Citation: Xiaohu Zhang, Lixiao Han, Hao Chen, Shengyao Wang. Direct catalytic nitrogen oxide removal using thermal, electrical or solar energy[J]. Chinese Chemical Letters, ;2022, 33(3): 1117-1130. doi: 10.1016/j.cclet.2021.07.034 shu

Direct catalytic nitrogen oxide removal using thermal, electrical or solar energy

    * Corresponding author.
    E-mail address: wangshengyao@mail.hzau.edu.cn (S. Wang).
  • Received Date: 10 April 2021
    Revised Date: 26 May 2021
    Accepted Date: 14 July 2021
    Available Online: 23 July 2021

Figures(21)

  • Considering the significant importance in both ecological and environmental fields, converting nitrogen oxide (NOx, especially NO) into value-added NH3 or harmless N2 lies in the core of research over the past decades. Exploring catalyst for related gas molecular activation and highly efficient reaction systems operated under low temperature or even mild conditions are the key issues. Enormous efforts have been devoted to NO removal by utilizing various driving forces, such as thermal, electrical or solar energy, which shine light on the way to achieve satisfying conversion efficiency. Herein, we will review the state-of-the-art catalysts for NO removal driven by the above-mentioned energies, including a comprehensive introduction and discussion on the pathway and mechanism of each reaction, and the recent achievements of catalysts on each aspect. Particularly, the progress of NO removal by environmentally friendly photocatalysis and electrocatalysis methods will be highlighted. The challenges and opportunities in the future research on the current topic will be discussed as well.
  • Lithium-ion batteries (LIBs) using organic electrolytes have developed rapidly in the past two decades owing to the high energy and power density. However, their further applications in large-scale energy storage systems are limited by the hidden safety hazards and high production costs [1-4]. Therefore, it is urgent to develop alternative electrochemical systems for lithium-ion batteries [5, 6]. Aqueous zinc-ion batteries (AZIBs) have attracted more and more attention in recent years owing to their environmental friendliness, safety, low cost, high theoretical specific capacity (820 mAh/g), and low electrode potential (−0.76 V vs. standard hydrogen electrode) of zinc metal [7-10]. The big progress has been made in the cathode materials of AZIBs (such as Li+ intercalated V2O5·nH2O, in-situ carbon reduced Mn3O4 and self-doped polyaniline cathode) [11-13]. However, compared with the development of cathode materials, zinc anodes suffer from inescapable issues, such as the dendrites, corrosion, and hydrogen evolution reactions [14, 15]. Among them, the capacity attenuation and short circuit problems caused by dendrites are fatal to the practical application of zinc-ion batteries [16-18]. Some modifications based on the following eq. 1 have been proposed for addressing the dendrite problem:

    (1)

    As seen clearly, the key factors affecting zinc deposition include the zinc ion distribution, the interfacial electric field, and the spatial location of zinc growth. That is, a dendrite-free zinc deposition process can be achieved when there are more uniform electron-ion distribution, easier electron-ion exchange process, and more regular growth direction on the reaction interface. A suitable interfacial coating strategy can introduce the above modification effects on zinc anode [19]. For example, the porous nano-CaCO3 coating, and nano-ZnO coating can adjust the uniformity of ion transmission and electric field distribution at the electrode interface [20, 21]. The UiO-66 MOF solid electrolyte coating can optimize the zinc nucleation process by nanoscale wetting effects [22]. However, the interaction between the coating layer and zinc is insufficiently investigated in these works. Herein, the binding energy of zinc on different coating layers is proposed to differentiate their zincophobicity and zincophilicity. Generally, if the interaction is lower than that between the zinc crystal plane and zinc atoms, the zinc can be guided to deposit under the coating, indicating a huge difficulty to puncture the coating during zinc growth. If not, the zincophilic coating layer will induce the direct deposit of zinc dendrites on its surface, leading to the rapid failure of coating layer. In our previous work, (001) exposed TiO2 protective layer was specially designed by hydrofluoric acid assisted hydrothermal method to achieve dendrites-free zinc metal anode due to the zincophobic crystal orientation [23]. Note that the normal TiO2 tends to form (100) exposed plane, which is zincophilic based on the density functional theory (DFT) calculation. Therefore, it is of great significance to find some new protective coating materials with intrinsic zincophobicity to achieve more stable zinc anodes without special design.

    In this work, we first evaluate the interactions between zinc and barium-titanate (BT) by density functional theory (DFT) calculation, which indicates that (100) and (110) facets of barium-titanate exhibit strong zincophobicity. These crystal facets dominantly exist in common barium-titanate, that is, it can be a perfect intrinsically zincophobic protective layer. As a result, the modified zinc anode with commercial barium-titanate can exhibit dendrite-free morphology, long cycle life, and low voltage hysteresis by adjusting the electric field and ion distribution at the zinc anode interface to restrict the uneven zinc deposition. Moreover, an aqueous Zn||MnO2 full battery assembled with barium-titanate protective anode can deliver high specific capacity and capacity retention ratio.

    The X-ray powder diffraction (XRD) patterns (Fig. 1a) indicate that the dominant crystal facets of zinc foil are (100), (101) and (102) facets and those of commercial barium-titanate particles are (100) and (110) facets. The transmission electron microscopy (TEM) characterizations were conducted to further elucidate the crystal structure of barium-titanate. The lattice spacing of about 0.28 nm and 0.4 nm can be observed in the high-resolution transmission electron microscopy (HRTEM) image, which is well indexed to (110) and (100) crystal facet of barium-titanate, respectively (Figs. 1b and c). The well-crystallized nano barium-titanate can be verified by the corresponding selected area electron diffraction result (Fig. S1 in Supporting information). Afterward, the interactions between zinc atom and these dominant crystal facets are simulated by DFT method. The calculated binding energy and the corresponding model are shown in Figs. 1d-g.

    Figure 1

    Figure 1.  (a) XRD patterns of zinc foil and nano barium-titanate. (b, c) TEM images of barium-titanate. (d) Calculated binding energies of zinc atom with different facets. Calculation models of zinc absorbed on (e) BT (110) facet, (f) BT (100) facet and (g) zinc (101) facet.

    As seen clearly, the binding energies of the binding energies of zinc atom on barium-titanate (100) and (110) crystal facets (−0.34 eV and −0.378 eV) are both lower than those of zinc atom on dominant zinc facets (−0.54 eV, −1.618 eV and −1.453 eV), which indicates that zinc prefers to deposit on zinc substrate in comparison to the barium-titanate layer, in another word, the as-prepared barium-titanate layer is intrinsically zincophobic. It should be noted that the zinc atom with the lowest binding energy is adsorbed on the apex of the octahedron composed of oxygen and barium atoms, indicating that the zincophobicity of barium-titanate is mainly due to the strong repulsive force generated by large radius Ba2+ against zinc atoms [23, 24]. In contrast, the high binding energy between zinc atom and zinc facets can be ascribed to the strong metal bond [25]. Accordingly, the commercial barium-titanate can be considered as a perfect interface protective layer for zinc anodes, which can adjust the electric field and ion distribution at the zinc anode interface and restrict the zinc deposition by strong zincophobicity.

    A uniform and porous barium-titanate protective layer was coated on zinc anode by a simple blade coating method (Fig. 2a). The cross-sectional SEM image and energy dispersive X-ray (EDX) mapping image of as-prepared zinc anode illustrate that the thickness of the coating layer is about 8 µm (Fig. 2b, Figs. S3c and d in Supporting information). Brunauere-Emmette-Teller (BET) test results show that the pore volume density of the coating is 2.787 × 10−2 cm3/g in the range of 2–10 nm (Fig. S2 in Supporting information). Compared with two-dimensional surface of smooth zinc foil, the three-dimensional porous coating layer can provide more ion transport channels and regulate ion flux, uniformize the zinc deposition [21]. The contact angles of the electrolyte on the bare zinc and BT coated zinc are 99.9° and 72.4° (Fig. 2c), respectively, indicating the better wettability of coated anode, which can improve the kinetic process of zinc ions at the electrode interface and reduce the ions transmission impedance [22]. The faster ion transport may be related to the strong space charge polarization of barium-titanate [26-28]. The lower ion transmission impedance of the coated anode is also proven by electrochemical impedance spectroscopy (EIS) results (Fig. 2d, Table 1). The capacitance (C) is obtained by calculating the slope of the ic-v (current vs. scan rate) curves, and the ic is the half value of current difference between positive and negative scanning at 0 V (Fig. S4 in Supporting information) [29]. As seen in Fig. 2e, the interface capacitance of BT coated zinc (110.2 µF/cm2) is much higher than that of the bare zinc (38.57 µF/cm2), indicating the stronger adsorption ability of zinc ions on the coated zinc anode (The adsorption site is at the junction of coating and zinc foil). The enrichment of zinc ions on the electrode interface can provide more nucleation sites for zinc deposition, thereby optimizing the uniformity of deposition [20]. Its lower corrosion current effectively demonstrates the better anti-corrosion ability that can inhibit the generation of the by-product, thereby maintaining uniformity of ion transmission and improving the zinc anode utilization [14, 30].

    Figure 2

    Figure 2.  SEM images of coating (a) surface and (b) cross section. (c) Contact angles of electrolyte on bare zinc and BT coated zinc anodes. (d) EIS curve and fitting circuit diagram of Zn||Zn symmetric batteries. (e) Capacitance fitting curves of Zn||Zn symmetric batteries. (f) Linear polarization curves displaying the corrosion on bare zinc and BT coated zinc anodes.

    The zinc deposition processes on different anodes are illustrated in Fig. 3a. Zinc prefers to deposit at the tip sites and the sites with high ion concentration on bare zinc electrode. These sites distributed unevenly and sparsely on the electrode interface can induce the zinc dendrites formation during the repeated cycles. When using barium-titanate as the protective layer, zinc ions can be enriched on the electrode surface to provide more nucleation sites for zinc deposition, so that the ion flux and electric field strength on the electrode surface are evenly divided. The layer with strong zincophobicity (such as "gold armor") can also homogenize zinc deposition by guiding zinc to grow beneath the layer. The Zn||Cu half batteries were employed to further test the reversibility and Coulombic efficiency of zinc deposition/stripping. As shown in Fig. 3b, the zinc nucleation overpotentials on bare Cu and BT coated Cu in the first deposition are calculated to be 42 mV and 30 mV, respectively. The lower overpotential of BT coated Cu indicates that the coating layer can provide more activated nucleation sites for zinc deposition [31]. The Cu electrode coated by BT exhibits much longer cycle life (500 h vs. 60 h) and lower voltage polarization (54 mV vs. 69 mV at 25th cycle) compared with bare Cu at a current density of 2 mA/cm2 (Figs. 3c and d, Fig. S5 in Supporting information). When decreasing the current density to 0.5 mA/cm2 and the specific capacity to 0.5 mAh/cm2, the modified anode can still deliver excellent reversibility (Fig. S6 in Supporting information). The Cu electrode was extracted from the cell after 10 cycles for further morphology observation. As seen, the zinc deposition under the coating is more homogeneous than that on bare Cu foil because there are only few active sites on Cu foil, which may lead to the formation of a large amount of "dead zinc" and cause the battery to short circuit (Fig. S7 in Supporting information). Meanwhile, the binding energies of the (100) and (110) crystal facets of Cu with zinc are calculated by DFT (Fig. S8 in Supporting information), indicating the zincophilicity of copper host. However, zinc dendrites can be still induced on the zincophilic Cu due to its uneven ion distribution and disordered growth direction [32]. For comparison, it is interesting to note that the zinc can be guided by the porous and zincophobic coating layer to uniformly nucleate and grow on the electrode surface, thereby obtaining a dendritic-free electrode.

    Figure 3

    Figure 3.  (a) Schematic diagram of zinc deposition for different anodes. The electrochemical performance of Zn||Cu half batteries capacity-voltage curves of the (b) first cycle and (c) 25th cycle, (d) Coulombic efficiencies. (e) Rate performance of Zn||Zn symmetric batteries.

    In Fig. 3e, the superior rate performance of the BT coated zinc anode with a lower voltage hysteresis and more stable voltage plateau can be observed when the current density is increased from 0.5 mA/cm2 to 1, 2, 5, 10 mA/cm2, whereas the bare zinc breaks down at 10 mA/cm2, indicating that the easier electron-ion exchange process and more uniform stripping/deposition of the BT coated zinc anode. The surface morphologies of the cycled anodes after 10 cycles are shown in optical pictures and SEM images (Fig. 4a, Figs. S9a and b in Supporting information). The coated anode is intact without the generation of "island-like dendrites" and the well-defined distribution of Ti, Ba and Zn in the EDX mapping image also proves that the coating layer can protect the separator from being pierced by restricting the zinc growth (Figs. 4b and c). Furthermore, the barium-titanate coating layer on the cycled anodes was removed by using methyl-2-pyrrolidinone (NMP) to dissolve polyvinylidene difluoride (PVDF) in the coating layer. Fig. 4d and Fig. S8d show the morphology of zinc deposition under the coating. No dendrite is observed and the surface remains flat, which is in sharp contrast with the dendritic deposition on bare zinc (Fig. S9c in Supporting information). In the long-cycle symmetric batteries test, profited from the adjustment of zinc deposition by the protective layer, the BT coated zinc can be operated steadily for more than 840 h at 0.5 mA/cm2 for 0.5 mAh/cm2, which is much superior to the bare zinc (60 h), and it also exhibits a low voltage hysteresis (36 mV at 20th cycle) and stable voltage plateau (Fig. 4e). When increasing the current density to 2 mA/cm2 and the specific capacity to 1 mAh/cm2, the coated anode can still deposit and strip for 400 h while the bare one shows the quick failure of 60 h (Fig. S10). The positive role of this intrinsically zincophobic barium-titanate protective layer in improving anode stability has been well proven through the comparison of the symmetrical battery electrochemical behaviors.

    Figure 4

    Figure 4.  The SEM images of BT coated zinc anode (a) surface, (b) cross section, (c) corresponding EDX mapping image, (d) without coating layer, cycled at 0.5 mA/cm2 with a capacity of 0.5 mAh/cm2 after 10 cycles. (e) Cycling performance of Zn||Zn symmetric batteries at 0.5 mA/cm2 for 0.5 mAh/cm2. Cyclic voltammetry curve (f) and cycling performance (g) of the full batteries at a current density of 1 A/g. Scale bar: 10 μm.

    The full battery was assembled with BT coated zinc anode and the fibrous β-MnO2 cathode synthesized by previous (Fig. S11 in Supporting information) [7]. As shown in cyclic voltammetry (CV) curves (Fig. 4f), the BT coated Zn||MnO2 battery exhibits higher reduction peak (1.07 V vs. 1.05 V) and lower oxidation peak (1.68 V vs. 1.70 V), indicating the faster Zn2+ kinetics and the higher deposition/stripping efficiency, which is in consistent with the EIS results (Fig. S12a in Supporting information). The long-term cycling performance of the batteries cycled at 1 A/g are depicted in Fig. 4g and Fig. S12b (Supporting information), from which the battery with BT coated zinc anode exhibits much better cycling stability with a specific discharge capacity of 142 mAh/g remaining after 300 cycles compared with that of bare one (69 mAh/g). The excellent performance of the full battery certifies the practical value of this protective layer.

    In summary, a porous and intrinsically zincophobic barium-titanate protective layer was proposed to stabilize zinc anode. Benefitting from the strong repulsive force generated by large radius Ba2+ against zinc atoms, the commercial barium-titanate exhibited strong zincophobicity and the zinc ions showed strong adsorption at the zinc anode interface. Accordingly, this coating layer played an important role in regulating ion transport, zinc nucleation and zinc crystal growth. Based on these synergistic effects, the as-prepared zinc anode showed superior reversibility of zinc stripping/deposition with a long lifespan (840 h) and a low voltage hysteresis (36 mV) at 0.5 mA/cm2 for 0.5 mAh/cm2. This work provides a novel guiding direction for discovering naturally zincophobic protective layer materials to modify zinc anode interface, which can be also extended to other metal anodes.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This research was financially supported by National Nature Science Foundation of China (Nos. U19A2019, U22109181), Hunan Provincial Science and Technology Plan Project of China (Nos. 2017TP1001 and 2020JJ2042), and the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.09.083.


    1. [1]

      J. Becher, D.F. Sanchez, D.E. Doronkin, et al., Nat. Catal. 4(2020) 46-53.

    2. [2]

      P. Zhang, Y. Huang, Y. Rao, et al., Chem. Eng. J. 406(2021) 126910.  doi: 10.1016/j.cej.2020.126910

    3. [3]

      F. Rao, G. Zhu, W. Zhang, et al., Appl. Catal. B: Environ. 281(2021) 119481.  doi: 10.1016/j.apcatb.2020.119481

    4. [4]

      C. Yuan, R. Chen, J. Wang, et al., J. Hazard. Mater. 400(2020) 123174.  doi: 10.1016/j.jhazmat.2020.123174

    5. [5]

      J. Hu, C. Zhai, M. Zhu, Chin. Chem. Lett. 32(2021) 1348-1358.  doi: 10.1016/j.cclet.2020.09.049

    6. [6]

      H. Wu, C. Yuan, R. Chen, et al., ACS Appl. Mater. Interfaces 12(2020) 43741-43749.  doi: 10.1021/acsami.0c12628

    7. [7]

      J.K. Lai, I.E. Wachs, ACS Catal. 8(2018) 6537-6551.  doi: 10.1021/acscatal.8b01357

    8. [8]

      G. Xu, J. Ma, L. Wang, et al., ACS Catal. 9(2019) 10489-10498.  doi: 10.1021/acscatal.9b04100

    9. [9]

      H. Kubota, C. Liu, T. Toyao, et al., ACS Catal. 10(2020) 2334-2344.  doi: 10.1021/acscatal.9b05151

    10. [10]

      A. Oda, H. Shionoya, Y. Hotta, et al., ACS Catal. 10(2020) 12333-12339.  doi: 10.1021/acscatal.0c03425

    11. [11]

      B. Wang, M. Wang, L. Han, et al., ACS Catal. 10(2020) 9034-9045.  doi: 10.1021/acscatal.0c02567

    12. [12]

      Z. Liu, G. Sun, C. Chen, et al., ACS Catal. 10(2020) 6803-6809.  doi: 10.1021/acscatal.0c01284

    13. [13]

      Y. Zhou, J. He, J. Lu, Y. Liu, Y. Zhou, Chin. Chem. Lett. 31(2020) 2623-2626.  doi: 10.1016/j.cclet.2020.02.008

    14. [14]

      R. Zhang, W. Jian, Z. Yang, F. Bai, Chin. Chem. Lett. 31(2020) 2319-2324.  doi: 10.1016/j.cclet.2020.04.055

    15. [15]

      H. Qiang, T. Chen, Z. Wang, et al., Chin. Chem. Lett. 31(2020) 3225-3229.  doi: 10.1016/j.cclet.2020.04.020

    16. [16]

      S. Hu, Y. Yu, Y. Guan, et al., Chin. Chem. Lett. 31(2020) 2839-2842.  doi: 10.1016/j.cclet.2020.08.021

    17. [17]

      H. Li, H. Shang, Y. Li, et al., Environ. Sci. Technol. 53(2019) 6964-6971.  doi: 10.1021/acs.est.9b01287

    18. [18]

      H. Li, H. Shang, X. Cao, et al., Environ. Sci. Technol 52(2018) 8659-8665.  doi: 10.1021/acs.est.8b01849

    19. [19]

      G. Cheng, X. Liu, X. Song, et al., Appl. Catal. B: Environ. 277(2020) 119196.  doi: 10.1016/j.apcatb.2020.119196

    20. [20]

      M. Çağlayan, M. Irfan, K. Ercan, Y. Kocak, E. Ozensoy, Appl. Catal. B: Environ. 263(2020) 118227.  doi: 10.1016/j.apcatb.2019.118227

    21. [21]

      H. Shang, M. Li, H. Li, et al., Environ. Sci. Technol. 53(2019) 6444-6453.  doi: 10.1021/acs.est.8b07322

    22. [22]

      H. Wu, R. Chen, H. Wang, et al., Catal. Sci. Technol. 10(2020) 826-834.  doi: 10.1039/C9CY02230A

    23. [23]

      S. Wang, X. Ding, N. Yang, et al., Appl. Catal. B: Environ. 265(2020) 118585.  doi: 10.1016/j.apcatb.2019.118585

    24. [24]

      H. Wang, W. Cui, X. Dong, et al., Chem. Eng. J. 390(2020) 124609.  doi: 10.1016/j.cej.2020.124609

    25. [25]

      Y. Liu, Y. Zhou, S. Yu, ACS Appl. Nano Mater. 3(2020) 772-781.

    26. [26]

      Z. Zhou, Y. Li, M. Li, Y. Li, S. Zhan, Chin. Chem. Lett. 31(2020) 2698-2704.  doi: 10.1016/j.cclet.2020.07.003

    27. [27]

      Q. Chen, X. Cheng, H. Long, Y. Rao, Chin. Chem. Lett. 31(2020) 2583-2590.  doi: 10.1016/j.cclet.2020.08.018

    28. [28]

      M. Zhou, G. Dong, J. Ma, et al., Appl. Catal. B: Environ. 273(2020) 119007.  doi: 10.1016/j.apcatb.2020.119007

    29. [29]

      R. Zhang, A. Zhang, Y. Yang, et al., J Hazard. Mater. 397(2020) 122822.  doi: 10.1016/j.jhazmat.2020.122822

    30. [30]

      R. Zhang, A. Zhang, Y. Cao, et al., Chem. Eng. J. 401(2020) 126028.  doi: 10.1016/j.cej.2020.126028

    31. [31]

      R. Zhang, T. Ran, Y. Cao, et al., Chem. Eng. J. 382(2020) 123029.  doi: 10.1016/j.cej.2019.123029

    32. [32]

      Y. Xing, X. Wang, S. Hao, et al., Chin. Chem. Lett. 32(2021) 13-20.  doi: 10.1016/j.cclet.2020.11.011

    33. [33]

      M. Ding, J. Zhou, H. Yang, et al., Chin. Chem. Lett. 31(2020) 71-76.  doi: 10.1016/j.cclet.2019.05.029

    34. [34]

      Y. Ren, Y. Li, X. Wu, J. Wang, G. Zhang, Chin. J. Catal. 42(2021) 69-77.  doi: 10.1016/S1872-2067(20)63631-2

    35. [35]

      Y. Geng, D. Chen, N. Li, et al., Appl. Catal. B: Environ. 280(2021) 119409.  doi: 10.1016/j.apcatb.2020.119409

    36. [36]

      G. Zhang, X. Zhu, D. Chen, et al., Environ. Sci. Nano 7(2020) 676-687.  doi: 10.1039/C9EN01325C

    37. [37]

      Q. Chen, H. Long, M. Chen, et al., Appl. Catal. B: Environ. 272(2020) 119008.  doi: 10.1016/j.apcatb.2020.119008

    38. [38]

      H. Shang, S. Huang, H. Li, et al., Chem. Eng. J. 386(2020) 124047.  doi: 10.1016/j.cej.2020.124047

    39. [39]

      S. Roy, M. Hegde, N. Ravishankar, G. Madras, J. Phys. Chem. C 111(2007) 8153-8160.  doi: 10.1021/jp066145v

    40. [40]

      Q. Wu, R. Krol, J. Am. Chem. Soc. 134(2012) 9369-9375.  doi: 10.1021/ja302246b

    41. [41]

      H.J. Chun, V. Apaja, A. Clayborne, K. Honkala, J. Greeley, ACS Catal 7(2017) 3869-3882.  doi: 10.1021/acscatal.7b00547

    42. [42]

      Z. Wang, J. Zhao, J. Wang, C. Cabrera, Z. Chen, J. Mater. Chem. A 6(2018) 7547-7556.  doi: 10.1039/C8TA00875B

    43. [43]

      J. Long, S. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 59(2020) 9711-9718.  doi: 10.1002/anie.202002337

    44. [44]

      D. Kim, D. Shin, J. Heo, et al., ACS Energy Lett. 5(2020) 3647-3656.  doi: 10.1021/acsenergylett.0c02082

    45. [45]

      S. Wang, F. Ichihara, H. Pang, H. Chen, J. Ye, Adv. Funct. Mater. 28(2018) 1803309.  doi: 10.1002/adfm.201803309

    46. [46]

      Y.S. Mok, Chem. Eng. J. 118(2006) 63-67.  doi: 10.1016/j.cej.2006.01.011

    47. [47]

      Y. Liu, J. Zhang, C. Zhang, Y. Zhang, L. Zhao, Chem. Eng. J. 162(2010) 1006-1011.  doi: 10.1016/j.cej.2010.07.009

    48. [48]

      R. Hao, Y. Zhao, Energy Fuels 30(2016) 2365-2372.  doi: 10.1021/acs.energyfuels.5b02748

    49. [49]

      X. Ding, W. Ho, J. Shang, L. Zhang, Appl. Catal. B: Environ. 182(2016) 316-325.  doi: 10.1016/j.apcatb.2015.09.046

    50. [50]

      S. Wang, X. Ding, X. Zhang, et al., Adv. Funct. Mater. 27(2017) 1703923.  doi: 10.1002/adfm.201703923

    51. [51]

      M.M. Mason, Z. Lee, M. Vasiliu, I. Wachs, D. Dixon, ACS Catal. 10(2020) 13918-13931.  doi: 10.1021/acscatal.0c03693

    52. [52]

      S. Deng, T. Meng, B. Xu, et al., ACS Catal. 6(2016) 5807-5815.  doi: 10.1021/acscatal.6b01121

    53. [53]

      J. Liao, K. Li, H. Ma, et al., Chin. Chem. Lett. 31(2020) 2737-2741.  doi: 10.1016/j.cclet.2020.03.081

    54. [54]

      M. Kou, Y. Deng, R. Zhang, et al., Chin. J. Catal. 41(2020) 1480-1487.  doi: 10.1016/S1872-2067(20)63607-5

    55. [55]

      W. Huo, T. Cao, W. Xu, et al., Chin. J. Catal. 41(2020) 268-275.  doi: 10.1016/S1872-2067(19)63460-1

    56. [56]

      R. Chen, H. Wang, H. Wu, et al., Chin. J. Catal. 41(2020) 710-718.  doi: 10.1016/S1872-2067(19)63472-8

    57. [57]

      P. Chen, H. Liu, Y. Sun, et al., Appl. Catal. B: Environ. 264(2020) 118545.  doi: 10.1016/j.apcatb.2019.118545

    58. [58]

      M. Chen, X. Li, Y. Huang, et al., Appl. Surf. Sci. 513(2020) 145775.  doi: 10.1016/j.apsusc.2020.145775

    59. [59]

      G. Zhu, M. Hojamberdiev, S. Zhang, S. Din, W. Yang, Appl. Surf. Sci. 467-468(2019) 968-978.

    60. [60]

      Z. Zhao, Y. Cao, F. Dong, et al., Nanoscale 11(2019) 6360-6367.  doi: 10.1039/C8NR10356A

    61. [61]

      J. Zhang, G. Zhu, S. Li, et al., ACS Appl. Mater. Interfaces 11(2019) 37822-37832.  doi: 10.1021/acsami.9b14300

    62. [62]

      L. Wang, K. Xu, W. Cui, et al., Adv. Funct. Mater. 29(2019) 1808084.  doi: 10.1002/adfm.201808084

    63. [63]

      Y. Sun, J. Liao, F. Dong, S. Wu, L. Sun, Chin. J. Catal. 40(2019) 362-370.  doi: 10.1016/S1872-2067(18)63187-0

    64. [64]

      M. Sun, W. Zhang, Y. Sun, Y. Zhang, F. Dong, Chin. J. Catal. 40(2019) 826-836.  doi: 10.1016/S1872-2067(18)63195-X

    65. [65]

      M. Sun, X. Dong, B. Lei, et al., Nanoscale 11(2019) 20562-20570.  doi: 10.1039/C9NR06874K

    66. [66]

      X. Shi, P. Wang, W. Li, et al., Appl. Catal. B: Environ. 243(2019) 322-329.  doi: 10.1016/j.apcatb.2018.10.037

    67. [67]

      M. Ran, H. Wang, W. Cui, et al., ACS Appl. Mater. Interfaces 11(2019) 47984-47991.  doi: 10.1021/acsami.9b18154

    68. [68]

      Y. Lu, Y. Huang, Y. Zhang, et al., Chem. Eng. J. 363(2019) 374-382.  doi: 10.1016/j.cej.2019.01.172

    69. [69]

      X. Li, W. Zhang, J. Li, et al., Appl. Catal. B: Environ. 241(2019) 187-195.  doi: 10.1016/j.apcatb.2018.09.032

    70. [70]

      J. Li, R. Chen, W. Cen, et al., Chem. Eng. J. 375(2019) 122026.  doi: 10.1016/j.cej.2019.122026

    71. [71]

      W.C. Huo, X. Dong, J. Li, et al., Chem. Eng. J. 361(2019) 129-138.  doi: 10.1016/j.cej.2018.12.071

    72. [72]

      W. Huo, W. Xu, T. Cao, et al., Appl. Catal. B: Environ. 254(2019) 206-213.  doi: 10.1016/j.apcatb.2019.04.099

    73. [73]

      J. Hu, D. Chen, et al., Angew Chem. Int. Ed. 58(2019) 2073-2077.  doi: 10.1002/anie.201813417

    74. [74]

      P. Chen, Y. Sun, H. Liu, et al., Nanoscale 11(2019) 2366-2373.  doi: 10.1039/C8NR09147A

    75. [75]

      H. Wang, Y. Sun, G. Jiang, et al., Environ. Sci. Technol. 52(2018) 1479-1487.  doi: 10.1021/acs.est.7b05457

    76. [76]

      H. Wang, Y. Sun, W. He, et al., Nanoscale 10(2018) 15513-15520.  doi: 10.1039/C8NR03845G

    77. [77]

      Y. Lu, Y. Huang, Y. Zhang, et al., Appl. Catal. B: Environ. 231(2018) 357-367.  doi: 10.1016/j.apcatb.2018.01.008

    78. [78]

      P. Zhu, X. Yin, X. Gao, et al., Chin. J. Catal. 42(2021) 175-183.  doi: 10.1016/S1872-2067(20)63592-6

    79. [79]

      C. Yuan, W. Cui, Y. Sun, et al., Chin. Chem. Lett. 31(2020) 751-754.  doi: 10.1016/j.cclet.2019.09.033

    80. [80]

      J. Wang, Y. Asakura, S. Yin, J. Hazard. Mater. 396(2020) 122709.  doi: 10.1016/j.jhazmat.2020.122709

    81. [81]

      X. Tan, G. Qin, G. Cheng, et al., Catal. Sci. Technol. 10(2020) 6923-6934.  doi: 10.1039/D0CY01394C

    82. [82]

      Y. Duan, J. Luo, S. Zhou, et al., Appl. Catal. B: Environ. 234(2018) 206-212.  doi: 10.1016/j.apcatb.2018.04.041

    83. [83]

      Y. Duan, M. Zhang, L. Wang, et al., Appl. Catal. B: Environ. 204(2017) 67-77.  doi: 10.1016/j.apcatb.2016.11.023

    84. [84]

      A. Pastor, F. Rodriguez-Rivas, G. Miguel, et al., Chem. Eng. J. 387(2020) 124110.  doi: 10.1016/j.cej.2020.124110

    85. [85]

      X. Lv, J. Zhang, X. Dong, et al., Appl. Catal. B: Environ. 277(2020) 119200.  doi: 10.1016/j.apcatb.2020.119200

    86. [86]

      S. Xiao, D. Pan, R. Liang, et al., Appl. Catal. B: Environ. 236(2018) 304-313.  doi: 10.1016/j.apcatb.2018.05.033

    87. [87]

      C. Wang, M. Fu, J. Cao, et al., Chem. Eng. J. 385(2020) 123833.  doi: 10.1016/j.cej.2019.123833

    88. [88]

      D. Liu, D. Chen, N. Li, et al., Angew Chem. Int. Ed. 59(2020) 4519-4524.  doi: 10.1002/anie.201914949

    89. [89]

      J. Liao, W. Cui, J. Li, et al., Chem. Eng. J. 379(2020) 122282.  doi: 10.1016/j.cej.2019.122282

    90. [90]

      Y. Li, M. Gu, M. Zhang, et al., Chem. Eng. J. 389(2020) 124421.  doi: 10.1016/j.cej.2020.124421

    91. [91]

      K. Li, Y. He, P. Chen, et al., J. Hazard. Mater. 392(2020) 122357.  doi: 10.1016/j.jhazmat.2020.122357

    92. [92]

      Z. Gu, Z. Cui, Z. Wang, et al., Appl. Catal. B: Environ. 279(2020) 119376.  doi: 10.1016/j.apcatb.2020.119376

    93. [93]

      Y. Cao, R. Zhang, Q. Zheng, et al., ACS Appl. Mater. Interfaces. 12(2020) 34432-34440.  doi: 10.1021/acsami.0c09216

    94. [94]

      J. Yi, J. Liao, K. Xia, et al., Chem. Eng. J. 370(2019) 944-951.  doi: 10.1016/j.cej.2019.03.182

    95. [95]

      L. Yang, P. Wang, J. Yin, et al., Appl. Catal. B: Environ. 250(2019) 42-51.  doi: 10.1016/j.apcatb.2019.02.076

    96. [96]

      Z. Wang, Y. Huang, M. Chen, et al., ACS Appl. Mater. Inter. 11(2019) 10651-10662.  doi: 10.1021/acsami.8b21987

    97. [97]

      S. Wan, M. Ou, Y. Wang, et al., Appl. Catal. B: Environ. 258(2019) 118011.  doi: 10.1016/j.apcatb.2019.118011

    98. [98]

      D. Liu, D. Chen, N. Li, et al., Appl. Catal. B: Environ. 243(2019) 576-584.  doi: 10.1016/j.apcatb.2018.11.012

    99. [99]

      K. Li, W. Cui, J. Li, et al., Chem. Eng. J. 378(2019) 122184.  doi: 10.1016/j.cej.2019.122184

    100. [100]

      Y. Huang, P. Wang, Z. Wang, et al., Appl. Catal. B: Environ. 240(2019) 122-131.  doi: 10.1016/j.apcatb.2018.08.078

    101. [101]

      P. Chen, H. Wang, H. Liu, et al., Appl. Catal. B: Environ. 242(2019) 19-30.  doi: 10.1016/j.apcatb.2018.09.078

    102. [102]

      J. Cao, J. Zhang, X. Dong, et al., Appl. Catal. B: Environ. 249(2019) 266-274.  doi: 10.1016/j.apcatb.2019.03.012

    103. [103]

      G. Jiang, X. Li, M. Lan, et al., Appl. Catal. B: Environ. 205(2017) 532-540.  doi: 10.1016/j.apcatb.2017.01.009

    104. [104]

      W. Cui, J. Li, F. Dong, et al., Environ. Sci. Technol. 51(2017) 10682-10690.  doi: 10.1021/acs.est.7b00974

    105. [105]

      M. Liu, K. Jiang, X. Ding, et al., Adv. Mater. 31(2019) 1807865.  doi: 10.1002/adma.201807865

    106. [106]

      Y. Xiang, X. Zhang, X. Wang, et al., J. Catal. 357(2018) 188-194.  doi: 10.1016/j.jcat.2017.10.029

    107. [107]

      L. Mao, X. Cai, M. Zhu, Rare Met. 40(2021) 1067-1076.  doi: 10.1007/s12598-020-01589-w

    108. [108]

      Y. Cao, Q. Zheng, Z. Rao, et al., Chin. Chem. Lett. 31(2020) 2689-2692.  doi: 10.1016/j.cclet.2020.07.032

    109. [109]

      J. Liao, K. Li, H. Ma, et al., Chin. Chem. Lett. 31(2020) 2737-2741.  doi: 10.1016/j.cclet.2020.03.081

    110. [110]

      H. Ma, Y. He, X. Li, et al., Appl. Catal. B: Environ. 292(2021) 120159.  doi: 10.1016/j.apcatb.2021.120159

    111. [111]

      R. Sun, C. He, L. Fu, et al., Chin. Chem. Lett. 33(2022) 527-532.  doi: 10.1016/j.cclet.2021.05.072

    112. [112]

      W. Dai, Y. Tao, H. Zou, et al., Environ. Sci. Technol. 54(2020) 5902-5912.  doi: 10.1021/acs.est.9b07757

    113. [113]

      S. Xiao, Z. Wan, J. Zhou, et al., Environ. Sci. Technol. 53(2019) 7145-7154.  doi: 10.1021/acs.est.9b00986

    1. [1]

      J. Becher, D.F. Sanchez, D.E. Doronkin, et al., Nat. Catal. 4(2020) 46-53.

    2. [2]

      P. Zhang, Y. Huang, Y. Rao, et al., Chem. Eng. J. 406(2021) 126910.  doi: 10.1016/j.cej.2020.126910

    3. [3]

      F. Rao, G. Zhu, W. Zhang, et al., Appl. Catal. B: Environ. 281(2021) 119481.  doi: 10.1016/j.apcatb.2020.119481

    4. [4]

      C. Yuan, R. Chen, J. Wang, et al., J. Hazard. Mater. 400(2020) 123174.  doi: 10.1016/j.jhazmat.2020.123174

    5. [5]

      J. Hu, C. Zhai, M. Zhu, Chin. Chem. Lett. 32(2021) 1348-1358.  doi: 10.1016/j.cclet.2020.09.049

    6. [6]

      H. Wu, C. Yuan, R. Chen, et al., ACS Appl. Mater. Interfaces 12(2020) 43741-43749.  doi: 10.1021/acsami.0c12628

    7. [7]

      J.K. Lai, I.E. Wachs, ACS Catal. 8(2018) 6537-6551.  doi: 10.1021/acscatal.8b01357

    8. [8]

      G. Xu, J. Ma, L. Wang, et al., ACS Catal. 9(2019) 10489-10498.  doi: 10.1021/acscatal.9b04100

    9. [9]

      H. Kubota, C. Liu, T. Toyao, et al., ACS Catal. 10(2020) 2334-2344.  doi: 10.1021/acscatal.9b05151

    10. [10]

      A. Oda, H. Shionoya, Y. Hotta, et al., ACS Catal. 10(2020) 12333-12339.  doi: 10.1021/acscatal.0c03425

    11. [11]

      B. Wang, M. Wang, L. Han, et al., ACS Catal. 10(2020) 9034-9045.  doi: 10.1021/acscatal.0c02567

    12. [12]

      Z. Liu, G. Sun, C. Chen, et al., ACS Catal. 10(2020) 6803-6809.  doi: 10.1021/acscatal.0c01284

    13. [13]

      Y. Zhou, J. He, J. Lu, Y. Liu, Y. Zhou, Chin. Chem. Lett. 31(2020) 2623-2626.  doi: 10.1016/j.cclet.2020.02.008

    14. [14]

      R. Zhang, W. Jian, Z. Yang, F. Bai, Chin. Chem. Lett. 31(2020) 2319-2324.  doi: 10.1016/j.cclet.2020.04.055

    15. [15]

      H. Qiang, T. Chen, Z. Wang, et al., Chin. Chem. Lett. 31(2020) 3225-3229.  doi: 10.1016/j.cclet.2020.04.020

    16. [16]

      S. Hu, Y. Yu, Y. Guan, et al., Chin. Chem. Lett. 31(2020) 2839-2842.  doi: 10.1016/j.cclet.2020.08.021

    17. [17]

      H. Li, H. Shang, Y. Li, et al., Environ. Sci. Technol. 53(2019) 6964-6971.  doi: 10.1021/acs.est.9b01287

    18. [18]

      H. Li, H. Shang, X. Cao, et al., Environ. Sci. Technol 52(2018) 8659-8665.  doi: 10.1021/acs.est.8b01849

    19. [19]

      G. Cheng, X. Liu, X. Song, et al., Appl. Catal. B: Environ. 277(2020) 119196.  doi: 10.1016/j.apcatb.2020.119196

    20. [20]

      M. Çağlayan, M. Irfan, K. Ercan, Y. Kocak, E. Ozensoy, Appl. Catal. B: Environ. 263(2020) 118227.  doi: 10.1016/j.apcatb.2019.118227

    21. [21]

      H. Shang, M. Li, H. Li, et al., Environ. Sci. Technol. 53(2019) 6444-6453.  doi: 10.1021/acs.est.8b07322

    22. [22]

      H. Wu, R. Chen, H. Wang, et al., Catal. Sci. Technol. 10(2020) 826-834.  doi: 10.1039/C9CY02230A

    23. [23]

      S. Wang, X. Ding, N. Yang, et al., Appl. Catal. B: Environ. 265(2020) 118585.  doi: 10.1016/j.apcatb.2019.118585

    24. [24]

      H. Wang, W. Cui, X. Dong, et al., Chem. Eng. J. 390(2020) 124609.  doi: 10.1016/j.cej.2020.124609

    25. [25]

      Y. Liu, Y. Zhou, S. Yu, ACS Appl. Nano Mater. 3(2020) 772-781.

    26. [26]

      Z. Zhou, Y. Li, M. Li, Y. Li, S. Zhan, Chin. Chem. Lett. 31(2020) 2698-2704.  doi: 10.1016/j.cclet.2020.07.003

    27. [27]

      Q. Chen, X. Cheng, H. Long, Y. Rao, Chin. Chem. Lett. 31(2020) 2583-2590.  doi: 10.1016/j.cclet.2020.08.018

    28. [28]

      M. Zhou, G. Dong, J. Ma, et al., Appl. Catal. B: Environ. 273(2020) 119007.  doi: 10.1016/j.apcatb.2020.119007

    29. [29]

      R. Zhang, A. Zhang, Y. Yang, et al., J Hazard. Mater. 397(2020) 122822.  doi: 10.1016/j.jhazmat.2020.122822

    30. [30]

      R. Zhang, A. Zhang, Y. Cao, et al., Chem. Eng. J. 401(2020) 126028.  doi: 10.1016/j.cej.2020.126028

    31. [31]

      R. Zhang, T. Ran, Y. Cao, et al., Chem. Eng. J. 382(2020) 123029.  doi: 10.1016/j.cej.2019.123029

    32. [32]

      Y. Xing, X. Wang, S. Hao, et al., Chin. Chem. Lett. 32(2021) 13-20.  doi: 10.1016/j.cclet.2020.11.011

    33. [33]

      M. Ding, J. Zhou, H. Yang, et al., Chin. Chem. Lett. 31(2020) 71-76.  doi: 10.1016/j.cclet.2019.05.029

    34. [34]

      Y. Ren, Y. Li, X. Wu, J. Wang, G. Zhang, Chin. J. Catal. 42(2021) 69-77.  doi: 10.1016/S1872-2067(20)63631-2

    35. [35]

      Y. Geng, D. Chen, N. Li, et al., Appl. Catal. B: Environ. 280(2021) 119409.  doi: 10.1016/j.apcatb.2020.119409

    36. [36]

      G. Zhang, X. Zhu, D. Chen, et al., Environ. Sci. Nano 7(2020) 676-687.  doi: 10.1039/C9EN01325C

    37. [37]

      Q. Chen, H. Long, M. Chen, et al., Appl. Catal. B: Environ. 272(2020) 119008.  doi: 10.1016/j.apcatb.2020.119008

    38. [38]

      H. Shang, S. Huang, H. Li, et al., Chem. Eng. J. 386(2020) 124047.  doi: 10.1016/j.cej.2020.124047

    39. [39]

      S. Roy, M. Hegde, N. Ravishankar, G. Madras, J. Phys. Chem. C 111(2007) 8153-8160.  doi: 10.1021/jp066145v

    40. [40]

      Q. Wu, R. Krol, J. Am. Chem. Soc. 134(2012) 9369-9375.  doi: 10.1021/ja302246b

    41. [41]

      H.J. Chun, V. Apaja, A. Clayborne, K. Honkala, J. Greeley, ACS Catal 7(2017) 3869-3882.  doi: 10.1021/acscatal.7b00547

    42. [42]

      Z. Wang, J. Zhao, J. Wang, C. Cabrera, Z. Chen, J. Mater. Chem. A 6(2018) 7547-7556.  doi: 10.1039/C8TA00875B

    43. [43]

      J. Long, S. Chen, Y. Zhang, et al., Angew. Chem. Int. Ed. 59(2020) 9711-9718.  doi: 10.1002/anie.202002337

    44. [44]

      D. Kim, D. Shin, J. Heo, et al., ACS Energy Lett. 5(2020) 3647-3656.  doi: 10.1021/acsenergylett.0c02082

    45. [45]

      S. Wang, F. Ichihara, H. Pang, H. Chen, J. Ye, Adv. Funct. Mater. 28(2018) 1803309.  doi: 10.1002/adfm.201803309

    46. [46]

      Y.S. Mok, Chem. Eng. J. 118(2006) 63-67.  doi: 10.1016/j.cej.2006.01.011

    47. [47]

      Y. Liu, J. Zhang, C. Zhang, Y. Zhang, L. Zhao, Chem. Eng. J. 162(2010) 1006-1011.  doi: 10.1016/j.cej.2010.07.009

    48. [48]

      R. Hao, Y. Zhao, Energy Fuels 30(2016) 2365-2372.  doi: 10.1021/acs.energyfuels.5b02748

    49. [49]

      X. Ding, W. Ho, J. Shang, L. Zhang, Appl. Catal. B: Environ. 182(2016) 316-325.  doi: 10.1016/j.apcatb.2015.09.046

    50. [50]

      S. Wang, X. Ding, X. Zhang, et al., Adv. Funct. Mater. 27(2017) 1703923.  doi: 10.1002/adfm.201703923

    51. [51]

      M.M. Mason, Z. Lee, M. Vasiliu, I. Wachs, D. Dixon, ACS Catal. 10(2020) 13918-13931.  doi: 10.1021/acscatal.0c03693

    52. [52]

      S. Deng, T. Meng, B. Xu, et al., ACS Catal. 6(2016) 5807-5815.  doi: 10.1021/acscatal.6b01121

    53. [53]

      J. Liao, K. Li, H. Ma, et al., Chin. Chem. Lett. 31(2020) 2737-2741.  doi: 10.1016/j.cclet.2020.03.081

    54. [54]

      M. Kou, Y. Deng, R. Zhang, et al., Chin. J. Catal. 41(2020) 1480-1487.  doi: 10.1016/S1872-2067(20)63607-5

    55. [55]

      W. Huo, T. Cao, W. Xu, et al., Chin. J. Catal. 41(2020) 268-275.  doi: 10.1016/S1872-2067(19)63460-1

    56. [56]

      R. Chen, H. Wang, H. Wu, et al., Chin. J. Catal. 41(2020) 710-718.  doi: 10.1016/S1872-2067(19)63472-8

    57. [57]

      P. Chen, H. Liu, Y. Sun, et al., Appl. Catal. B: Environ. 264(2020) 118545.  doi: 10.1016/j.apcatb.2019.118545

    58. [58]

      M. Chen, X. Li, Y. Huang, et al., Appl. Surf. Sci. 513(2020) 145775.  doi: 10.1016/j.apsusc.2020.145775

    59. [59]

      G. Zhu, M. Hojamberdiev, S. Zhang, S. Din, W. Yang, Appl. Surf. Sci. 467-468(2019) 968-978.

    60. [60]

      Z. Zhao, Y. Cao, F. Dong, et al., Nanoscale 11(2019) 6360-6367.  doi: 10.1039/C8NR10356A

    61. [61]

      J. Zhang, G. Zhu, S. Li, et al., ACS Appl. Mater. Interfaces 11(2019) 37822-37832.  doi: 10.1021/acsami.9b14300

    62. [62]

      L. Wang, K. Xu, W. Cui, et al., Adv. Funct. Mater. 29(2019) 1808084.  doi: 10.1002/adfm.201808084

    63. [63]

      Y. Sun, J. Liao, F. Dong, S. Wu, L. Sun, Chin. J. Catal. 40(2019) 362-370.  doi: 10.1016/S1872-2067(18)63187-0

    64. [64]

      M. Sun, W. Zhang, Y. Sun, Y. Zhang, F. Dong, Chin. J. Catal. 40(2019) 826-836.  doi: 10.1016/S1872-2067(18)63195-X

    65. [65]

      M. Sun, X. Dong, B. Lei, et al., Nanoscale 11(2019) 20562-20570.  doi: 10.1039/C9NR06874K

    66. [66]

      X. Shi, P. Wang, W. Li, et al., Appl. Catal. B: Environ. 243(2019) 322-329.  doi: 10.1016/j.apcatb.2018.10.037

    67. [67]

      M. Ran, H. Wang, W. Cui, et al., ACS Appl. Mater. Interfaces 11(2019) 47984-47991.  doi: 10.1021/acsami.9b18154

    68. [68]

      Y. Lu, Y. Huang, Y. Zhang, et al., Chem. Eng. J. 363(2019) 374-382.  doi: 10.1016/j.cej.2019.01.172

    69. [69]

      X. Li, W. Zhang, J. Li, et al., Appl. Catal. B: Environ. 241(2019) 187-195.  doi: 10.1016/j.apcatb.2018.09.032

    70. [70]

      J. Li, R. Chen, W. Cen, et al., Chem. Eng. J. 375(2019) 122026.  doi: 10.1016/j.cej.2019.122026

    71. [71]

      W.C. Huo, X. Dong, J. Li, et al., Chem. Eng. J. 361(2019) 129-138.  doi: 10.1016/j.cej.2018.12.071

    72. [72]

      W. Huo, W. Xu, T. Cao, et al., Appl. Catal. B: Environ. 254(2019) 206-213.  doi: 10.1016/j.apcatb.2019.04.099

    73. [73]

      J. Hu, D. Chen, et al., Angew Chem. Int. Ed. 58(2019) 2073-2077.  doi: 10.1002/anie.201813417

    74. [74]

      P. Chen, Y. Sun, H. Liu, et al., Nanoscale 11(2019) 2366-2373.  doi: 10.1039/C8NR09147A

    75. [75]

      H. Wang, Y. Sun, G. Jiang, et al., Environ. Sci. Technol. 52(2018) 1479-1487.  doi: 10.1021/acs.est.7b05457

    76. [76]

      H. Wang, Y. Sun, W. He, et al., Nanoscale 10(2018) 15513-15520.  doi: 10.1039/C8NR03845G

    77. [77]

      Y. Lu, Y. Huang, Y. Zhang, et al., Appl. Catal. B: Environ. 231(2018) 357-367.  doi: 10.1016/j.apcatb.2018.01.008

    78. [78]

      P. Zhu, X. Yin, X. Gao, et al., Chin. J. Catal. 42(2021) 175-183.  doi: 10.1016/S1872-2067(20)63592-6

    79. [79]

      C. Yuan, W. Cui, Y. Sun, et al., Chin. Chem. Lett. 31(2020) 751-754.  doi: 10.1016/j.cclet.2019.09.033

    80. [80]

      J. Wang, Y. Asakura, S. Yin, J. Hazard. Mater. 396(2020) 122709.  doi: 10.1016/j.jhazmat.2020.122709

    81. [81]

      X. Tan, G. Qin, G. Cheng, et al., Catal. Sci. Technol. 10(2020) 6923-6934.  doi: 10.1039/D0CY01394C

    82. [82]

      Y. Duan, J. Luo, S. Zhou, et al., Appl. Catal. B: Environ. 234(2018) 206-212.  doi: 10.1016/j.apcatb.2018.04.041

    83. [83]

      Y. Duan, M. Zhang, L. Wang, et al., Appl. Catal. B: Environ. 204(2017) 67-77.  doi: 10.1016/j.apcatb.2016.11.023

    84. [84]

      A. Pastor, F. Rodriguez-Rivas, G. Miguel, et al., Chem. Eng. J. 387(2020) 124110.  doi: 10.1016/j.cej.2020.124110

    85. [85]

      X. Lv, J. Zhang, X. Dong, et al., Appl. Catal. B: Environ. 277(2020) 119200.  doi: 10.1016/j.apcatb.2020.119200

    86. [86]

      S. Xiao, D. Pan, R. Liang, et al., Appl. Catal. B: Environ. 236(2018) 304-313.  doi: 10.1016/j.apcatb.2018.05.033

    87. [87]

      C. Wang, M. Fu, J. Cao, et al., Chem. Eng. J. 385(2020) 123833.  doi: 10.1016/j.cej.2019.123833

    88. [88]

      D. Liu, D. Chen, N. Li, et al., Angew Chem. Int. Ed. 59(2020) 4519-4524.  doi: 10.1002/anie.201914949

    89. [89]

      J. Liao, W. Cui, J. Li, et al., Chem. Eng. J. 379(2020) 122282.  doi: 10.1016/j.cej.2019.122282

    90. [90]

      Y. Li, M. Gu, M. Zhang, et al., Chem. Eng. J. 389(2020) 124421.  doi: 10.1016/j.cej.2020.124421

    91. [91]

      K. Li, Y. He, P. Chen, et al., J. Hazard. Mater. 392(2020) 122357.  doi: 10.1016/j.jhazmat.2020.122357

    92. [92]

      Z. Gu, Z. Cui, Z. Wang, et al., Appl. Catal. B: Environ. 279(2020) 119376.  doi: 10.1016/j.apcatb.2020.119376

    93. [93]

      Y. Cao, R. Zhang, Q. Zheng, et al., ACS Appl. Mater. Interfaces. 12(2020) 34432-34440.  doi: 10.1021/acsami.0c09216

    94. [94]

      J. Yi, J. Liao, K. Xia, et al., Chem. Eng. J. 370(2019) 944-951.  doi: 10.1016/j.cej.2019.03.182

    95. [95]

      L. Yang, P. Wang, J. Yin, et al., Appl. Catal. B: Environ. 250(2019) 42-51.  doi: 10.1016/j.apcatb.2019.02.076

    96. [96]

      Z. Wang, Y. Huang, M. Chen, et al., ACS Appl. Mater. Inter. 11(2019) 10651-10662.  doi: 10.1021/acsami.8b21987

    97. [97]

      S. Wan, M. Ou, Y. Wang, et al., Appl. Catal. B: Environ. 258(2019) 118011.  doi: 10.1016/j.apcatb.2019.118011

    98. [98]

      D. Liu, D. Chen, N. Li, et al., Appl. Catal. B: Environ. 243(2019) 576-584.  doi: 10.1016/j.apcatb.2018.11.012

    99. [99]

      K. Li, W. Cui, J. Li, et al., Chem. Eng. J. 378(2019) 122184.  doi: 10.1016/j.cej.2019.122184

    100. [100]

      Y. Huang, P. Wang, Z. Wang, et al., Appl. Catal. B: Environ. 240(2019) 122-131.  doi: 10.1016/j.apcatb.2018.08.078

    101. [101]

      P. Chen, H. Wang, H. Liu, et al., Appl. Catal. B: Environ. 242(2019) 19-30.  doi: 10.1016/j.apcatb.2018.09.078

    102. [102]

      J. Cao, J. Zhang, X. Dong, et al., Appl. Catal. B: Environ. 249(2019) 266-274.  doi: 10.1016/j.apcatb.2019.03.012

    103. [103]

      G. Jiang, X. Li, M. Lan, et al., Appl. Catal. B: Environ. 205(2017) 532-540.  doi: 10.1016/j.apcatb.2017.01.009

    104. [104]

      W. Cui, J. Li, F. Dong, et al., Environ. Sci. Technol. 51(2017) 10682-10690.  doi: 10.1021/acs.est.7b00974

    105. [105]

      M. Liu, K. Jiang, X. Ding, et al., Adv. Mater. 31(2019) 1807865.  doi: 10.1002/adma.201807865

    106. [106]

      Y. Xiang, X. Zhang, X. Wang, et al., J. Catal. 357(2018) 188-194.  doi: 10.1016/j.jcat.2017.10.029

    107. [107]

      L. Mao, X. Cai, M. Zhu, Rare Met. 40(2021) 1067-1076.  doi: 10.1007/s12598-020-01589-w

    108. [108]

      Y. Cao, Q. Zheng, Z. Rao, et al., Chin. Chem. Lett. 31(2020) 2689-2692.  doi: 10.1016/j.cclet.2020.07.032

    109. [109]

      J. Liao, K. Li, H. Ma, et al., Chin. Chem. Lett. 31(2020) 2737-2741.  doi: 10.1016/j.cclet.2020.03.081

    110. [110]

      H. Ma, Y. He, X. Li, et al., Appl. Catal. B: Environ. 292(2021) 120159.  doi: 10.1016/j.apcatb.2021.120159

    111. [111]

      R. Sun, C. He, L. Fu, et al., Chin. Chem. Lett. 33(2022) 527-532.  doi: 10.1016/j.cclet.2021.05.072

    112. [112]

      W. Dai, Y. Tao, H. Zou, et al., Environ. Sci. Technol. 54(2020) 5902-5912.  doi: 10.1021/acs.est.9b07757

    113. [113]

      S. Xiao, Z. Wan, J. Zhou, et al., Environ. Sci. Technol. 53(2019) 7145-7154.  doi: 10.1021/acs.est.9b00986

  • 加载中
    1. [1]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    2. [2]

      Ke ZhangYajing WeiLinhua XieSha KangFei LiChuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086

    3. [3]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    4. [4]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    5. [5]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    6. [6]

      Zhikang WuGuoyong DaiQi LiZheyu WeiShi RuJianda LiHongli JiaDejin ZangMirjana ČolovićYongge Wei . POV-based molecular catalysts for highly efficient esterification of alcohols with aldehydes as acylating agents. Chinese Chemical Letters, 2024, 35(8): 109061-. doi: 10.1016/j.cclet.2023.109061

    7. [7]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    8. [8]

      Wenjuan LiuShanshan ZhangYu WangBin FangWeirui WangShujing SongTomohiro Hakozaki . Three-channel imaging reveals the comprehensive protein modifications and their impact on skin appearance induced by multiple stimuli. Chinese Chemical Letters, 2025, 36(6): 111182-. doi: 10.1016/j.cclet.2025.111182

    9. [9]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    10. [10]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    11. [11]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    12. [12]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    13. [13]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    14. [14]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    15. [15]

      Qinwei LuJinjie LuJuying LeiXubiao LuoYanbo Zhou . Cyclodextrin-boosted photocatalytic oxidation for efficient bisphenol A removal. Chinese Chemical Letters, 2025, 36(3): 110017-. doi: 10.1016/j.cclet.2024.110017

    16. [16]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    17. [17]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    18. [18]

      Liliang ChuXiaoyan ZhangJianing LiXuelei DengMiao WuYa ChengWeiping ZhuXuhong QianYunpeng Bai . Continuous-flow synthesis of polysubstituted γ-butyrolactones via enzymatic cascade catalysis. Chinese Chemical Letters, 2024, 35(4): 108896-. doi: 10.1016/j.cclet.2023.108896

    19. [19]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    20. [20]

      Guodong Xu Chengcai Sheng Xiaomeng Zhao Tuojiang Zhang Zongtang Liu Jun Dong . Reform of Comprehensive Organic Chemistry Experiments in the Context of Emerging Engineering Education: A Case Study on the Improved Preparation of Benzocaine. University Chemistry, 2024, 39(11): 286-295. doi: 10.12461/PKU.DXHX202403094

Metrics
  • PDF Downloads(7)
  • Abstract views(847)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return