605

    39. [39]

      M.C. Pérez-Aguilar, C. Valdés, Angew. Chem. Int. Ed. 52(2013) 7219-7223.  doi: 10.1002/anie.201301284

    40. [40]

      G.P. Yang, Y.F. Liu, K. Li, et al., Chin. Chem. Lett. 31(2020) 3233-3236.  doi: 10.1016/j.cclet.2020.07.018

    41. [41]

      G.P. Yang, Y.F. Liu, X.L. Lin, et al., Chin. Chem. Lett. 33(2022) 354-357.  doi: 10.1016/j.cclet.2021.05.008

    42. [42]

      G.P. Yang, X. Wu, B. Yu, et al., ACS Sustain. Chem. Eng. 7(2019) 3727-3732.  doi: 10.1021/acssuschemeng.8b06445

    43. [43]

      M.T. Lv, Y.F. Liu, K. Li, et al., Tetrahedron Lett. 65(2021) 152757.  doi: 10.1016/j.tetlet.2020.152757

    44. [44]

      M. Smith, R. Hunter, N. Stellenboom, et al., Biochim. Biophys. Acta Gen. Subj. 1860(2016) 1439-1449.  doi: 10.1016/j.bbagen.2016.03.032

    45. [45]

      Z. Lian, B.N. Bhawal, P. Yu, et al., Science 356(2017) 1059-1063.  doi: 10.1126/science.aam9041

    46. [46]

      Y. Shi, S. Li, Y. Lu, et al., Chem. Commun. 56(2020) 2131-2134.  doi: 10.1039/C9CC09262E

    47. [47]

      J. Meinwald, S.S. Labana, M.S. Chadha, J. Am. Chem. Soc. 85(1963) 582-585.  doi: 10.1021/ja00888a022

  • 加载中
    1. [1]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    2. [2]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    3. [3]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    4. [4]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    5. [5]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    6. [6]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    7. [7]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    8. [8]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    9. [9]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    10. [10]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    11. [11]

      Xun ZhuChenchen ZhangYingying LiYin LuNa HuangDawei Wang . Degradation of perfluorooctanoic acid by inductively heated Fenton-like process over the Fe3O4/MIL-101 composite. Chinese Chemical Letters, 2024, 35(12): 109753-. doi: 10.1016/j.cclet.2024.109753

    12. [12]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    13. [13]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    14. [14]

      Jing LIANGQian WANGJunfeng BAI . Synthesis and structures of cdq-topological quaternary and (4, 4, 8)-c topological quinary Zn-MOFs with both oxalic acid and triazole ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2186-2192. doi: 10.11862/CJIC.20240177

    15. [15]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    16. [16]

      Junying LIXinyan CHENXihui DIAOMuhammad YaseenChao CHENHao WANGChuansong QIWei LI . Chiral fluorescent sensor Tb3+@Cd-CP based on camphoric acid for the enantioselective recognition of R- and S-propylene glycol. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2497-2504. doi: 10.11862/CJIC.20240084

    17. [17]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    18. [18]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    19. [19]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    20. [20]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

Metrics
  • PDF Downloads(11)
  • Abstract views(928)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return