Citation: Peng Gao, Miaolin Ke, Tong Ru, Guanfeng Liang, Fen-Er Chen. Synthesis of rac-α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst[J]. Chinese Chemical Letters, ;2022, 33(2): 830-834. doi: 10.1016/j.cclet.2021.07.068 shu

Synthesis of rac-α-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst

    * Corresponding authors.
    E-mail addresses: lianggfeng@fudan.edu.cn (G. Liang), rfchen@fudan.edu.cn (F.-E. Chen).
  • Received Date: 27 May 2021
    Revised Date: 16 July 2021
    Accepted Date: 30 July 2021
    Available Online: 5 August 2021

Figures(5)

  • This work detailed the preparation of a class of water-soluble PNP ligands that differed by the nature of the substitute on phenyl ring of ligands. These ligands were incorporated into water-soluble rhodium-PNP complex catalysts that were used to regioselective hydroformylation of a series of terminal arylalkenes, providing efficient access to rac-α-aryl propionaldehydes in good to excellent yield (up to 97%) and branched-regioselectivity (up to 40:1 b/l ratio). Furthermore, gram-scale and diverse synthetic transformation demonstrated synthetic application of this methodology for non-steroidal antiinflammatory drugs.
  • Transition metal-catalyzed C-H bond functionalization reactions are among the most straightforward and atom-economic synthetic methodologies for the construction of complex molecules [1-4]. Typically, a directing group is need to facilitate a regioselective C-H activation event. And the use of oxidizing directing group has received tremendous attentions by offering enhanced reactivity and eliminating the employment of external oxidant [5-12]. In this respect, various five- and six-numbered rings are mildly and effectively constructed through the oxidizing directing group strategy. For example, an elegant seminal work from Fagnou reported a Rh(Ⅲ)-catalyzed redox-neutral annulation of benzhydroxamic acids with alkynes towards the synthesis of isoquinolone derivatives by using N-O bond as a built-in oxidant (Scheme 1a) [13]. However, since the eight- membered rhodacycle intermediates are energetically unstable, utilizing this tactics to construct seven-membered rings is elusive [14, 15].

    Scheme 1

    Scheme 1.  Rhodium-catalyzed C─H activationreactions toward the organofluorines with an oxidizing directing group.

    Fluorinated organic molecules have attracted significant attention in drug discovery and agricultural chemistry due to their unique physicochemical and bioactivity properties [16-18]. Traditional methods for the incorporation of fluorine into the molecules often suffer from the need of substrate pre-activation, the use of non-readily available starting materials, low regio- or stereo-selectivity and/or poor functional group tolerance due to the employment of sensitive reagents [19-21]. Compared with the above-mentioned protocols, transition metal-catalyzed C-H/C-F bond activation assisted by a directing group provides a concise and reliable alternative in an atom- and step-economic pattern. In this context, the group of Loh reported a Rh-catalysed tandem C-H/C-F activation for the synthesis of (hetero)arylated monofluoroalkenes using gem-difluoroalkenes as electrophiles (Scheme 1b-1) [22-24]. The group of Wang disclosed a solvent-dependent enantioselective synthesis of alkynyl and monofluoroalkenyl isoindolinones by asymmetric CpRh-catalyzed C-H activation with α, α-difluoromethylene alkyne as the substrate (Scheme 1b-2) [25-28]. In these two cases, metal-mediated β-fluorine elimination was observed as key step. Previously, we discovered that different directing groups (N-OMe and N-OPiv amides) enabled dictate the selectivity of C-N formation versus β-F elimination with 2, 2-difluorovinyl tosylate as a substrate (Scheme 1c) [29-33]. With N-OMe benzamide being a directing group (DG), the reaction delivered a monofluorinated alkene with the retention of the tosylate functionality. When N-OPiv benzamides were used, however, [4 + 2] cyclization occurred to provide gem-difluorinated dihydroisoquinolin-1(2H)-ones.

    Herein, we report a rhodium-catalyzed formal [4 + 3] cycloaddition reaction of N-methoxybenzamides with easily accessible gem-difluorocyclopropenes [34-49]. The reaction allows the formation of highly functionalized fluorinated 2H-azepin-2-one frameworks with excellent regioselectivity and functional group tolerance (Scheme 1d). Some interesting features of the transformation include: i) Both C-N bond formation and fluorine elimination occur in the reaction with N-OMe as an internal oxidant; ii) The combination of [4 + 2] cycloaddition and retro-[2 + 1] strategy eliminates the formation of eight-membered rhodacycle, thereby providing a feasible and reliable route for the construction of seven-membered aromatic heterocycles; iii) This reaction proceeds under rather mild conditions, and a series of bioactive fluorinated 2H-azepin-2-one derivatives (Fig. 1) [50-52] are obtained in moderate to good yields.

    Figure 1

    Figure 1.  Representative bioactive molecules.

    The reaction was initially investigated by using N-methoxybenzamide 1a and gem-difluorocyclopropene 2a as model substrates, [Cp*RhCl2]2 as catalyst and K3PO4 as base in CH2Cl2 at 50 ℃ under argon atmosphere. To our delight, the desired product 3a was obtained in 41% yield (Table 1, entry 1). Solvent screening revealed that only chlorinated alkanes promoted the transformation, with 1, 1, 2, 2-tetrachloroethane being the solvent of choice to give a high yield of to 82% (Table 1, entries 2–7). Replacing [Cp*RhCl2]2 with Cp*Rh(OAc)2 led to a reduced yield of 61% (Table 1, entry 8). The reaction did not proceed with other transition metal catalysts such as [Cp*IrCl2]2, [RuCl2(p-cymene)]2 and [CoCp*(CO)I2] (Table 1, entries 9–11). Other inorganic bases were also subsequently used in the reaction, however, the yield of 3a was not further improved (Table 1, entries 12–16).

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    With optimized conditions in hand, we set to examine the scope. As shown in Scheme 2, the aromatic amide substrates bearing electron-donating (such as Me, t-Bu, OMe and N(CH3)2) and electron-withdrawing substituents (such as Ac, CN, NO2, CF3, CO2Me) at para position underwent reaction smoothly, delivering the cyclized products 3a-3f and 3k-3o in good yields. Substrates bearing halogen substituents were also compatible well (3g-3j), thus providing valuable handles for follow-up transformations. When meta-substituted N-methoxyamide 1p was used, the rhodation occurred at the less hindered site to provide exclusively the C-6 substituted regioisomer (3p). Specially, the 2-methyl substituted substrate did not retard the process (3q), although the yield was slightly reduced. To further highlight the synthetic versatility of our method, several substrates derived from complex natural products and drugs were also subjected to the reaction and the corresponding fluorination products were obtained without difficulty (3s-3v). Furthermore, various alkenyl amides with 2-alkyl substitution were also feasible substrates, producing the products 3w-3aa in moderate yields. Out of our expectation, N-methoxy-2-phenylacrylamide showed no reactivity in the protocol. To demonstrate the scalability of this methodology, the reaction of 1a with 2a was performed on 10 mmol scale, affording 76% yield of the product 3a.

    Scheme 2

    Scheme 2.  Substrate scope on amides. Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), K3PO4 (2.5 equiv.), 1, 1, 2, 2-tetrachloroethane (1 mL) at 50 ℃ under argon atmosphere for 12 h. Isolated yield. a 1a (10 mmol), 2a (12 mmol), [Cp*RhCl2]2 (5 mol%), K3PO4 (2.5 equiv.), 1, 1, 2, 2-tetrachloroethane (10 mL) at 50 ℃ under argon atmosphere for 12 h.

    The substrate scope for gem-difluorocyclopropenes was also explored (Scheme 3). It was found the reaction was not sensitive to the electron nature of the substituents on the aryl ring, as a diverse of substituents such as Me, n-Pr, F, Cl, Br, CF3, NO2 and CO2Me well survived in the reaction (3ab-3al). Interestingly, higher yields were obtained for meta-substituted aryl gem-difluorocyclopropenes (3ai-3al). The observed higher bench stability of meta-substituted aryl gem-difluorocyclopropenes could be a reason for this result. Not unexpectedly, substrates with other aromatic heterocycles, for example, thiochroman, pyridine, thiophene and benzoxazole were also tolerant, obtaining the products 3an-3aq in 44%−65% yields. It was intriguing that alkyl-substituted gem-difluorocyclopropenes were also compatible (3ar-3av), greatly expanding the diversity of the title reaction.

    Scheme 3

    Scheme 3.  gem-Difluorocyclopropene scope. Reaction conditions: 1 (0.2 mmol), 2 (0.24 mmol), [Cp*RhCl2]2 (5 mol%), K3PO4 (2.5 equiv.), 1, 1, 2, 2-tetrachloroethane (1 mL) at 50 ℃ under argon atmosphere for 12 h. Isolated yield.

    Also interesting was the applicability of N-methoxybenzothioamide 4 in the reaction. The cyclization reaction proceeded smoothly to give the desired product 5 in 73% yield (Scheme 4).

    Scheme 4

    Scheme 4.  Annulation reaction of 4 with 2a.

    When N-methoxy-2-naphthamide 6 was used in the reaction, the 3-position C-H bond with less steric hindrance was exclusively functionalized to give the product 7 in 72% yield (Scheme 5a). Interestingly, treatment of N-methoxybenzo[d][1, 3]dioxole-5-carboxamide 8 with 2a provided the 4-position annulation product 9 in 78% yield (Scheme 5b). The later could be explained by a coordination effect between the oxygen atom at the 3-position and the transition metal.

    Scheme 5

    Scheme 5.  Regioselective reactions.

    Intermolecular competitive reactions were performed to understand the reactivity of N-methoxybenzamides and gem-difluorocyclopropenes (Scheme 6). Treatment of N-methoxybenzamide 1a and N-methoxybenzothioamide 4 with 2a under the standard conditions gave only 3a in 80% yield (Scheme 6a). Competition reaction of 4-methoxy-N-methoxybenzamide 1d and 4-acetyl-N-methoxybenzamide 1k with 2a gave exclusively 3k in 76% yield (Scheme 6b). This result demonstrated that the benzamide substrates with electron-donating substituents are less reactive. Furthermore, when 1a was treated with 2ac and 2ah, the corresponding products 3ac and 3ah were isolated in 13% and 68% yields, respectively, suggesting that electron-poorer 2ah is good for the reaction (Scheme 6c).

    Scheme 6

    Scheme 6.  Intermolecular competitive reactions.

    To further probe the mechanism, several control experiments were conducted (Scheme 7). When D2O was added to the reaction in the absence of 2a, a 47% deuterium incorporation at ortho position of 1a was observed without N-O bond cleavage (Scheme 7a). And a kinetic isotope effect (KIE) value of kH/kD = 1.3 was observed (Scheme 7b). These results suggested that the C-H bond cleavage is reversible and not be involved in the turnover-limiting step. A hydroamination product 10 was unexpectedly obtained in the absence of rhodium catalyst (Scheme 7c). However, this compound was demonstrated not to be an effective intermediate for the title reaction. A rhodacycle Rh-1 was prepared and its intermediacy in the reaction was confirmed by stoichiometric and catalytic reactions, suggesting a C-H activation took place.

    Scheme 7

    Scheme 7.  Mechanism studies.

    To further cast light on the mechanism, theoretical calculations were performed at the density functional theory level (B3LYP). For the convenience of calculation, the active catalyst Cp*Rh(OAc)2 was chosen as the starting point (zero value of energy). Using N-methoxy benzamide 1a as a substrate, N-H deprotonation followed by C-H activation were performed via a concerted metalation-deprotonation (CMD) mechanism with acetate acting as intramolecular base, through transition states TS-1G = 13.0 kcal/mol) and TS-2G = 19.8 kcal/mol), respectively (Fig. 2). The intermediate verification experiments in Scheme 7c echoed the calculation results. Thereafter, the insertion of gem-difluorocyclopropene 2ai into the rhodacycle INT-5 presented two characteristic spatial arrangements, TS-3G = 27.5 kcal/mol) and TS-3′G = 28.9 kcal/mol), both of which had a higher activation barrier than the first two steps (Fig. 3). The computational results indicated that C-H activation was not the turnover limiting step in the reaction, consistent with the observed small experimental KIE values (Scheme 7b). Taking into account the higher energy barrier of TS-3′, especially TS-4′, therefore subsequent calculations revolved around TS-3. From INT-7, the priority of either β-fluorine elimination or C-N bond formation was discussed. The results revealed that the direct β-fluorine elimination with or without the assistance of acetic acid, followed by C-N bond formation step via TS-4a and TS-4b, featured a high energy barrier of 33.2 and 35.1 kcal/mol, reaspectively. Two possible pathways for C-N bond formation prior to the defluorination were then calculated. Considering the high energy barrier of TS-4cG = 68.6 kcal/mol), the direct migration of the methoxy group from the amide to the trivalent rhodium to form INT-9c was tough. The migration process was more reasonable in the assistance of acetic acid, because the energy barrier of TS-4 was reduced to 28.8 kcal/mol and a Rh(Ⅴ) intermediate INT-10 was produced with the free-energy of −54.3 kcal/mol. the synergistic effect of rhodium and acetate accelerated the ring-opening defluorination of INT-10 to release the final product 3aiG = −71.0 kcal/mol). Overall, the computed Gibbs free-energy changes of the reaction pathway demonstrated a redox-neutral Rh(Ⅲ)-Rh(Ⅴ)-Rh(Ⅲ) catalytic cycle for the developed protocol involving HOAc-prompted oxidative addition and unprecedented C-F bond cleavage/ring expansion processes.

    Figure 2

    Figure 2.  Computed pathways for N─H and C─H activation.

    Figure 3

    Figure 3.  Computed pathways for C─N formation and F-elimination.

    On the basis of the above studies and previous reports [53-57], a plausible mechanism is proposed in Scheme 8. A ligand exchange between [Cp*RhCl2]2 and K3PO4 forms a reactive catalyst. Rhodacycle A is then formed via consecutive N-H and ortho C-H bonds activation. These processes may occur via a CMD (concerted metalation deprotonation)-like mechanism in the aid of internal PO43− base [29]. Afterwards, a migratory insertion of the rhodacycle A into gem-difluorocyclopropene 2 delivers the intermediate B. Rh(Ⅲ) in intermediate B is oxidized to Rh(Ⅴ) nitrenoid intermediate C in the aid of K2HPO4. Rh(Ⅴ) intermediate C returns to Rh(Ⅲ) through a C-N migratory insertion into the nitrenoid. Finally, the synergistic effect of rhodium and K2HPO4 accelerates the ring-opening defluorination to release the product 3.

    Scheme 8

    Scheme 8.  Possible catalytic cycle.

    In summary, we developed a novel [4 + 3] cycloaddition reaction of N-methoxyamides with gem-difluorocyclopropenes, enabling a modular, concise and efficient approach for accessing highly functionalized fluorine-substituted 2H-azepin-2-ones in moderate to good yields. Other appealing features include simple and readily available substrates, mild conditions and broad substrate scope. DFT studies revealed a consecutive C-N bond formation and fluorine elimination events in the annulation reaction. Given the importance of 7-membered heterocycles as well as fluorine atom in medicinal chemistry, we anticipate this protocol will find applications. During the preparation of this work, Yi and Zhou reported a similar work [58].

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This work was financially supported by National Natural Science Foundation of China (Nos. 21861007, 21702034), Natural Science Foundation of Guangxi Province (No. 2021GXNSFAA075024), "BAGUI Scholar" Program of Guangxi Province of China, High-Level Innovation Team and Distinguished Scholar Program in Guangxi Colleges and Universities.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.068.


    1. [1]

      P. Dai, J. Qu, Y. Kang, Org. Lett. 21(2019) 1393-1396.  doi: 10.1021/acs.orglett.9b00101

    2. [2]

      K. Rajurkar, S. Tonde, M. Didgikar, S. Joshi, R. Chaudhari, Ind. Eng. Chem. Res. 46(2007) 8480-8489.  doi: 10.1021/ie0700866

    3. [3]

      P. Harrington, E. Lodewijk, Org. Process Res. Dev. 1(1997) 72-76.  doi: 10.1021/op960009e

    4. [4]

      T. Morihara, T. Chu, O. Ubeda, W. Beech, G. Cole, J. Neurochem. 83(2002) 1009-1012.  doi: 10.1046/j.1471-4159.2002.01195.x

    5. [5]

      S. Adams, Lancet 330(1987) 1204-1205.

    6. [6]

      A. Gouda, E. Beshr, F. Almalki, et al., Bioorg. Chem. 92(2019) 103224-103255.  doi: 10.1016/j.bioorg.2019.103224

    7. [7]

      M. Haiba, S. El-Karim, R. Gouhar, M. El-Zahar, S. El-Awdan, Med. Chem. Res. 23(2014) 3418-3435.  doi: 10.1007/s00044-014-0926-z

    8. [8]

      G. Halford, M. Lordkipanidze, S. Watson, Platelets. 23(2012) 415-422.  doi: 10.3109/09537104.2011.632032

    9. [9]

      T. Kantor, Pharmacotherapy 6(1986) 93-103.  doi: 10.1002/j.1875-9114.1986.tb03459.x

    10. [10]

      M. Landoni, A. Soraci, Curr. Drug Metab. 2(2001) 37-51.  doi: 10.2174/1389200013338810

    11. [11]

      K. Rainsford, Inflammopharmacology 17(2009) 275-342.  doi: 10.1007/s10787-009-0016-x

    12. [12]

      C. Sakamoto, S. Soen, Digestion 83(2011) 108-112.  doi: 10.1159/000318746

    13. [13]

      R. Franke, D. Selent, A. Borner, Chem. Rev. 112(2012) 5675-5732.  doi: 10.1021/cr3001803

    14. [14]

      J. Pospech, I. Fleischer, R. Franke, S. Buchholz, M. Beller, Angew. Chem. Int. Ed. 52(2013) 2852-2872.  doi: 10.1002/anie.201208330

    15. [15]

      J. Liao, S. Zhang, Z. Wang, et al., Green Synth. Catal. 1(2020) 121-133.  doi: 10.1016/j.gresc.2020.08.001

    16. [16]

      P. Eilbracht, L. Barfacker, C. Buss, et al., Chem. Rev. 99(1999) 3329-3365.  doi: 10.1021/cr970413r

    17. [17]

      C. De, R. Saha, S. Ghosh, et al., Res. Chem. Intermed. 39(2013) 3463-3474.  doi: 10.1007/s11164-012-0891-4

    18. [18]

      E.P. Blanchard, J.G. Büchi, J. Am. Chem. Soc. 85(1963) 955-958.  doi: 10.1021/ja00890a027

    19. [19]

      M.C. Robinson, K. Pillinger, I. Mabbett, D.A. Timms, A. Graham, Tetrahedron 66(2010) 8377-8382.  doi: 10.1016/j.tet.2010.08.078

    20. [20]

      E.J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 87(1965) 1353-1364.  doi: 10.1021/ja01084a034

    21. [21]

      G. Jiang, J. Chen, H. Thu, et al., Angew. Chem. Int. Ed. 47(2008) 6638-6642.  doi: 10.1002/anie.200801500

    22. [22]

      A. Chowdhury, R. Ray, G. Lahiri, Chem. Commun. 48(2012) 5497-5499.  doi: 10.1039/c2cc32051g

    23. [23]

      G. Zhang, X. Hu, C. Chiang, et al., J. Am. Chem. Soc. 138(2016) 12037-12040.  doi: 10.1021/jacs.6b07411

    24. [24]

      T Kwokla, D Wink, Organometallics 12(1993) 1954-1959.  doi: 10.1021/om00029a060

    25. [25]

      C. Basoli, C. Botteghi, M. Cabras, G. Chelucci, M. Marchetti, J. Organomet. Chem. 488(1995) C20-C22.  doi: 10.1016/0022-328X(94)00037-D

    26. [26]

      C. Gnim, I. Amer, J. Organomet. Chem. 516(1996) 235-243.  doi: 10.1016/0022-328X(96)06137-2

    27. [27]

      H. Clark, R. Wang, H. Alper, J. Org. Chem. 67(2002) 6224-6225.  doi: 10.1021/jo011093l

    28. [28]

      I. Mikhel, N. Dubrovina, I. Shuklov, et al., J. Org. Chem. 696(2011) 3050-3057.  doi: 10.1016/j.jorganchem.2011.05.004

    29. [29]

      A. Oukhrib, L. Bonnafoux, A. Panossian, et al., Tetrahedron 70(2014) 1431-1436.  doi: 10.1016/j.tet.2014.01.003

    30. [30]

      S. Pandey, K. Raj, D. Shinde, et al., J. Am. Chem. Soc. 140(2018) 4430-4439.  doi: 10.1021/jacs.8b01286

    31. [31]

      S. Yu, Y. Chie, Z. Guan, et al., Org. Lett. 11(2009) 241-244.  doi: 10.1021/ol802479y

    32. [32]

      P. Dingwall, J. Fuentes, L. Crawford, et al., J. Am. Chem. Soc. 139(2017) 15921-15932.  doi: 10.1021/jacs.7b09164

    33. [33]

      L. Iu, J. Fuentes, M. Janke, K. Fontenot, M. Clarke, Angew. Chem. Int. Ed. 58(2019) 2120-2124.  doi: 10.1002/anie.201811888

    34. [34]

      A. Phanopolulos, K. Nozaki, ACS Catal. 8(2018) 5799-5809.  doi: 10.1021/acscatal.8b00566

    35. [35]

      Y. Ning, F. Chen, Green Synth. Catal. 2(2021) 247-266.  doi: 10.1016/j.gresc.2021.04.008

    36. [36]

      A. Ajjou, H. Alper, J. Am. Chem. Soc. 120(1998) 1466-1468.  doi: 10.1021/ja973048u

    37. [37]

      H. Fu, M. Li, H. Chen, X. Li, J. Mol. Catal. A 194(2003) 13-17.  doi: 10.1016/S1381-1169(02)00533-2

    38. [38]

      S. Son, J. Han, Y. Chung, J. Mol. Catal. A 135(1998) 35-39.  doi: 10.1016/S1381-1169(97)00293-8

    39. [39]

      Y. Kim, C. Li, Green Synth. Catal 1(2020) 1-11.  doi: 10.1016/j.gresc.2020.06.002

    40. [40]

      R.G. Nuzzo, S.L. Haynie, M.E. Wilson, G.M. Whitesides, J. Org. Chem. 46(1981) 2861-2867.  doi: 10.1021/jo00327a005

    41. [41]

      L. Ai, W. Wang, J. Wei, et al., Synlett 30(2019) 437-441.  doi: 10.1055/s-0037-1610385

    42. [42]

      L. Zhang, Z. Zuo, X. Wan, Z. Huang, J. Am. Chem. Soc. 136(2014) 15501-15504.  doi: 10.1021/ja5093908

    1. [1]

      P. Dai, J. Qu, Y. Kang, Org. Lett. 21(2019) 1393-1396.  doi: 10.1021/acs.orglett.9b00101

    2. [2]

      K. Rajurkar, S. Tonde, M. Didgikar, S. Joshi, R. Chaudhari, Ind. Eng. Chem. Res. 46(2007) 8480-8489.  doi: 10.1021/ie0700866

    3. [3]

      P. Harrington, E. Lodewijk, Org. Process Res. Dev. 1(1997) 72-76.  doi: 10.1021/op960009e

    4. [4]

      T. Morihara, T. Chu, O. Ubeda, W. Beech, G. Cole, J. Neurochem. 83(2002) 1009-1012.  doi: 10.1046/j.1471-4159.2002.01195.x

    5. [5]

      S. Adams, Lancet 330(1987) 1204-1205.

    6. [6]

      A. Gouda, E. Beshr, F. Almalki, et al., Bioorg. Chem. 92(2019) 103224-103255.  doi: 10.1016/j.bioorg.2019.103224

    7. [7]

      M. Haiba, S. El-Karim, R. Gouhar, M. El-Zahar, S. El-Awdan, Med. Chem. Res. 23(2014) 3418-3435.  doi: 10.1007/s00044-014-0926-z

    8. [8]

      G. Halford, M. Lordkipanidze, S. Watson, Platelets. 23(2012) 415-422.  doi: 10.3109/09537104.2011.632032

    9. [9]

      T. Kantor, Pharmacotherapy 6(1986) 93-103.  doi: 10.1002/j.1875-9114.1986.tb03459.x

    10. [10]

      M. Landoni, A. Soraci, Curr. Drug Metab. 2(2001) 37-51.  doi: 10.2174/1389200013338810

    11. [11]

      K. Rainsford, Inflammopharmacology 17(2009) 275-342.  doi: 10.1007/s10787-009-0016-x

    12. [12]

      C. Sakamoto, S. Soen, Digestion 83(2011) 108-112.  doi: 10.1159/000318746

    13. [13]

      R. Franke, D. Selent, A. Borner, Chem. Rev. 112(2012) 5675-5732.  doi: 10.1021/cr3001803

    14. [14]

      J. Pospech, I. Fleischer, R. Franke, S. Buchholz, M. Beller, Angew. Chem. Int. Ed. 52(2013) 2852-2872.  doi: 10.1002/anie.201208330

    15. [15]

      J. Liao, S. Zhang, Z. Wang, et al., Green Synth. Catal. 1(2020) 121-133.  doi: 10.1016/j.gresc.2020.08.001

    16. [16]

      P. Eilbracht, L. Barfacker, C. Buss, et al., Chem. Rev. 99(1999) 3329-3365.  doi: 10.1021/cr970413r

    17. [17]

      C. De, R. Saha, S. Ghosh, et al., Res. Chem. Intermed. 39(2013) 3463-3474.  doi: 10.1007/s11164-012-0891-4

    18. [18]

      E.P. Blanchard, J.G. Büchi, J. Am. Chem. Soc. 85(1963) 955-958.  doi: 10.1021/ja00890a027

    19. [19]

      M.C. Robinson, K. Pillinger, I. Mabbett, D.A. Timms, A. Graham, Tetrahedron 66(2010) 8377-8382.  doi: 10.1016/j.tet.2010.08.078

    20. [20]

      E.J. Corey, M. Chaykovsky, J. Am. Chem. Soc. 87(1965) 1353-1364.  doi: 10.1021/ja01084a034

    21. [21]

      G. Jiang, J. Chen, H. Thu, et al., Angew. Chem. Int. Ed. 47(2008) 6638-6642.  doi: 10.1002/anie.200801500

    22. [22]

      A. Chowdhury, R. Ray, G. Lahiri, Chem. Commun. 48(2012) 5497-5499.  doi: 10.1039/c2cc32051g

    23. [23]

      G. Zhang, X. Hu, C. Chiang, et al., J. Am. Chem. Soc. 138(2016) 12037-12040.  doi: 10.1021/jacs.6b07411

    24. [24]

      T Kwokla, D Wink, Organometallics 12(1993) 1954-1959.  doi: 10.1021/om00029a060

    25. [25]

      C. Basoli, C. Botteghi, M. Cabras, G. Chelucci, M. Marchetti, J. Organomet. Chem. 488(1995) C20-C22.  doi: 10.1016/0022-328X(94)00037-D

    26. [26]

      C. Gnim, I. Amer, J. Organomet. Chem. 516(1996) 235-243.  doi: 10.1016/0022-328X(96)06137-2

    27. [27]

      H. Clark, R. Wang, H. Alper, J. Org. Chem. 67(2002) 6224-6225.  doi: 10.1021/jo011093l

    28. [28]

      I. Mikhel, N. Dubrovina, I. Shuklov, et al., J. Org. Chem. 696(2011) 3050-3057.  doi: 10.1016/j.jorganchem.2011.05.004

    29. [29]

      A. Oukhrib, L. Bonnafoux, A. Panossian, et al., Tetrahedron 70(2014) 1431-1436.  doi: 10.1016/j.tet.2014.01.003

    30. [30]

      S. Pandey, K. Raj, D. Shinde, et al., J. Am. Chem. Soc. 140(2018) 4430-4439.  doi: 10.1021/jacs.8b01286

    31. [31]

      S. Yu, Y. Chie, Z. Guan, et al., Org. Lett. 11(2009) 241-244.  doi: 10.1021/ol802479y

    32. [32]

      P. Dingwall, J. Fuentes, L. Crawford, et al., J. Am. Chem. Soc. 139(2017) 15921-15932.  doi: 10.1021/jacs.7b09164

    33. [33]

      L. Iu, J. Fuentes, M. Janke, K. Fontenot, M. Clarke, Angew. Chem. Int. Ed. 58(2019) 2120-2124.  doi: 10.1002/anie.201811888

    34. [34]

      A. Phanopolulos, K. Nozaki, ACS Catal. 8(2018) 5799-5809.  doi: 10.1021/acscatal.8b00566

    35. [35]

      Y. Ning, F. Chen, Green Synth. Catal. 2(2021) 247-266.  doi: 10.1016/j.gresc.2021.04.008

    36. [36]

      A. Ajjou, H. Alper, J. Am. Chem. Soc. 120(1998) 1466-1468.  doi: 10.1021/ja973048u

    37. [37]

      H. Fu, M. Li, H. Chen, X. Li, J. Mol. Catal. A 194(2003) 13-17.  doi: 10.1016/S1381-1169(02)00533-2

    38. [38]

      S. Son, J. Han, Y. Chung, J. Mol. Catal. A 135(1998) 35-39.  doi: 10.1016/S1381-1169(97)00293-8

    39. [39]

      Y. Kim, C. Li, Green Synth. Catal 1(2020) 1-11.  doi: 10.1016/j.gresc.2020.06.002

    40. [40]

      R.G. Nuzzo, S.L. Haynie, M.E. Wilson, G.M. Whitesides, J. Org. Chem. 46(1981) 2861-2867.  doi: 10.1021/jo00327a005

    41. [41]

      L. Ai, W. Wang, J. Wei, et al., Synlett 30(2019) 437-441.  doi: 10.1055/s-0037-1610385

    42. [42]

      L. Zhang, Z. Zuo, X. Wan, Z. Huang, J. Am. Chem. Soc. 136(2014) 15501-15504.  doi: 10.1021/ja5093908

  • 加载中
    1. [1]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    2. [2]

      Chen-Chang CuiShao-Qing ShiLu-Yao WangFeng LinMan-Su TuWen-Juan HaoBo Jiang . Accessing polyarene-fused ten-membered lactams via oxidative N-heterocyclic carbene (NHC)-catalyzed high-order [7 + 3] annulation. Chinese Chemical Letters, 2025, 36(6): 110541-. doi: 10.1016/j.cclet.2024.110541

    3. [3]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    6. [6]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    7. [7]

      Shuo LiQianfa LiuLijun MaoXin ZhangChunju LiDa Ma . Benzothiadiazole-based water-soluble macrocycle: Synthesis, aggregation-induced emission and selective detection of spermine. Chinese Chemical Letters, 2024, 35(11): 109791-. doi: 10.1016/j.cclet.2024.109791

    8. [8]

      Ying-Mei ZhongZi-Jun XiaYu-Hang HuLi-Peng ZhouLi-Xuan CaiQing-Fu Sun . Effective separation of phenanthrene from isomeric anthracene using a water-soluble macrocycle-based cage. Chinese Chemical Letters, 2025, 36(4): 110164-. doi: 10.1016/j.cclet.2024.110164

    9. [9]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    10. [10]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    11. [11]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    12. [12]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    13. [13]

      Lei ShenYang ZhangLinlin ZhangChuanwang LiuZhixian MaKangjiang LiangChengfeng Xia . Phenylhydrazone anions excitation for the photochemical carbonylation of aryl iodides with aldehydes. Chinese Chemical Letters, 2024, 35(4): 108742-. doi: 10.1016/j.cclet.2023.108742

    14. [14]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    15. [15]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    16. [16]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    17. [17]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    18. [18]

      Jiajun LuZhehui LiaoTongxiang CaoShifa Zhu . Synergistic Brønsted/Lewis acid catalyzed atroposelective synthesis of aryl-β-naphthol. Chinese Chemical Letters, 2025, 36(1): 109842-. doi: 10.1016/j.cclet.2024.109842

    19. [19]

      Ya-Ling LiJia-Wei KeYue LiuDong-Mei YaoJing-Dong ZhangYou-Cai XiaoFen-Er Chen . Asymmetric conjugated addition of aryl Grignard reagents for the construction of chromanones bearing quaternary stereogenic centers in batch and flow. Chinese Chemical Letters, 2025, 36(6): 110377-. doi: 10.1016/j.cclet.2024.110377

    20. [20]

      Chengyao ZhaoJingyuan LiaoYuxiang ZhuYiying ZhangLianjie ZhaiJunrong HuangHengzhi You . Polystyrene-supported phosphoric-acid catalyzed atroposelective construction of axially chiral N-aryl benzimidazoles. Chinese Chemical Letters, 2025, 36(6): 110337-. doi: 10.1016/j.cclet.2024.110337

Metrics
  • PDF Downloads(4)
  • Abstract views(1134)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return