Citation: Xiaoli Han, Xiaodi Nie, Yiman Feng, Bangguo Wei, Changmei Si, Guoqiang Lin. Intermolecular [4 + 2] process of N-acyliminium ions with simple olefins for construction of functional substituted-1, 3-oxazinan-2-ones[J]. Chinese Chemical Letters, ;2021, 32(11): 3526-3530. doi: 10.1016/j.cclet.2021.05.003 shu

Intermolecular [4 + 2] process of N-acyliminium ions with simple olefins for construction of functional substituted-1, 3-oxazinan-2-ones

    * Corresponding authors.
    E-mail addresses: bgwei1974@fudan.edu.cn (B. Wei), sicm@fudan.edu.cn (C. Si).
  • Received Date: 18 March 2021
    Revised Date: 1 May 2021
    Accepted Date: 6 May 2021
    Available Online: 15 May 2021

Figures(7)

  • An efficient approach to functionalized 4, 6-disubstituted-and 4, 6, 6-trisubstituted-1, 3-oxazinan-2-ones skeleton has been developed through the reaction of semicyclic N, O-acetals 4a and 4b with 1, 1- disubstituted ethylenes 5 or 8. As a result of such a [4 + 2] cycloaddition process, 4, 6, 6-trisubstituted- 1, 3-oxazinan-2-ones 6aa, 6af-6au, 7ba, 7bf-7bw and 6, 6-spiro containing 1, 3-oxazinan-2-ones 9ad, 9ae, 10ba-10bg were obtained in 36%-96% yields and with moderate to excellent diastereoselectivities. In addition, the synthesis of (±)-norallosedamine 12 could be conveniently achieved from the cycloadduct 7bf.
  • Nitrogen-containing heterocycles are abundant structural motifs in a large number of alkaloids [1], drug molecules [2] and biologically active substances [3]. Although significant accomplishments have been achieved towards the synthesis of various nitrogen heterocyclic compounds in the past few decades [4], modern organic synthesis still demands more efficient and divergent methodologies to access privileged motifs of biological active compounds [5]. As a prime instance, 1, 3-oxazinan-2-ones are not only a core scaffold within natural products [6] and pharmacologically interesting molecules [7], but also widely utilized as key intermediates [8] in the synthesis of drugs [8c, 8f] and bioactive natural products [7b, 8g]. Numerous synthetic approaches were reported to access various substituted 1, 3-oxazinan-2-ones, including halonium-mediated [6c, 9] or metal-catalyzed cyclization [10], intramolecular Michael addition of functionalized homoallylamines/homoallylic alcohols [11], allylic C-H amination [12], and tethered aminohydroxylation of olefins [13]. However, the effective methods to access 6, 6-disubstituted-1, 3-oxazinan-2-one 1, exemplified with the core structural unit of biologically active compounds such as anti-HIV Efavirenz 2 (Merck) [7e] and 11-β-HSD-1 inhibitor 3 [7c], are rare[14] (Fig. 1).

    Figure 1

    Figure 1.  6, 6-Disubstituted-1, 3-oxazinan-2-one scaffold and active compounds.

    N-Acyliminium ions, acting as important organic synthetic intermediates, are widely used in the formation of C-C and C-heteroatom bonds [15], mostly through intermolecular addition [16] and intramolecular cyclization [17] with various nucleophilic reagents. For examples, the reactions of N-acyliminium ions with olefins could undergo Lewis acid-catalyzed intramolecular addition-cyclization to construct a series of heterocyclic skeletons (Fig. 2, Eq. 1) [18]. Intermolecular reactions of N-acyliminium ions with olefins were also reported [19]. Kobayashi achieved the ring-opening allylation of semicyclic N, O-acetals with allylic silanes (Fig. 2, Eq. 2a) [19a]. Later, Zhang developed the intermolecular coupling reaction of N-acyliminium ions with styrene (Fig. 2, Eq. 2b) [19b]. Notably, N-acyliminium ions could serve as part of electron-deficient dienes, undergoing [4 + 2] cycloaddition with various dienophiles (alkenes or alkynes) [20, 21]. For example, Yoshida established a cycloaddition process of N-acyliminium ions connecting with an alkoxycarbonyl group with alkenes to afford substituted 1, 3-oxazinan-2-one framework, but the formation of corresponding N-acyliminium dienes required anodic oxidation of α-silyl carbamate substrates (Fig. 2, Eq. 3) [20d]. On the basis of our continuous efforts in exploring chemical transformations of semicyclic N, O-acetals [22], we envisioned that such [4 + 2] cycloaddition could lead to various important units. Herein we present an efficient synthetic approach to 4, 6, 6-trisubstituted-1, 3-oxazinan-2-ones6/7/9/10 through TMSOTf-mediated [4 + 2] cycloaddition of semicyclicN, O-acetals 4 with 1, 1-disubstituted ethylenes 5/8 (Fig. 2, Eq. 4).

    Figure 2

    Figure 2.  The intra- or intermolecular reactions of N-acyliminium ions with olefins.

    Our investigation started with the reaction of semicyclic N, O-acetal 4b with 1, 1-diphenylethene 5a. The reaction could not take place in the absence of Lewis acid (Table 1, entry 1). Several types of iron Lewis acids could lead to only faint products (Table 1, entries 2-6). When Ni(OTf)2, Cu(OTf)2 and Sc(OTf)3 were examined, no product was observed (Table 1, entries 7-9). SnCl4 could afford the desired product 7ba in 34% yield (Table 1, entry 10). Slight improvements in yields were achieved when TiCl4 and BFEt2O were applied, and the desired product 7ba could be obtained in moderate yield (48% and 66% respectively, Table 1, entries 11 and 12). Delightfully, TMSOTf could significantly increase the yield of 7ba to 81% (Table 1, entry 13). It was worth noting that the reaction was conducted at -78 ℃. Either increasing or decreasing the loading of TMSOTf resulted in slight drop of the reaction yield (Table 1, entries 14 and 15). The reaction could also afford the desired product using THF and PhMe as solvents, but the corresponding yields were lower compared with that in dichloromethane (Table 1, entries 16 and 17).

    Table 1

    Table 1.  Optimization of reaction conditions.a
    DownLoad: CSV

    With the above identified optimized reaction conditions, the olefin substrates 5b-5j with different electronic properties were examined and the results were summarized in Scheme 1. First, neither hex-1-ene 5b nor cyclohexene 5c could afford any desired product in the presence of TMSOTf. The dienophiles with electron-withdrawing groups, methyl acrylate 5d and (E)-4-phenylbut-3-en-2-one 5e, led to complicated reaction mixtures. Delightfully, styrene 5f and its derivatives (5g and 5h) could generate the desired products 6af, 7bf-7bh in moderate yields and diastereoselectivities. 2-Vinylnaphthalene could also react with 4a and 4b to give the corresponding products 6ai and 7bi in moderate yields and diastereoselectivities. It was worth mentioning that a complex result was obtained when (E)-1, 2-diphenylethene 5j was investigated, probably due to the steric effect during the intermolecular [4 + 2] cycloaddition process.

    Scheme 1

    Scheme 1.  The reactions of semicyclic N, O-acetals 4a/4b with olefins 5b-5j. The reactions were performed with N, O-acetals 4 (0.5 mmol), olefins 5b-5j (1.0 mmol), and TMSOTf (1.0 mmol) in dry DCM (2 mL) at -78 ℃ for 5-10 h, isolated yield. dr was determined by HPLC or NMR of crude products. a 7bf (2.80 g, 51% yield) was obtained with 4b (22.0 mmol), 5f (44.0 mmol), and TMSOTf (44.0 mmol) in dry DCM (50 mL) at −78 ℃ for 8 h.

    Next, we turned to investigate the scope and limitation of such addition-cyclization of semicyclic N, O-acetal (4a or 4b) with 1, 1-disubstituted ethylenes 5a, 5k-5v (Scheme 2). When prop-1-en-2-ylbenzene 5k was explored, desired products 6ak, 7bk were obtained in moderate yields and excellent diastereoselectivities. 4-Chloro substitution at phenyl ring (5l) led to slight decrease in yields of 6al, 7bl, but with excellent diastereoselectivities (dr up to 99:1). Replacement of the methyl group of 5k with other alkyl substitutions (5q: n-butyl and 5v: isopropyl) was tolerated, and the desired products 6aq, 7bq, 7bv were afforded in moderate yields under the optimized conditions. Although the n-butyl substituted products 6aq, 7bq showed moderate diastereoselectivities, the isopropyl substituted product 7bv was obtained with excellent diastereoselectivities. In addition, a series of diaryl substituted alkenes were surveyed under the optimized conditions. In general, all these substituted alkenes (5a, 5l-5o) could react with semicyclic N, O-acetals 4a and 4b, affording the desired products 6aa, 6am-6ao, 7ba, 7bm, 7bp in moderate yields. Several benzyl and phenyl olefins 5r-5t were also screened, most of them could give the desired products 6ar-6at, 7br-7bt in excellent yields and diastereoselectivities, except for the p-methoxyphenyl substituted olefin 5r. Substituted olefin 5u containing phenyl and phenethyl could also afford the desired products 6au and 7bu in excellent yields with moderate diastereoselectivities. The methyl and butyl substituted ethylene 5w could also react with N, O-acetal 4b to afford the desired product 7bw in 40% yield, but the diastereoselectivities was lower than those of aryl olefins. The chemical structures of 6aa, 6ak-6au, 7ba, 7bk-7bw were unambiguously confirmed based on the X-ray crystallographic analysis of compound 7bt (see Supporting information for detail).

    Scheme 2

    Scheme 2.  The reactions of semicyclic N, O-acetals 4a/4b with substituted olefins 5a, 5k-5w. The reactions were performed with N, O-acetal 4 (0.5 mmol), olefins (0.75 mmol), and TMSOTf (1.0 mmol) in dry DCM (2 mL) at -78 ℃ for 5-10 h. Isolated yield. dr was determined by HPLC or NMR of crude products.

    Next, we turned our attention to investigate the reaction of semicyclic N, O-acetal 4a or 4b with exocyclic olefins 8a-8g, aiming for the formation of 1, 3-oxazinan-2-ones containing a spiro quaternary carbon (Scheme 3). The reaction of 2-methylene-1, 2, 3, 4-tetrahydronaphthalene 8a with semicyclic N, O-acetal 4b afforded the desired product 10ba in 70% yield. The 6-bromo substituted olefin 8b led to 10bb in slightly lower yield of 65%, while the 5-methoxy substituted olefin 8c could generate 10bc in slightly higher yield of 78%. However, the diastereoselectivities of 10ba-10bc were low. The symmetric olefin, 2-methylene-2, 3-dihydro-1H-indene 8d, also worked well with semicyclic N, O-acetals 4a and 4b, affording the desired products 9ad and 10bd in moderate yields. Notably, a simple exocyclic olefin methylenecyclopentane 8g also worked well, and the corresponding product 10bg was obtained in 60% yield. Regarding olefin substrates with the exo-double bond adjacent to the phenyl ring, 5-methylene-6, 7, 8, 9-tetrahydro-5H-benzo[7]annulene 8e bearing a fused seven-membered ring could lead to the corresponding products in higher yields than that of 1-methylene-1, 2, 3, 4-tetrahydronaphthalene 8f bearing a fused six-membered ring. In detail, the desired products 9ae and 10be were obtained in 70% and 63% yields, while the yield of 10bf was only 36%. The diastereoselectivities of 9ae, 10be and 10bf were increased slightly, maybe due to the steric hindrance. The structures of 9ad, 9ae, 10ba-10bg were unambiguously confirmed based on the X-ray crystallographic analysis of compound10bb (see Supporting information for detail).

    Scheme 3

    Scheme 3.  The reactions of semicyclic N, O-acetals 4a/4b with substituted olefins 8a-8g. The reactions were performed with N, O-acetal 4 (0.5 mmol), olefins (0.75 mmol), and TMSOTf (1.0 mmol) in dry DCM (2 mL) at -78 ℃ for 5-10 h. Isolated yield. dr was determined by HPLC or NMR of crude products.

    A possible mechanism for this TMSOTf-mediated [4 + 2] cycloaddition process is presented in Fig. 3 [19a, 20d, 20f]. When semicyclic N, O-acetals 4 reacted with alkenes 5, diene type of N-acyliminium ions Int-1 was first generated under Lewis acid conditions. The subsequent reaction with alkenes 5 gave a six-membered intermediate Int-2, which would define the stereochemical outcome and give Int-3. Upon the cleavage of t-butyl group, the corresponding cycloadducts 6/7/9/10 were produced, along with the release of 2-methylprop-1-ene.

    Figure 3

    Figure 3.  Possible mechanism for the TMSOTf-mediated [4 + 2] cycloaddition process.

    Finally, we focused on the utility of this intermolecular [4 + 2] process of N-acyliminium ions with alkenes in the synthesis of biologically active molecules. Scheme 4 showed a facile synthesis of norallosedamine 12. As a natural product, norallosedamine 12 was isolated from both the Sedum and Lobelia inflata plant family, and have attracted great interest in synthetic chemistry [23]. Starting from the cycloadduct 7bf, Dess-Martin oxidation (DMP) and subsequent reductive amination (Et3SiH/TMSOTf) could produce bicyclic pyrido [1,2-c][1,3]oxazin-1-one 11 in 75% overall yield. Then the ring opening (KOH) of 11 resulted in (±) norallosedamine 12 in 86% yield (dr = 94:6). The spectroscopic and physical data of the synthetic (±)-norallosedamine 12 were identical to the reported data [23a]. Norallosedamine 12 could be potentially converted to other alkaloids of its family by known process [23b, 23d].

    Scheme 4

    Scheme 4.  Synthesis of (±)-Norallosedamine 12. Reagents and conditions: (a) i, DMP, DCM, r.t., 3 h; ii, Et3SiH/TMSOTf, MeCN, 0 ℃ to r.t., 40 min, 75% (2 steps); (b) t-BuOH/toluene (v/v = 1/1), KOH, 85 ℃, 30 min, 86%.

    In summary, we established a novel and efficient approach for the synthesis of 4, 6-disubstituted- and 4, 6, 6-trisubstituted-1, 3-oxazinan-2-ones 6aa, 6af-6au, 7ba, 7bf-7bw and 6, 6-spiro containing 1, 3-oxazinan-2-ones 9ad, 9ae, 10ba-10bg. The Lewis acid TMSOTf could activate semicyclic N, O-acetals (4a and 4b), and the resulting N-alkoxycarbonyliminium ions readily underwent a [4 + 2] cycloaddition process with 1, 1-disubstituted ethylenes5a, 5k-5w and 8a-8g. The corresponding products were obtained in moderate to excellent yields and diastereoselectivities. In addition, the utility of this methodology was demonstrated by the facile synthesis of natural product (±)-norallosedamine12 from the cycloadduct 7bf.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    We thank the National Natural Science Foundation of China (No. 21772027 to B.-G. Wei and 21702032 to C.-M. Si) for financial support. The authors also thank Dr. Han-Qing Dong (Arvinas, Inc.) for helpful suggestions.

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.05.003.


    1. [1]

      (a) C. Bian, J. Wang, X. Zhou, W. Wu, R. Guo, Chem. Biodiversity 17 (2020). e2000186;
      (b) T.P. Cushnie, B. Cushnie, A.J. Lamb, Int. J. Antimicrob. Agents 44 (2014) 377-386;
      (c) T.B. Hua, C. Xiao, Q.Q. Yang, J.R. Chen, Chin. Chem. Lett. 31 (2020) 311-323;
      (d) X. Liang, X.Z. Yang, L. Chen, et al., Med. Chem. Res. 30 (2021) 1-14;
      (e) X.D. Wu, X.N. Li, L.Y. Peng, Q.S. Zhao, J. Org. Chem. 85 (2020) 6803-6807;
      (f) D.D. Zhang, J.B. Xu, Y.Y. Fan, et al., J. Org. Chem. 85 (2020) 3742-3747.

    2. [2]

      (a) N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, Molecules 25 (2020) 1909;
      (b) A.M. Malebari, D. Fayne, S.M. Nathwani, et al., Eur. J. Med. Chem. 189 (2020) 112050;
      (c) M. Baiula, P. Galletti, G. Martelli, et al., J. Med. Chem. 59 (2016) 9721-9742.

    3. [3]

      (a) A.A. Aly, A.A. Hassan, M.M. Makhlouf, S. Braese, Molecules 25 (2020) 3036;
      (b) A.M.S. El-Sharief, Y.A. Ammar, A. Belal, et al., Bioorg. Chem. 85 (2019) 399-412;
      (c) A.A. Ivashchenko, Y.A. Ivanenkov, A.G. Koryakova, et al., Eur. J. Med. Chem. 189 (2020) 112064;
      (d) S. Zhao, C. Pi, Y. Ye, L. Zhao, Y. Wei, Eur. J. Med. Chem. 180 (2019) 524-535.

    4. [4]

      (a) P. Jain, P. Verma, G. Xia, J.Q. Yu, Nat. Chem. 9 (2017) 140-144;
      (b) P. Majumdar, A. Pati, M. Patra, R.K. Behera, A.K. Behera, Chem. Rev. 114 (2014) 2942-2977;
      (c) P. Singh, R.K. Varshnaya, R. Dey, P. Banerjee, Adv. Synth. Catal. 362 (2020) 1447-1484;
      (d) H. Matsuzaki, N. Takeda, M. Yasui, et al., Org. Lett. 22 (2020) 9249-9252;
      (e) Y. He, J. Yang, Q. Liu, X. Zhang, X. Fan, J. Org. Chem. 85 (2020) 15600-15609.

    5. [5]

      (a) L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 118 (2018) 3752-3832;
      (b) S. Xu, H.M. Holst, S.B. McGuire, N.J. Race, J. Am. Chem. Soc. 142 (2020) 8090-8096.

    6. [6]

      (a) G.M. Larson, B.T. Schaneberg, A.T. Sneden, J. Nat. Prod. 62 (1999) 361-363;
      (b) F. Taft, K. Harmrolfs, I. Nickeleit, et al., Chem. Eur. J. 18 (2012) 880-886;
      (c) R.B. Woodward, B.W. Au-Yeung, P. Balaram, et al., J. Am. Chem. Soc. 103 (1981) 3213-3215;
      (d) J.M. Cassady, K.K. Chan, H.G. Floss, E. Leistner, Chem. Pharm. Bull. 52 (2004) 1-26.

    7. [7]

      (a) W. Yang, Y. Wang, A. Lai, et al., J. Med. Chem. 63 (2020) 7226-7242;
      (b) Z. Xu, C.M. Tice, W. Zhao, et al., J. Med. Chem. 54 (2011) 6050-6062;
      (c) Y. Zhang, J.P. Wu, G. Li, et al., J. Org. Chem. 81 (2016) 2665-2669;
      (d) L. Zhuang, C.M. Tice, Z. Xu, et al., Bioorg. Med. Chem. 25 (2017) 3649-3657;
      (e) S.D. Young, S.F. Britcher, L.O. Tran, et al., Antimicrob. Agents Chemother. 39 (1995) 2602-2605.

    8. [8]

      (a) S.G. Davies, A.C. Garner, P.M. Roberts, et al., Org. Biomol. Chem. 4 (2006) 2753-2768;
      (b) J.R. Ella-Menye, V. Sharma, G. Wang, J. Org. Chem. 70 (2005) 463-469;
      (c) J.W. Hilborn, Z.H. Lu, A.R. Jurgens, et al., Tetrahedron Lett 42 (2001) 8919-8921;
      (d) G.S. Poindexter, K.M. Strauss, Synth. Commun. 23 (1993) 1329-1338;
      (e) S.C. Schmid, I.A. Guzei, J.M. Schomaker, Angew. Chem. Int. Ed. 56 (2017) 12229-12233;
      (f) M. Schulze, Synth. Commun. 40 (2010) 3415-3422;
      (g) Y.F. Wang, T. Izawa, S. Kobayashi, M. Ohno, J. Am. Chem. Soc. 104 (1982) 6465-6466.

    9. [9]

      (a) H. Pan, H. Huang, W. Liu, H. Tian, Y. Shi, Org. Lett. 18 (2016) 896-899;
      (b) S. Mangelinckx, Y. Nural, H.A. Dondas, et al., Tetrahedron 66 (2010) 4115-4124.

    10. [10]

      (a) U. Jakob, W. Bannwarth, Tetrahedron Lett 56 (2015) 6340-6344;
      (b) R. Robles-Machín, J. Adrio, J.C. Carretero, J. Org. Chem. 71 (2006) 5023-5026.

    11. [11]

      (a) K. Narasaka, Y. Ukaji, S. Yamazaki, Bull. Chem. Soc. Jpn. 59 (1986) 525-533;
      (b) M. Hirama, T. Shigemoto, Y. Yamazaki, S. Ito, J. Am. Chem. Soc. 107 (1985) 1797-1798;
      (c) A.J. Borah, P. Phukan, J. Chem. Sci. 125 (2013) 1503-1510.

    12. [12]

      S.A. Reed, A.R. Mazzotti, M.C. White, J. Am. Chem. Soc. 131 (2009) 11701-11706.  doi: 10.1021/ja903939k

    13. [13]

      T.J. Donohoe, C.J.R. Bataille, W. Gattrell, J. Kloesges, E. Rossignol, Org. Lett. 9 (2007) 1725-1728.  doi: 10.1021/ol070430v

    14. [14]

      (a) A.J. Boddy, C.J. Cordier, K. Goldberg, et al., Org. Lett. 21 (2019) 1818-1822;
      (b) T. Buyck, Q. Wang, J. Zhu, J. Am. Chem. Soc. 136 (2014) 11524-11528;
      (c) N. Uddin, J.S. Ulicki, F.H. Foersterling, M.M. Hossain, Tetrahedron Lett 52 (2011) 4353-4356;
      (d) R. Yousefi, T.J. Struble, J.L. Payne, et al., J. Am. Chem. Soc. 141 (2019) 618-625.

    15. [15]

      (a) A.M. Jones, C.E. Banks, Beilstein J. Org. Chem. 10 (2014) 3056-3072;
      (b) U. Martínez-Estibalez, A. Gómez-SanJuan, O. García-Calvo, et al., Eur. J. Org. Chem. 2011 (2011) 3610-3633;
      (c) J. Royer, M. Bonin, L. Micouin, Chem. Rev. 104 (2004) 2311-2352;
      (d) M.G. Vinogradov, O.V. Turova, S.G. Zlotin, Russ. Chem. Rev. 86 (2017) 1-17;
      (e) A.K. Sahu, R. Unnava, S. Shit, A.K. Saikia, J. Org. Chem. 85 (2020) 1961-1971.

    16. [16]

      (a) H.E. Zaugg, Synthesis (1970) 49-73;
      (b) H.E. Zaugg, Synthesis (1984) 85-110;
      (c) S. Pyne, A. Yazici, Synthesis 3 (2009) 339-368;
      (d) A. Yazici, S.G. Pyne, Synthesis 4 (2009) 513-541;
      (e) G.M. Ryder, U. Wille, A.C. Willis, S.G. Pyne, Org. Biomol. Chem. 17 (2019) 7025-7035;
      (f) T. Thaima, A. Yazici, C. Auranwiwat, et al., Org. Biomol. Chem. 19 (2021) 259-272.

    17. [17]

      P. Wu, T.E. Nielsen, Chem. Rev. 117 (2017) 7811-7856.  doi: 10.1021/acs.chemrev.6b00806

    18. [18]

      (a) M. Das, A.K. Saikia, J. Org. Chem. 83 (2018) 6178-6185;
      (b) K. Indukuri, R. Unnava, M.J. Deka, A.K. Saikia, J. Org. Chem. 78 (2013) 10629-10641;
      (c) Y. Krishna, K. Shilpa, F. Tanaka, Org. Lett. 21 (2019) 8444-8448;
      (d) Y. Zheng, L. Andna, O. Bistri, L. Miesch, Org. Lett. 22 (2020) 6771-6775;
      (e) S. Hanessian, M. Tremblay, Org. Lett. 6 (2004) 4683-4686;
      (f) S. Hanessian, M. Tremblay, J.F.W. Petersen, J. Am. Chem. Soc. 126 (2004) 6064-6071.

    19. [19]

      (a) M. Sugiura, H. Hagio, R. Hirabayashi, S. Kobayashi, Synlett 2001 (2001) 1225-1228;
      (b) N. Lu, L. Wang, Z. Li, W. Zhang, Beilstein J. Org. Chem. 8 (2012) 192-200;
      (c) H. Richter, R. Frohlich, C.G. Daniliuc, O. Garcia Mancheno, Angew. Chem., Int. Ed. 51 (2012) 8656-8660;
      (d) A. Yazici, U. Wille, S.G. Pyne, J. Org. Chem. 81 (2016) 1434-1449.

    20. [20]

      (a) S.M. Weinreb, P.M. Scola, Chem. Rev. 89 (1989) 1525-1534;
      (b) T. Shimizu, K. Tanino, I. Kuwajima, Tetrahedron Lett 41 (2000) 5715-5718;
      (c) D.M. Tomazela, L.A.B. Moraes, R.A. Pilli, M.N. Eberlin, M.G.M. D'Oca, J. Org. Chem. 67 (2002) 4652-4658;
      (d) S. Suga, Y. Tsutsui, A. Nagaki, J.I. Yoshida, Bull. Chem. Soc. Jpn. 78 (2005) 1206-1217;
      (e) S. Suga, D. Yamada, J. -i. Yoshida, Chem. Lett. 39 (2010) 404-406;
      (f) S. Suga, A. Nagaki, Y. Tsutsui, J.I. Yoshida, Org. Lett. 5 (2003) 945-947.

    21. [21]

      (a) P.M. Esch, H. Hiemstra, W.N. Speckamp, Tetrahedron Lett 29 (1988) 367-370;
      (b) P.M. Esch, H. Hiemstra, W. Nico Speckamp, Tetrahedron 48 (1992) 3445-3462.

    22. [22]

      (a) X.M. Wang, Y.W. Liu, R.J. Ma, C.M. Si, B.G. Wei, J. Org. Chem. 84 (2019) 11261-11267;
      (b) C. Wang, Z.Y. Mao, Y.W. Liu, et al., Adv. Synth. Catal. 362 (2020) 822-831;
      (c) R.C. Liu, W. Huang, J.Y. Ma, B.G. Wei, G.Q. Lin, Tetrahedron Lett 50 (2009) 4046-4049;
      (d) Y.W. Liu, R.J. Ma, J.H. Yan, Z. Zhou, B.G. Wei, Org. Biomol. Chem. 16 (2018) 771-779;
      (e) P. Han, Z.Y. Mao, C.M. Si, et al., J. Org. Chem. 84 (2019) 914-923;
      (f) Z.D. Chen, Z. Chen, Q.E. Wang, C.M. Si, B.G. Wei, Tetrahedron Lett 61 (2020) 152051;
      (g) X.L. Han, X.D. Nie, Z.D. Chen, et al., J. Org. Chem. 85 (2020) 13567-13578;
      (h) Y.X. Zhang, L.Y. Chen, J.T. Sun, C.M. Si, B.G. Wei, J. Org. Chem. 85 (2020) 12603-12613.

    23. [23]

      (a) B.A.D. Neto, A.A.M. Lapis, A.B. Bernd, D. Russowsky, Tetrahedron 65 (2009) 2484-2496;
      (b) R.A. Pilli, L.C. Dias, Synth. Commun. 21 (1991) 2213-2229;
      (c) B.V. Subba Reddy, S. Ghanty, N.S.S. Reddy, Y.J. Reddy, J.S. Yadav, Synth. Commun. 44 (2014) 1658-1663;
      (d) C.Y. Yu, O. Meth-Cohn, Tetrahedron Lett 40 (1999) 6665-6668;
      (e) J.S. Yadav, Y. Jayasudhan Reddy, P. Adi Narayana Reddy, B.V. Subba Reddy, Org. Lett. 15 (2013) 546-549.

    1. [1]

      (a) C. Bian, J. Wang, X. Zhou, W. Wu, R. Guo, Chem. Biodiversity 17 (2020). e2000186;
      (b) T.P. Cushnie, B. Cushnie, A.J. Lamb, Int. J. Antimicrob. Agents 44 (2014) 377-386;
      (c) T.B. Hua, C. Xiao, Q.Q. Yang, J.R. Chen, Chin. Chem. Lett. 31 (2020) 311-323;
      (d) X. Liang, X.Z. Yang, L. Chen, et al., Med. Chem. Res. 30 (2021) 1-14;
      (e) X.D. Wu, X.N. Li, L.Y. Peng, Q.S. Zhao, J. Org. Chem. 85 (2020) 6803-6807;
      (f) D.D. Zhang, J.B. Xu, Y.Y. Fan, et al., J. Org. Chem. 85 (2020) 3742-3747.

    2. [2]

      (a) N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu, S.B. Jonnalagadda, Molecules 25 (2020) 1909;
      (b) A.M. Malebari, D. Fayne, S.M. Nathwani, et al., Eur. J. Med. Chem. 189 (2020) 112050;
      (c) M. Baiula, P. Galletti, G. Martelli, et al., J. Med. Chem. 59 (2016) 9721-9742.

    3. [3]

      (a) A.A. Aly, A.A. Hassan, M.M. Makhlouf, S. Braese, Molecules 25 (2020) 3036;
      (b) A.M.S. El-Sharief, Y.A. Ammar, A. Belal, et al., Bioorg. Chem. 85 (2019) 399-412;
      (c) A.A. Ivashchenko, Y.A. Ivanenkov, A.G. Koryakova, et al., Eur. J. Med. Chem. 189 (2020) 112064;
      (d) S. Zhao, C. Pi, Y. Ye, L. Zhao, Y. Wei, Eur. J. Med. Chem. 180 (2019) 524-535.

    4. [4]

      (a) P. Jain, P. Verma, G. Xia, J.Q. Yu, Nat. Chem. 9 (2017) 140-144;
      (b) P. Majumdar, A. Pati, M. Patra, R.K. Behera, A.K. Behera, Chem. Rev. 114 (2014) 2942-2977;
      (c) P. Singh, R.K. Varshnaya, R. Dey, P. Banerjee, Adv. Synth. Catal. 362 (2020) 1447-1484;
      (d) H. Matsuzaki, N. Takeda, M. Yasui, et al., Org. Lett. 22 (2020) 9249-9252;
      (e) Y. He, J. Yang, Q. Liu, X. Zhang, X. Fan, J. Org. Chem. 85 (2020) 15600-15609.

    5. [5]

      (a) L. Li, Z. Chen, X. Zhang, Y. Jia, Chem. Rev. 118 (2018) 3752-3832;
      (b) S. Xu, H.M. Holst, S.B. McGuire, N.J. Race, J. Am. Chem. Soc. 142 (2020) 8090-8096.

    6. [6]

      (a) G.M. Larson, B.T. Schaneberg, A.T. Sneden, J. Nat. Prod. 62 (1999) 361-363;
      (b) F. Taft, K. Harmrolfs, I. Nickeleit, et al., Chem. Eur. J. 18 (2012) 880-886;
      (c) R.B. Woodward, B.W. Au-Yeung, P. Balaram, et al., J. Am. Chem. Soc. 103 (1981) 3213-3215;
      (d) J.M. Cassady, K.K. Chan, H.G. Floss, E. Leistner, Chem. Pharm. Bull. 52 (2004) 1-26.

    7. [7]

      (a) W. Yang, Y. Wang, A. Lai, et al., J. Med. Chem. 63 (2020) 7226-7242;
      (b) Z. Xu, C.M. Tice, W. Zhao, et al., J. Med. Chem. 54 (2011) 6050-6062;
      (c) Y. Zhang, J.P. Wu, G. Li, et al., J. Org. Chem. 81 (2016) 2665-2669;
      (d) L. Zhuang, C.M. Tice, Z. Xu, et al., Bioorg. Med. Chem. 25 (2017) 3649-3657;
      (e) S.D. Young, S.F. Britcher, L.O. Tran, et al., Antimicrob. Agents Chemother. 39 (1995) 2602-2605.

    8. [8]

      (a) S.G. Davies, A.C. Garner, P.M. Roberts, et al., Org. Biomol. Chem. 4 (2006) 2753-2768;
      (b) J.R. Ella-Menye, V. Sharma, G. Wang, J. Org. Chem. 70 (2005) 463-469;
      (c) J.W. Hilborn, Z.H. Lu, A.R. Jurgens, et al., Tetrahedron Lett 42 (2001) 8919-8921;
      (d) G.S. Poindexter, K.M. Strauss, Synth. Commun. 23 (1993) 1329-1338;
      (e) S.C. Schmid, I.A. Guzei, J.M. Schomaker, Angew. Chem. Int. Ed. 56 (2017) 12229-12233;
      (f) M. Schulze, Synth. Commun. 40 (2010) 3415-3422;
      (g) Y.F. Wang, T. Izawa, S. Kobayashi, M. Ohno, J. Am. Chem. Soc. 104 (1982) 6465-6466.

    9. [9]

      (a) H. Pan, H. Huang, W. Liu, H. Tian, Y. Shi, Org. Lett. 18 (2016) 896-899;
      (b) S. Mangelinckx, Y. Nural, H.A. Dondas, et al., Tetrahedron 66 (2010) 4115-4124.

    10. [10]

      (a) U. Jakob, W. Bannwarth, Tetrahedron Lett 56 (2015) 6340-6344;
      (b) R. Robles-Machín, J. Adrio, J.C. Carretero, J. Org. Chem. 71 (2006) 5023-5026.

    11. [11]

      (a) K. Narasaka, Y. Ukaji, S. Yamazaki, Bull. Chem. Soc. Jpn. 59 (1986) 525-533;
      (b) M. Hirama, T. Shigemoto, Y. Yamazaki, S. Ito, J. Am. Chem. Soc. 107 (1985) 1797-1798;
      (c) A.J. Borah, P. Phukan, J. Chem. Sci. 125 (2013) 1503-1510.

    12. [12]

      S.A. Reed, A.R. Mazzotti, M.C. White, J. Am. Chem. Soc. 131 (2009) 11701-11706.  doi: 10.1021/ja903939k

    13. [13]

      T.J. Donohoe, C.J.R. Bataille, W. Gattrell, J. Kloesges, E. Rossignol, Org. Lett. 9 (2007) 1725-1728.  doi: 10.1021/ol070430v

    14. [14]

      (a) A.J. Boddy, C.J. Cordier, K. Goldberg, et al., Org. Lett. 21 (2019) 1818-1822;
      (b) T. Buyck, Q. Wang, J. Zhu, J. Am. Chem. Soc. 136 (2014) 11524-11528;
      (c) N. Uddin, J.S. Ulicki, F.H. Foersterling, M.M. Hossain, Tetrahedron Lett 52 (2011) 4353-4356;
      (d) R. Yousefi, T.J. Struble, J.L. Payne, et al., J. Am. Chem. Soc. 141 (2019) 618-625.

    15. [15]

      (a) A.M. Jones, C.E. Banks, Beilstein J. Org. Chem. 10 (2014) 3056-3072;
      (b) U. Martínez-Estibalez, A. Gómez-SanJuan, O. García-Calvo, et al., Eur. J. Org. Chem. 2011 (2011) 3610-3633;
      (c) J. Royer, M. Bonin, L. Micouin, Chem. Rev. 104 (2004) 2311-2352;
      (d) M.G. Vinogradov, O.V. Turova, S.G. Zlotin, Russ. Chem. Rev. 86 (2017) 1-17;
      (e) A.K. Sahu, R. Unnava, S. Shit, A.K. Saikia, J. Org. Chem. 85 (2020) 1961-1971.

    16. [16]

      (a) H.E. Zaugg, Synthesis (1970) 49-73;
      (b) H.E. Zaugg, Synthesis (1984) 85-110;
      (c) S. Pyne, A. Yazici, Synthesis 3 (2009) 339-368;
      (d) A. Yazici, S.G. Pyne, Synthesis 4 (2009) 513-541;
      (e) G.M. Ryder, U. Wille, A.C. Willis, S.G. Pyne, Org. Biomol. Chem. 17 (2019) 7025-7035;
      (f) T. Thaima, A. Yazici, C. Auranwiwat, et al., Org. Biomol. Chem. 19 (2021) 259-272.

    17. [17]

      P. Wu, T.E. Nielsen, Chem. Rev. 117 (2017) 7811-7856.  doi: 10.1021/acs.chemrev.6b00806

    18. [18]

      (a) M. Das, A.K. Saikia, J. Org. Chem. 83 (2018) 6178-6185;
      (b) K. Indukuri, R. Unnava, M.J. Deka, A.K. Saikia, J. Org. Chem. 78 (2013) 10629-10641;
      (c) Y. Krishna, K. Shilpa, F. Tanaka, Org. Lett. 21 (2019) 8444-8448;
      (d) Y. Zheng, L. Andna, O. Bistri, L. Miesch, Org. Lett. 22 (2020) 6771-6775;
      (e) S. Hanessian, M. Tremblay, Org. Lett. 6 (2004) 4683-4686;
      (f) S. Hanessian, M. Tremblay, J.F.W. Petersen, J. Am. Chem. Soc. 126 (2004) 6064-6071.

    19. [19]

      (a) M. Sugiura, H. Hagio, R. Hirabayashi, S. Kobayashi, Synlett 2001 (2001) 1225-1228;
      (b) N. Lu, L. Wang, Z. Li, W. Zhang, Beilstein J. Org. Chem. 8 (2012) 192-200;
      (c) H. Richter, R. Frohlich, C.G. Daniliuc, O. Garcia Mancheno, Angew. Chem., Int. Ed. 51 (2012) 8656-8660;
      (d) A. Yazici, U. Wille, S.G. Pyne, J. Org. Chem. 81 (2016) 1434-1449.

    20. [20]

      (a) S.M. Weinreb, P.M. Scola, Chem. Rev. 89 (1989) 1525-1534;
      (b) T. Shimizu, K. Tanino, I. Kuwajima, Tetrahedron Lett 41 (2000) 5715-5718;
      (c) D.M. Tomazela, L.A.B. Moraes, R.A. Pilli, M.N. Eberlin, M.G.M. D'Oca, J. Org. Chem. 67 (2002) 4652-4658;
      (d) S. Suga, Y. Tsutsui, A. Nagaki, J.I. Yoshida, Bull. Chem. Soc. Jpn. 78 (2005) 1206-1217;
      (e) S. Suga, D. Yamada, J. -i. Yoshida, Chem. Lett. 39 (2010) 404-406;
      (f) S. Suga, A. Nagaki, Y. Tsutsui, J.I. Yoshida, Org. Lett. 5 (2003) 945-947.

    21. [21]

      (a) P.M. Esch, H. Hiemstra, W.N. Speckamp, Tetrahedron Lett 29 (1988) 367-370;
      (b) P.M. Esch, H. Hiemstra, W. Nico Speckamp, Tetrahedron 48 (1992) 3445-3462.

    22. [22]

      (a) X.M. Wang, Y.W. Liu, R.J. Ma, C.M. Si, B.G. Wei, J. Org. Chem. 84 (2019) 11261-11267;
      (b) C. Wang, Z.Y. Mao, Y.W. Liu, et al., Adv. Synth. Catal. 362 (2020) 822-831;
      (c) R.C. Liu, W. Huang, J.Y. Ma, B.G. Wei, G.Q. Lin, Tetrahedron Lett 50 (2009) 4046-4049;
      (d) Y.W. Liu, R.J. Ma, J.H. Yan, Z. Zhou, B.G. Wei, Org. Biomol. Chem. 16 (2018) 771-779;
      (e) P. Han, Z.Y. Mao, C.M. Si, et al., J. Org. Chem. 84 (2019) 914-923;
      (f) Z.D. Chen, Z. Chen, Q.E. Wang, C.M. Si, B.G. Wei, Tetrahedron Lett 61 (2020) 152051;
      (g) X.L. Han, X.D. Nie, Z.D. Chen, et al., J. Org. Chem. 85 (2020) 13567-13578;
      (h) Y.X. Zhang, L.Y. Chen, J.T. Sun, C.M. Si, B.G. Wei, J. Org. Chem. 85 (2020) 12603-12613.

    23. [23]

      (a) B.A.D. Neto, A.A.M. Lapis, A.B. Bernd, D. Russowsky, Tetrahedron 65 (2009) 2484-2496;
      (b) R.A. Pilli, L.C. Dias, Synth. Commun. 21 (1991) 2213-2229;
      (c) B.V. Subba Reddy, S. Ghanty, N.S.S. Reddy, Y.J. Reddy, J.S. Yadav, Synth. Commun. 44 (2014) 1658-1663;
      (d) C.Y. Yu, O. Meth-Cohn, Tetrahedron Lett 40 (1999) 6665-6668;
      (e) J.S. Yadav, Y. Jayasudhan Reddy, P. Adi Narayana Reddy, B.V. Subba Reddy, Org. Lett. 15 (2013) 546-549.

  • 加载中
    1. [1]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    2. [2]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    3. [3]

      Hao SunXiaoxue LiBaoyu WuKai ZhuYinyi GaoTianzeng BaoHongbin WuDianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    6. [6]

      Jindan ZhangZhenghong LiChi LiMengqi ZhuShicheng TangKaicong CaiZhibin ChengChulong LiuShengchang XiangZhangjing Zhang . Revealing a new doping mechanism of spiro-OMeTAD with tBP participation through the introduction of radicals into HTM. Chinese Chemical Letters, 2025, 36(3): 110046-. doi: 10.1016/j.cclet.2024.110046

    7. [7]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    8. [8]

      Yanfen PENGXinyue WANGTianbao LIUXiaoshuo WUYujing WEI . Syntheses and luminescence of four Cd(Ⅱ)/Zn(Ⅱ) complexes constructed by 1,3‐bis(4H‐1,2,4‐triazole)benzene. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1416-1426. doi: 10.11862/CJIC.20250018

    9. [9]

      Xiao-Ming ChenLianhui SongJun PanFei ZengYi XieWei WeiDong Yi . Visible-light-induced four-component difunctionalization of alkenes to construct phosphorodithioate-containing quinoxalin-2(1H)-ones. Chinese Chemical Letters, 2024, 35(11): 110112-. doi: 10.1016/j.cclet.2024.110112

    10. [10]

      Qiang FengJindong HaoYa HuRong FuWei WeiDong Yi . Photocatalytic multi-component synthesis of ester-containing quinoxalin-2(1H)-ones using water as the hydrogen donor. Chinese Chemical Letters, 2025, 36(6): 110582-. doi: 10.1016/j.cclet.2024.110582

    11. [11]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    12. [12]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    13. [13]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    14. [14]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    15. [15]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    16. [16]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    17. [17]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    20. [20]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

Metrics
  • PDF Downloads(6)
  • Abstract views(857)
  • HTML views(77)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return