Citation: Xiaokai Chen, Xiaodong Zhang, Fu-Gen Wu. Ultrasmall green-emitting carbon nanodots with 80% photoluminescence quantum yield for lysosome imaging[J]. Chinese Chemical Letters, ;2021, 32(10): 3048-3052. doi: 10.1016/j.cclet.2021.03.061 shu

Ultrasmall green-emitting carbon nanodots with 80% photoluminescence quantum yield for lysosome imaging

    * Corresponding author.
    E-mail address: wufg@seu.edu.cn (F.-G. Wu).
  • Received Date: 26 February 2021
    Revised Date: 22 March 2021
    Accepted Date: 23 March 2021
    Available Online: 23 March 2021

Figures(4)

  • Carbon-based fluorescent nanomaterials have gained much attention in recent years. In this work, green-photoluminescent carbon nanodots (CNDs; also termed carbon dots, CDs) with amine termination were synthesized via the hydrothermal treatment of amine-containing spermine and rose bengal (RB) molecules. The CNDs have an ultrasmall size of ~2.2 nm and present bright photoluminescence with a high quantum yield of ~80% which is possibly attributed to the loss of halogen atoms (Cl and I) during the hydrothermal reaction. Different from most CNDs which have multicolor fluorescence emission, the as-prepared CNDs possess excitation-independent emission property, which can avoid fluorescence overlap with other fluorescent dyes. Moreover, the weakly basic amine-terminated surface endows the CNDs with the acidotropic effect. As a result, the CNDs can accumulate in the acidic lysosomes after cellular internalization and can serve as a favorable agent for lysosome imaging. Besides, the CNDs have a negligible impact on the lysosomal morphology even after 48 h incubation and exhibit excellent biocompatibility in the used cell models.
  • Organic solar cells (OSCs) are a type of photovoltaic cells that use the organic conjugated materials as the photoactive materials. They show huge potential for commercial applications owing to the advantages of abundant raw materials, high flexibility, semitransparency, compatibility with low-cost large-area printing [1-11]. Thanks to the development of the photoactive materials (especially the Y-series acceptors), morphological control strategies, interlayer and device engineering, the power conversation efficiencies (PCEs) of OSCs have surpassed 19% [12-15]. However, the toxic halogenated solvents such as chloroform (CF), chlorobenzene (CB), and 1,2-dichlorobenzene (o-DCB) are always the best candidates for photoactive layer processing during the laboratory production of state-of-the-art OSCs devices. These toxic solvents pose serious threats to human health and the environment, constituting one of the major challenges in scaling up production of OSCs for industrial applications [16,17].

    The use of non-halogenated solvents eliminates potential health and safety concerns associated with the use of halogenated solvents, making the fabrication process safer for workers and the environment [18-20]. Nevertheless, the poor solubility of present photoactive materials in non-halogenated solvents leads to suboptimal morphologies, thereby significantly impacting their performance [21,22]. To address this issue, numerous molecular design strategies and processing techniques have been proposed by researchers to enhance the compatibility between photoactive materials and non-halogenated solvents. For example, Dong et al. synthesized an efficient acceptor, known as DTY6, with longer alkyl chains (2-decyltetradecyl) compared to Y6 [23]. The PM6:DTY6 devices showed an obvious improvement of PCE (16.1%) compared to the PM6:Y6 counterparts (10.8%) when processing in o-xylene (o-XY), owing to the restricted aggregation and reasonable domain size of DTY6 in the blends [23]. In addition, Song et al. used a mixed halogen-free solvent of carbon disulfide (CS2) and o-XY with the volume ratio of 7:3 to fabricated PM6:Y6-based OSC devices [24]. This approach yielded a high PCE of 16.5%, surpassing its counterparts processed with neat o-XY (13.3%). This is due to the mixed solvent that effectively increases the solubility and miscibility of PM6 and Y6, resulting in the optimal phase separation and proper aggregation domains within the active layer. Furthermore, a recent study by Daniel et al. developed a set of terpene-based binary solvent systems according to the Hansen solubility parameters (HSP), which were found to be both effective and environmentally friendly for a range of organic electronics devices [25]. Despite of the success achieved, the processing of bulk-heterojunction OSCs using non-halogen solvents remains a complicated and demanding task. Since the material nature of the polymer donors and the small molecule acceptors are distinct [26,27], the selection of non-halogenated solvents for processing should take a comprehensive consideration of the effects of material solubility and solvent volatility on the aggregation state and phase separation [23,24,28].

    Double-cable conjugated polymers [29-35] are a type of polymers where the acceptor units are covalently bonded to the donor main chain, commonly utilized in the fabrication of single-component organic solar cells (SCOSCs), leading to a simpler and more cost-effective manufacturing process. Recently, our group took the lead in synthesizing double-cable conjugated polymers with non-fused near-infrared (NIR) acceptors for use in SCOSCs, which delivered a high PCE of 10.09% [36]. Nevertheless, the new double-cable polymers named as DCPIC-EH can only dissolved in hot o-dichlorobenzene (o-DCB) solvent to prepare high-performance SCOSC devices. In this work, we designed a new double-cable polymer (DCPIC-BO) with long-branched alkyl chains (2-buthyloctyl, BO) on the TPDIC (1,3-bis(4,4-bis(2-buthyloctyl)-4H-cyclopenta[1,2-b:5,4-b’]dithiophen-2-yl)-5-(2-octyl)-4H-thieno[3,4-c]pyrrole-4,6(5H)‑dione) acceptor side units (Fig. 1a). The solubility of DCPIC-BO was substantially improved in both the halogen and non-halogen solvents, compared with DCPIC-EH. As a result, the DCPIC-BO-based devices processed using either halogen or non-halogen solvents (CB, o-XY, and THF) at a mild temperature of 40 ℃ demonstrate similar PCEs of ~9.7%. In stark contrast, DCPIC-EH exhibits poor solubility in o-XY and THF at low temperature, impeding its processing with non-halogen solvents. In addition, we found that 2-methylanisole (2-MA) and a mixed solvent of eucalyptol (Eu) and tetralin (Tet) also can be utilized as alternative non-halogen processing solvents for DCPIC-BO to fabricate highly efficient SCOSCs devices. Furthermore, we employed a solid additive (SAD) to prepare "absolutely halogen-free" SCOSCs devices. This approach enabled high PCEs exceeding 10% for small-area (0.04 cm2) devices and nearly 9% for devices with an area of 1 cm2.

    Figure 1

    Figure 1.  Chemical structures, absorption spectra and energy level diagram of DCPIC-EH and DCPIC-BO. (a) Schematic diagram showing the designed double-cable conjugated polymer DCPCI-BO from DCPIC-EH via side chain engineering. (b) Optical absorption spectra in o-XY solution and corresponding thin films. (c) Energy level diagram.

    As shown in Fig. 1a, the new double-cable polymer DCPIC-BO was synthesized by extending the alkyl chain on TPDIC acceptor side unit of DCPIC-EH that was previously reported [36] from 2-ethylhexyl (EH) to 2-butyloctyl (BO) (The detailed synthesis and characterizations can be found in Supporting information). The gel permeation chromatography measurement shows that the number-average molecular weight (Mn) of DCPIC-BO is 34.8 kDa (Fig. S1 in Supporting information), which is lower than that of DCPIC-EH (93.1 kDa) [36]. Despite our attempts to synthesize several batches of DCPIC-BO, we were unable to achieve a high Mn comparable to that of DCPIC-EH. This has puzzled us for a considerable period, and we intend to investigate the underlying reasons in more detail.

    The ultraviolet-visible (UV–vis) absorption spectra of the DCPIC-EH and DCPIC-BO in dilute o-XY (a widely used non-halogen solvent with moderate boiling point and excellent dissolving ability) solutions and thin films are shown in Fig. 1b. The absorption spectrum of DCPIC-BO in solution shows obvious blue shift (~37 nm) compared with that of DCPIC-EH, revealing the decrease in aggregation of DCPIC-BO in o-XY. The absorption spectra of DCPIC-BO in CB and THF are also presented in Fig. S2a (Supporting information), which further verify the enhanced solubility of DCPIC-BO in non-halogen solvents. When converted from the solution state to the thin films, the absorption profiles of the two polymers exhibit similar trends within the 400–900 nm range with the absorbance edge of DCPIC-BO slightly blue-shifted by ~9 nm relative to that of DCPIC-EH, which can be attributed to the steric hindrance effect of a long-branched alkyl chain in DCPIC-BO that results in the increase of laminar spacing. Despite of the slight blue shift, the DCPIC-BO film shows a superior aggregation, which is indicated by an increased ratio between the 0–0/0–1 peaks and due to the superior solubility of DCPIC-BO in o-XY that contributes to a favorable morphology. Further, the effect of alkyl chain on the frontier energy levels of the two polymers were determined by cyclic voltammogram (CV) measurements, as shown in Fig. S3 (Supporting information) and Fig. 1c. Specifically, DCPIC-BO and DCPIC-EH display identical highest occupied molecular orbital (HOMO) energy levels of −5.56 eV, while the lowest unoccupied molecular orbital (LUMO) energy level of DCPIC-BO (−3.72 eV) is slightly up-shifted from that of DCPIC-EH (−3.75 eV), which is considered to help in achieving a higher open-circuit voltage (Voc) when manufacturing SCOSC devices.

    Then, the solubility of DCPCI-EH and DCPIC-BO in various commonly used solvents for processing organic solar cells was investigated, including halogenated and non-halogenated solvents, such as o-DCB, CB, o-XY and THF. The chemical structures of these solvents are illustrated in Fig. 2a. Fig. S4 shows pictures of the two polymers dissolved in different solvents (10 mg/mL, the lowest concentration for proper photoactive layer thickness) and the corresponding thin films. It can be found that DCPIC-EH exhibits exiguous solubility (<1 mg/mL) in o-XY and THF at moderate temperatures (40 ℃), resulting in severe aggregation and poor film quality. Following continuous heating of the solution on a hot stage, the solubility of DCPIC-EH in o-DCB and o-XY was enhanced, while remaining slightly soluble in THF. As anticipated, the long alkyl side chains in DCPIC-BO contribute to its excellent solubility in CB, o-XY, and THF, at both moderate and high temperatures, thereby enabling its solution processing into uniform and flat films.

    Figure 2

    Figure 2.  (a) Molecule structures of CB, o-DCB and o-XY, THF solvents. (b) Scheme of devices configuration. J-V curves of (c) DCPIC-EH and (d) DCPIC-BO-based devices processed with various solvents. (e, f) The corresponding EQE plots.

    To check the photovoltaic performance of the DCPIC-EH and DCPIC-BO processed from the above solutions, the SCOSCs devices with an inverted configuration of glass/ITO/ZnO/active layer/MoO3/Ag were fabricated, as depicted in Fig. 2b. 1,8-Diiodooctane (DIO) was used to optimize the morphology of polymer films. Firstly, the optimal temperature to prepare the polymer solutions with different solvents were investigated. As shown in Figs. S5a and b and Table S1 (Supporting information), for DCPIC-EH-based devices, the optimal performance was obtained by the o-DCB solution with a temperature of 100 ℃, showing an impressive PCE of 10.03%, a Voc of 0.775 V, a short-circuit current density (Jsc) of 20.55 mA/cm2 and a fill factor (FF) of 63.04%, while devices processed from o-XY solution under 100 ℃ yielded a decreased PCE of 9.36%. Notably, it was observed that when the temperature of the polymer solutions of o-DCB and o-XY is at 70 ℃, the PCEs are significantly reduced to 8.84% and 2.30%, respectively. Furthermore, the low solubility of DCPIC-EH in o-XY (40 ℃) and in THF at either 40 ℃ or 60 ℃ makes it difficult to obtain working devices. However, when replacing DCPIC-EH by DCPIC-BO, the solvent and temperature dependence is significantly reduced. As shown in Figs. S5c and e and Table S2 (Supporting information), regardless of whether the processing solvent is CB or o-XY and whether the solution temperature is 40 ℃ or 100 ℃, the resulting devices exhibit closed PCE values around 9.7%. Even processed from THF, a PCE of 9.76% can be achieved at solution temperature of 60 ℃ and only slightly decreases to 8.32% at 40 ℃. The current density-voltage (J-V) curves and external quantum efficiency (EQE) spectra for the best devices processed from different solvents are shown in Figs. 2c-f and the corresponding photovoltaic parameters are summarized in Table 1. The higher Vocs exhibited by the DCPIC-BO-based devices compared with those based on DCPIC-EH can be attributed to the reduction in non-radiative charge carrier decay resulting from the increased donor-acceptor spacing facilitated by the long-branched alkyl chain in DCPIC-BO [37]. All the above results indicate that the long-branched alkyl chain enhance the solubility of DCPIC-BO in different solvents, either halogenated or non-halogenated solvents, enabling the solution processing at both moderate and high temperatures to achieve high photovoltaic performance.

    Table 1

    Table 1.  Photovoltaic parameters of the devices processed from different solvents.
    DownLoad: CSV

    Further, atomic force microscopy (AFM) was carried out to detect the surface morphologies and phase separation of DCPCI-BO films processed from CB, o-XY and THF. As shown in Fig. S6 (Supporting information), the surface roughness (RMS) of o-XY and THF processed DCPIC-BO films were 0.63 nm and 0.56 nm, respectively, which were comparable to that processed from CB solution. Moreover, the DCPIC-BO films processed from CB, o-XY and THF all exhibit delicate phase separation, which is consistent with the results of o-DCB processed DCPIC-EH in our previous reports [36]. Also, grazing incidence wide-angle X-ray scattering (GIWAXS) was applied to study the molecular packing and crystalline behaviors of the DCPIC-BO films. The 2D GIWAXS images of CB, o-XY and THF processed DCPIC-BO films and the corresponding 1D in-plane (IP) and out-of-plane (OOP) plots are shown in Fig. 3 and the crystalline parameters are summarized in Table S4 (Supporting information). It reveals that, compared with the film processed from CB, similar face-on orientation and crystallinity can be obtained by both o-XY and THF processed films, which was further verified by the pretty similar optical absorption spectra of films processed from CB, o-XY and THF solutions (Fig. S2b in Supporting information).

    Figure 3

    Figure 3.  2D GIWAXS images of (a) CB, (b) o-XY and (c) THF-processed DCPIC-BO films. (d) In-plane and (e) out of plane 1D plots of the corresponding GIWAXS images.

    Moreover, we investigated whether DCPIC-BO can be processed by other non-halogenated solvents. Surprisingly, solvents including 2-MA, Eu and Tet (Fig. 4a) also shows capability of solution processing of DCPIC-BO. Specifically, 2-MA-based devices exhibit an optimal PCE of 9.11% with a Voc of 0.805 V, a Jsc of 19.23 mA/cm2 and an FF of 58.80%, as well as obtaining an efficiency of 8.60% by using a mixed solvent recipe of Eu and Tet as reported in the literature (Table S3 in Supporting information, Fig. 4b) [25].

    Figure 4

    Figure 4.  (a) The molecular structure of 2-MA, Eu and Tet. (b) J-V curves of DCPIC-BO processed from 2-MA, Eu and Tet. (c) J-V curves of DCPIC-BO-based small-area (0.04 cm2) devices processed from o-XY with SAD solid additive. (d) J-V curves of DCPIC-BO-based devices with 1 cm2 area.

    Furthermore, to address the non-environmental friendliness of DIO, we substituted DIO with a non-halogen solid additive (SAD, inset of Fig. 4c) in o-XY to produce completely halogen-free DCPCI-BO-based devices [38]. The SAD-based small-area (0.04 cm2) devices exhibited a remarkable efficiency of 10.10% (Fig. 4c), and devices with an area of 1 cm2 achieved an efficiency of 9.12% (Fig. 4d). These results confirm that the double-cable conjugated polymer DCPIC-BO is an efficient organic photovoltaic material that can be processed using non-halogen solvents.

    In this work, we synthesized a double-cable conjugated polymer (DCPIC-BO) by extending the alkyl side chains of the acceptor side units in DCPIC-EH and utilized as the light-absorbing material in solution-processed SCOSCs. The results demonstrate that DCPIC-BO-based devices processed from either halogen or non-halogen solvents (CB, o-XY, and THF) at a mild temperature of 40 ℃ exhibit comparable PCEs of ~9.7%. In contrast, DCPIC-EH cannot be solution-processed in o-XY and THF at low temperatures. DCPI-EH is soluble in o-XY at 100 ℃, yet the efficiency of o-XY-processed devices (9.36%) is still lower than that of o-DCB (10.03%). AFM and GIWAXS analyses suggest that the DCPIC-BO treated with non-halogen solvents results in an ideal film morphology, similar to that obtained with halogen solvents. Moreover, DCPIC-BO can be treated with other non-halogen solvents, such as 2-MA, Eu, and Tet. Of particular significance is that o-XY-processed DCPIC-BO devices fabricated with a non-halogen solid additive (SAD) achieve a high PCE of 10.1%. This work not only presents a double-cable conjugated polymer with the advantages of non-halogen solvent processing, but also provides a straightforward approach to modify conjugated polymers for achieving environmentally friendly manufacturing.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This study is jointly supported by Beijing Natural Science Foundation (Nos. JQ21006 and 2212045) and National Natural Science Foundation of China (NSFC, Nos. 52073016 and 92163128). This work was further supported by the Fundamental Research Funds for the Central Universities (Nos. buctrc202111, buctrc201828 and XK1802-2), and the Opening Foundation of State Key Laboratory of Organic-Inorganic Composites of Beijing University of Chemical Technology (No. oic-202201006).

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2023.108527.


    1. [1]

      F. Arcudi, L. Dordevic, M. Prato, Acc. Chem. Res. 52 (2019) 2070-2079.  doi: 10.1021/acs.accounts.9b00249

    2. [2]

      X.D. Zhang, X.K. Chen, F.G. Wu, Carbon nanodots for cell imaging, in: F.G. Wu (Ed. ), Fluorescent Materials for Cell Imaging, Springer, Singapore, Singapore, 2020, pp. 49-75.

    3. [3]

      Y.Q. Sun, H.Y. Qin, X. Geng, et al., ACS Appl. Mater. Interfaces 12 (2020) 31738-31744.  doi: 10.1021/acsami.0c05005

    4. [4]

      X.W. Hua, Y.W. Bao, F.G. Wu, ACS Appl. Mater. Interfaces 10 (2018) 10664-10677.  doi: 10.1021/acsami.7b19549

    5. [5]

      X.W. Hua, Y.W. Bao, J. Zeng, F.G. Wu, ACS Appl. Mater. Interfaces 11 (2019) 32647-32658.  doi: 10.1021/acsami.9b09590

    6. [6]

      J.J. Yang, X.D. Zhang, Y.H. Ma, et al., ACS Appl. Mater. Interfaces 8 (2016) 32170-32181.  doi: 10.1021/acsami.6b10398

    7. [7]

      S. Chen, T.T. Sun, M. Zheng, Z.G. Xie, Adv. Funct. Mater. 30 (2020) 2004680.  doi: 10.1002/adfm.202004680

    8. [8]

      M.H. Lan, L. Guo, S.J. Zhao, et al., Adv. Therap. 1 (2018) 1800077.  doi: 10.1002/adtp.201800077

    9. [9]

      H.F. Liu, J. Yang, Z.H. Li, et al., Anal. Chem. 91 (2019) 9259-9265.  doi: 10.1021/acs.analchem.9b02147

    10. [10]

      S. Sun, Q. Chen, Z.D. Tang, et al., Angew. Chem. Int. Ed. 59 (2020) 21041-21048.  doi: 10.1002/anie.202007786

    11. [11]

      G. Gao, Y.W. Jiang, H.R. Jia, J.J. Yang, F.G. Wu, Carbon 134 (2018) 232-243.  doi: 10.1016/j.carbon.2018.02.063

    12. [12]

      J.J. Yang, G. Gao, X.D. Zhang, et al., Carbon 146 (2019) 827-839.  doi: 10.1016/j.carbon.2019.02.040

    13. [13]

      X. Zhang, J.M. Wang, J. Liu, et al., Carbon 115 (2017) 134-146.  doi: 10.1016/j.carbon.2017.01.005

    14. [14]

      C.X. Wang, Z.Z. Xu, H. Cheng, et al., Carbon 82 (2015) 87-95.  doi: 10.1016/j.carbon.2014.10.035

    15. [15]

      N. Wang, Y.T. Wang, T.T. Guo, et al., Biosens. Bioelectron. 85 (2016) 68-75.  doi: 10.1016/j.bios.2016.04.089

    16. [16]

      S.H. Li, D. Amat, Z.L. Peng, et al., Nanoscale 8 (2016) 16662-16669.  doi: 10.1039/C6NR05055G

    17. [17]

      T. Feng, X.Z. Ai, G.H. An, P.P. Yang, Y.L. Zhao, ACS Nano 10 (2016) 4410-44120.  doi: 10.1021/acsnano.6b00043

    18. [18]

      Y.B. Liu, L. Zhou, Y.N. Li, R.P. Deng, H.J. Zhang, Nanoscale 9 (2017) 491-496.  doi: 10.1039/C6NR07123F

    19. [19]

      M.H. Sun, C. Liang, Z. Tian, et al., J. Phys. Chem. Lett. 10 (2019) 3094-3100.  doi: 10.1021/acs.jpclett.9b00842

    20. [20]

      Y.F. Huang, X. Zhou, R. Zhou, et al., Chem. Eur. J. 20 (2014) 5640-5648.  doi: 10.1002/chem.201400011

    21. [21]

      Q. Xu, P. Pu, J.G. Zhao, et al., J. Mater. Chem. A: Mater. Energy Sustain. 3 (2015) 542-546.  doi: 10.1039/C4TA05483K

    22. [22]

      Z. Zhang, J.H. Hao, J. Zhang, B.L. Zhang, J.L. Tang, RSC Adv. 2 (2012) 8599-8601.  doi: 10.1039/c2ra21217j

    23. [23]

      J.C. Ge, Q.Y. Jia, W.M. Liu, et al., Adv. Mater. 27 (2015) 4169-4177.  doi: 10.1002/adma.201500323

    24. [24]

      X.W. Hua, Y.W. Bao, H.Y. Wang, Z. Chen, F.G. Wu, Nanoscale 9 (2017) 2150-2161.  doi: 10.1039/C6NR06558A

    25. [25]

      K. Jiang, S. Sun, L. Zhang, et al., Angew. Chem. Int. Ed. 54 (2015) 5360-5363.  doi: 10.1002/anie.201501193

    26. [26]

      Y.Z. Fan, Y. Zhang, N. Li, et al., Sens. Actuators B: Chem. 240 (2017) 949-955.  doi: 10.1016/j.snb.2016.09.063

    27. [27]

      Z.G. Wang, B.S. Fu, S.W. Zou, et al., Nano Res. 9 (2016) 214-223.  doi: 10.1007/s12274-016-0992-2

    28. [28]

      S.J. Zhu, Q.N. Meng, L. Wang, et al., Angew. Chem. Int. Ed. 52 (2013) 3953-3957.  doi: 10.1002/anie.201300519

    29. [29]

      P.L. Li, S. Liu, W.W. Cao, et al., Chem. Commun. (Camb. ) 56 (2020) 2316-2319.  doi: 10.1039/C9CC09223D

    30. [30]

      P.L. Gao, J.W. Wang, M. Zheng, Z.G. Xie, Chem. Eng. J. 381 (2020)122665.  doi: 10.1016/j.cej.2019.122665

    31. [31]

      Y.Z. Fu, S.L. Wu, H.K. Zhou, et al., Ind. Eng. Chem. Res. 59 (2020) 1723-1729.  doi: 10.1021/acs.iecr.9b06289

    32. [32]

      H.H. Ran, X.T. Cheng, Y.W. Bao, et al., J. Mater. Chem. B: Mater. Biol. Med. 7 (2019) 5104-5114.  doi: 10.1039/C9TB00681H

    33. [33]

      X.Y. Teng, C.G. Ma, C.J. Ge, et al., J. Mater. Chem. B: Mater. Biol. Med. 2 (2014) 4631-4639.  doi: 10.1039/c4tb00368c

    34. [34]

      P.L. Li, X. Yang, X.H. Zhang, et al., J. Mater. Sci. 55 (2020) 16744-16757.  doi: 10.1007/s10853-020-05262-6

    35. [35]

      G. Gao, Y.W. Jiang, J.J. Yang, F.G. Wu, Nanoscale 9 (2017) 18368-18378.  doi: 10.1039/C7NR06764J

    36. [36]

      X.W. Hua, Y.W. Bao, Z. Chen, F.G. Wu, Nanoscale 9 (2017) 10948-10960.  doi: 10.1039/C7NR03658B

    37. [37]

      J.J. Yang, G. Gao, X.D. Zhang, et al., Nanoscale 9 (2017) 15441-15452.  doi: 10.1039/C7NR05613C

    38. [38]

      X. Geng, Y.Q. Sun, Z.H. Li, et al., Small 15 (2019) e1901517.  doi: 10.1002/smll.201901517

    39. [39]

      K.J. Jiang, S.Z. Hu, Y.C. Wang, Z.J. Li, H.W. Lin, Small 16 (2020) e2001909.  doi: 10.1002/smll.202001909

    40. [40]

      W.Y. Lv, M. Lin, R.S. Li, et al., Chin. Chem. Lett. 30 (2019) 1410-1414.  doi: 10.1016/j.cclet.2019.04.011

    41. [41]

      W.D. Li, Y. Liu, B.Y. Wang, et al., Chin. Chem. Lett. 30 (2019) 2323-2327.  doi: 10.1016/j.cclet.2019.06.040

    42. [42]

      B.Y. Wang, J. Li, Z.Y. Tang, B. Yang, S.Y. Lu, Sci. Bull. (Beijing) 64 (2019) 1285-1292.  doi: 10.1016/j.scib.2019.07.021

    43. [43]

      S.Y. Lu, L.Z. Sui, J.J. Liu, et al., Adv. Mater. 29 (2017) 1603443.  doi: 10.1002/adma.201603443

    44. [44]

      B. Li, S. Zhao, L. Huang, et al., Chem. Eng. J. 408 (2021) 127245.  doi: 10.1016/j.cej.2020.127245

    45. [45]

      X.C. Li, S.J. Zhao, B.L. Li, et al., Coord. Chem. Rev. 431 (2020) 213686.

    46. [46]

      H.Q. Song, X.J. Liu, B.Y. Wang, Z.Y. Tang, S.Y. Lu, Sci. Bull. (Beijing) 64 (2019) 1788-1794.  doi: 10.1016/j.scib.2019.10.006

    47. [47]

      H. Nie, M.J. Li, Q.S. Li, et al., Chem. Mater. 26 (2014) 3104-3112.  doi: 10.1021/cm5003669

    48. [48]

      L.L. Pan, S. Sun, A.D. Zhang, et al., Adv. Mater. 27 (2015) 7782-7787.  doi: 10.1002/adma.201503821

    49. [49]

      A. Sharma, T. Gadly, A. Gupta, et al., J. Phys. Chem. Lett. 7 (2016) 3695-3702.  doi: 10.1021/acs.jpclett.6b01791

    50. [50]

      B. van Dam, H. Nie, B. Ju, et al., Small 13 (2017) 1702098.  doi: 10.1002/smll.201702098

    51. [51]

      C. Settembre, A. Fraldi, D.L. Medina, A. Ballabio, Nat. Rev. Mol. Cell Biol. 14 (2013) 283-296.  doi: 10.1038/nrm3565

    52. [52]

      X.D. Zhang, X.K. Chen, Y.X. Guo, et al., Nanoscale Horiz. 5 (2020) 481-487.  doi: 10.1039/C9NH00643E

    53. [53]

      X.K. Chen, X.D. Zhang, L.Y. Xia, et al., Nano Lett. 18 (2018) 1159-1167.  doi: 10.1021/acs.nanolett.7b04700

    54. [54]

      X.K. Chen, X.D. Zhang, F.M. Lin, Y.X. Guo, F.G. Wu, Small 15 (2019) 1901647.  doi: 10.1002/smll.201901647

    55. [55]

      X.K. Chen, X.D. Zhang, C.C. Li, et al., Sens. Actuators B: Chem. 295 (2019) 49-55.  doi: 10.1016/j.snb.2019.05.031

    56. [56]

      X.D. Zhang, X.K. Chen, S.Q. Kai, et al., Anal. Chem. 87 (2015) 3360-3365.  doi: 10.1021/ac504520g

    57. [57]

      L.L. Wu, X.L. Li, Y.F. Ling, C.S. Huang, N.Q. Jia, ACS Appl. Mater. Interfaces 9 (2017) 28222-28232.  doi: 10.1021/acsami.7b08148

    58. [58]

      D.Y. Zhang, Y. Zheng, H. Zhang, et al., Nanoscale 9 (2017) 18966-18976.  doi: 10.1039/C7NR05349E

    59. [59]

      Y.Y. He, Z.X. Li, Q.Y. Jia, et al., Chin. Chem. Lett. 28 (2017) 1969-1974.  doi: 10.1016/j.cclet.2017.07.027

    60. [60]

      E. Shuang, Q.X. Mao, X.L. Yuan, et al., Nanoscale 10 (2018) 12788-12796.  doi: 10.1039/C8NR03453B

    61. [61]

      Q.Q. Zhang, T. Yang, R.S. Li, et al., Nanoscale 10 (2018) 14705-14711.  doi: 10.1039/C8NR03212B

    62. [62]

      H.F. Liu, Y.Q. Sun, Z.H. Li, et al., Nanoscale 11 (2019) 8458-8463.  doi: 10.1039/C9NR01678C

    63. [63]

      S. Chen, Y. Jia, G.Y. Zou, Y.L. Yu, J.H. Wang, Nanoscale 11 (2019) 6377-6383.  doi: 10.1039/C9NR00039A

    64. [64]

      S.J. Zhao, S.L. Wu, Q.Y. Jia, et al., Chem. Eng. J. 388 (2020) 124212.  doi: 10.1016/j.cej.2020.124212

    65. [65]

      H.Y. Qin, Y.Q. Sun, X. Geng, et al., Anal. Chim. Acta 1106 (2020) 207-215.  doi: 10.1016/j.aca.2020.02.002

    66. [66]

      H. Singh, S. Sreedharan, K. Tiwari, et al., Chem. Commun. 55 (2019) 521-524.  doi: 10.1039/C8CC08610A

    67. [67]

      S. Guo, Y.Q. Sun, X. Geng, et al., J. Mater. Chem. B: Mater. Biol. Med. 8 (2020) 736-742.  doi: 10.1039/C9TB02043H

    68. [68]

      L.L. Tong, X.X. Wang, Z.Z. Chen, et al., Anal. Chem. 92 (2020) 6430-6436.  doi: 10.1021/acs.analchem.9b05553

    69. [69]

      S. Hirayama, K. Shobatake, K. Tabayashi, Chem. Phys. Lett. 121 (1985) 228-232.  doi: 10.1016/0009-2614(85)85516-0

    70. [70]

      A. Gorman, J. Killoran, C. O'Shea, et al., J. Am. Chem. Soc. 126 (2004)10619-10631.  doi: 10.1021/ja047649e

    1. [1]

      F. Arcudi, L. Dordevic, M. Prato, Acc. Chem. Res. 52 (2019) 2070-2079.  doi: 10.1021/acs.accounts.9b00249

    2. [2]

      X.D. Zhang, X.K. Chen, F.G. Wu, Carbon nanodots for cell imaging, in: F.G. Wu (Ed. ), Fluorescent Materials for Cell Imaging, Springer, Singapore, Singapore, 2020, pp. 49-75.

    3. [3]

      Y.Q. Sun, H.Y. Qin, X. Geng, et al., ACS Appl. Mater. Interfaces 12 (2020) 31738-31744.  doi: 10.1021/acsami.0c05005

    4. [4]

      X.W. Hua, Y.W. Bao, F.G. Wu, ACS Appl. Mater. Interfaces 10 (2018) 10664-10677.  doi: 10.1021/acsami.7b19549

    5. [5]

      X.W. Hua, Y.W. Bao, J. Zeng, F.G. Wu, ACS Appl. Mater. Interfaces 11 (2019) 32647-32658.  doi: 10.1021/acsami.9b09590

    6. [6]

      J.J. Yang, X.D. Zhang, Y.H. Ma, et al., ACS Appl. Mater. Interfaces 8 (2016) 32170-32181.  doi: 10.1021/acsami.6b10398

    7. [7]

      S. Chen, T.T. Sun, M. Zheng, Z.G. Xie, Adv. Funct. Mater. 30 (2020) 2004680.  doi: 10.1002/adfm.202004680

    8. [8]

      M.H. Lan, L. Guo, S.J. Zhao, et al., Adv. Therap. 1 (2018) 1800077.  doi: 10.1002/adtp.201800077

    9. [9]

      H.F. Liu, J. Yang, Z.H. Li, et al., Anal. Chem. 91 (2019) 9259-9265.  doi: 10.1021/acs.analchem.9b02147

    10. [10]

      S. Sun, Q. Chen, Z.D. Tang, et al., Angew. Chem. Int. Ed. 59 (2020) 21041-21048.  doi: 10.1002/anie.202007786

    11. [11]

      G. Gao, Y.W. Jiang, H.R. Jia, J.J. Yang, F.G. Wu, Carbon 134 (2018) 232-243.  doi: 10.1016/j.carbon.2018.02.063

    12. [12]

      J.J. Yang, G. Gao, X.D. Zhang, et al., Carbon 146 (2019) 827-839.  doi: 10.1016/j.carbon.2019.02.040

    13. [13]

      X. Zhang, J.M. Wang, J. Liu, et al., Carbon 115 (2017) 134-146.  doi: 10.1016/j.carbon.2017.01.005

    14. [14]

      C.X. Wang, Z.Z. Xu, H. Cheng, et al., Carbon 82 (2015) 87-95.  doi: 10.1016/j.carbon.2014.10.035

    15. [15]

      N. Wang, Y.T. Wang, T.T. Guo, et al., Biosens. Bioelectron. 85 (2016) 68-75.  doi: 10.1016/j.bios.2016.04.089

    16. [16]

      S.H. Li, D. Amat, Z.L. Peng, et al., Nanoscale 8 (2016) 16662-16669.  doi: 10.1039/C6NR05055G

    17. [17]

      T. Feng, X.Z. Ai, G.H. An, P.P. Yang, Y.L. Zhao, ACS Nano 10 (2016) 4410-44120.  doi: 10.1021/acsnano.6b00043

    18. [18]

      Y.B. Liu, L. Zhou, Y.N. Li, R.P. Deng, H.J. Zhang, Nanoscale 9 (2017) 491-496.  doi: 10.1039/C6NR07123F

    19. [19]

      M.H. Sun, C. Liang, Z. Tian, et al., J. Phys. Chem. Lett. 10 (2019) 3094-3100.  doi: 10.1021/acs.jpclett.9b00842

    20. [20]

      Y.F. Huang, X. Zhou, R. Zhou, et al., Chem. Eur. J. 20 (2014) 5640-5648.  doi: 10.1002/chem.201400011

    21. [21]

      Q. Xu, P. Pu, J.G. Zhao, et al., J. Mater. Chem. A: Mater. Energy Sustain. 3 (2015) 542-546.  doi: 10.1039/C4TA05483K

    22. [22]

      Z. Zhang, J.H. Hao, J. Zhang, B.L. Zhang, J.L. Tang, RSC Adv. 2 (2012) 8599-8601.  doi: 10.1039/c2ra21217j

    23. [23]

      J.C. Ge, Q.Y. Jia, W.M. Liu, et al., Adv. Mater. 27 (2015) 4169-4177.  doi: 10.1002/adma.201500323

    24. [24]

      X.W. Hua, Y.W. Bao, H.Y. Wang, Z. Chen, F.G. Wu, Nanoscale 9 (2017) 2150-2161.  doi: 10.1039/C6NR06558A

    25. [25]

      K. Jiang, S. Sun, L. Zhang, et al., Angew. Chem. Int. Ed. 54 (2015) 5360-5363.  doi: 10.1002/anie.201501193

    26. [26]

      Y.Z. Fan, Y. Zhang, N. Li, et al., Sens. Actuators B: Chem. 240 (2017) 949-955.  doi: 10.1016/j.snb.2016.09.063

    27. [27]

      Z.G. Wang, B.S. Fu, S.W. Zou, et al., Nano Res. 9 (2016) 214-223.  doi: 10.1007/s12274-016-0992-2

    28. [28]

      S.J. Zhu, Q.N. Meng, L. Wang, et al., Angew. Chem. Int. Ed. 52 (2013) 3953-3957.  doi: 10.1002/anie.201300519

    29. [29]

      P.L. Li, S. Liu, W.W. Cao, et al., Chem. Commun. (Camb. ) 56 (2020) 2316-2319.  doi: 10.1039/C9CC09223D

    30. [30]

      P.L. Gao, J.W. Wang, M. Zheng, Z.G. Xie, Chem. Eng. J. 381 (2020)122665.  doi: 10.1016/j.cej.2019.122665

    31. [31]

      Y.Z. Fu, S.L. Wu, H.K. Zhou, et al., Ind. Eng. Chem. Res. 59 (2020) 1723-1729.  doi: 10.1021/acs.iecr.9b06289

    32. [32]

      H.H. Ran, X.T. Cheng, Y.W. Bao, et al., J. Mater. Chem. B: Mater. Biol. Med. 7 (2019) 5104-5114.  doi: 10.1039/C9TB00681H

    33. [33]

      X.Y. Teng, C.G. Ma, C.J. Ge, et al., J. Mater. Chem. B: Mater. Biol. Med. 2 (2014) 4631-4639.  doi: 10.1039/c4tb00368c

    34. [34]

      P.L. Li, X. Yang, X.H. Zhang, et al., J. Mater. Sci. 55 (2020) 16744-16757.  doi: 10.1007/s10853-020-05262-6

    35. [35]

      G. Gao, Y.W. Jiang, J.J. Yang, F.G. Wu, Nanoscale 9 (2017) 18368-18378.  doi: 10.1039/C7NR06764J

    36. [36]

      X.W. Hua, Y.W. Bao, Z. Chen, F.G. Wu, Nanoscale 9 (2017) 10948-10960.  doi: 10.1039/C7NR03658B

    37. [37]

      J.J. Yang, G. Gao, X.D. Zhang, et al., Nanoscale 9 (2017) 15441-15452.  doi: 10.1039/C7NR05613C

    38. [38]

      X. Geng, Y.Q. Sun, Z.H. Li, et al., Small 15 (2019) e1901517.  doi: 10.1002/smll.201901517

    39. [39]

      K.J. Jiang, S.Z. Hu, Y.C. Wang, Z.J. Li, H.W. Lin, Small 16 (2020) e2001909.  doi: 10.1002/smll.202001909

    40. [40]

      W.Y. Lv, M. Lin, R.S. Li, et al., Chin. Chem. Lett. 30 (2019) 1410-1414.  doi: 10.1016/j.cclet.2019.04.011

    41. [41]

      W.D. Li, Y. Liu, B.Y. Wang, et al., Chin. Chem. Lett. 30 (2019) 2323-2327.  doi: 10.1016/j.cclet.2019.06.040

    42. [42]

      B.Y. Wang, J. Li, Z.Y. Tang, B. Yang, S.Y. Lu, Sci. Bull. (Beijing) 64 (2019) 1285-1292.  doi: 10.1016/j.scib.2019.07.021

    43. [43]

      S.Y. Lu, L.Z. Sui, J.J. Liu, et al., Adv. Mater. 29 (2017) 1603443.  doi: 10.1002/adma.201603443

    44. [44]

      B. Li, S. Zhao, L. Huang, et al., Chem. Eng. J. 408 (2021) 127245.  doi: 10.1016/j.cej.2020.127245

    45. [45]

      X.C. Li, S.J. Zhao, B.L. Li, et al., Coord. Chem. Rev. 431 (2020) 213686.

    46. [46]

      H.Q. Song, X.J. Liu, B.Y. Wang, Z.Y. Tang, S.Y. Lu, Sci. Bull. (Beijing) 64 (2019) 1788-1794.  doi: 10.1016/j.scib.2019.10.006

    47. [47]

      H. Nie, M.J. Li, Q.S. Li, et al., Chem. Mater. 26 (2014) 3104-3112.  doi: 10.1021/cm5003669

    48. [48]

      L.L. Pan, S. Sun, A.D. Zhang, et al., Adv. Mater. 27 (2015) 7782-7787.  doi: 10.1002/adma.201503821

    49. [49]

      A. Sharma, T. Gadly, A. Gupta, et al., J. Phys. Chem. Lett. 7 (2016) 3695-3702.  doi: 10.1021/acs.jpclett.6b01791

    50. [50]

      B. van Dam, H. Nie, B. Ju, et al., Small 13 (2017) 1702098.  doi: 10.1002/smll.201702098

    51. [51]

      C. Settembre, A. Fraldi, D.L. Medina, A. Ballabio, Nat. Rev. Mol. Cell Biol. 14 (2013) 283-296.  doi: 10.1038/nrm3565

    52. [52]

      X.D. Zhang, X.K. Chen, Y.X. Guo, et al., Nanoscale Horiz. 5 (2020) 481-487.  doi: 10.1039/C9NH00643E

    53. [53]

      X.K. Chen, X.D. Zhang, L.Y. Xia, et al., Nano Lett. 18 (2018) 1159-1167.  doi: 10.1021/acs.nanolett.7b04700

    54. [54]

      X.K. Chen, X.D. Zhang, F.M. Lin, Y.X. Guo, F.G. Wu, Small 15 (2019) 1901647.  doi: 10.1002/smll.201901647

    55. [55]

      X.K. Chen, X.D. Zhang, C.C. Li, et al., Sens. Actuators B: Chem. 295 (2019) 49-55.  doi: 10.1016/j.snb.2019.05.031

    56. [56]

      X.D. Zhang, X.K. Chen, S.Q. Kai, et al., Anal. Chem. 87 (2015) 3360-3365.  doi: 10.1021/ac504520g

    57. [57]

      L.L. Wu, X.L. Li, Y.F. Ling, C.S. Huang, N.Q. Jia, ACS Appl. Mater. Interfaces 9 (2017) 28222-28232.  doi: 10.1021/acsami.7b08148

    58. [58]

      D.Y. Zhang, Y. Zheng, H. Zhang, et al., Nanoscale 9 (2017) 18966-18976.  doi: 10.1039/C7NR05349E

    59. [59]

      Y.Y. He, Z.X. Li, Q.Y. Jia, et al., Chin. Chem. Lett. 28 (2017) 1969-1974.  doi: 10.1016/j.cclet.2017.07.027

    60. [60]

      E. Shuang, Q.X. Mao, X.L. Yuan, et al., Nanoscale 10 (2018) 12788-12796.  doi: 10.1039/C8NR03453B

    61. [61]

      Q.Q. Zhang, T. Yang, R.S. Li, et al., Nanoscale 10 (2018) 14705-14711.  doi: 10.1039/C8NR03212B

    62. [62]

      H.F. Liu, Y.Q. Sun, Z.H. Li, et al., Nanoscale 11 (2019) 8458-8463.  doi: 10.1039/C9NR01678C

    63. [63]

      S. Chen, Y. Jia, G.Y. Zou, Y.L. Yu, J.H. Wang, Nanoscale 11 (2019) 6377-6383.  doi: 10.1039/C9NR00039A

    64. [64]

      S.J. Zhao, S.L. Wu, Q.Y. Jia, et al., Chem. Eng. J. 388 (2020) 124212.  doi: 10.1016/j.cej.2020.124212

    65. [65]

      H.Y. Qin, Y.Q. Sun, X. Geng, et al., Anal. Chim. Acta 1106 (2020) 207-215.  doi: 10.1016/j.aca.2020.02.002

    66. [66]

      H. Singh, S. Sreedharan, K. Tiwari, et al., Chem. Commun. 55 (2019) 521-524.  doi: 10.1039/C8CC08610A

    67. [67]

      S. Guo, Y.Q. Sun, X. Geng, et al., J. Mater. Chem. B: Mater. Biol. Med. 8 (2020) 736-742.  doi: 10.1039/C9TB02043H

    68. [68]

      L.L. Tong, X.X. Wang, Z.Z. Chen, et al., Anal. Chem. 92 (2020) 6430-6436.  doi: 10.1021/acs.analchem.9b05553

    69. [69]

      S. Hirayama, K. Shobatake, K. Tabayashi, Chem. Phys. Lett. 121 (1985) 228-232.  doi: 10.1016/0009-2614(85)85516-0

    70. [70]

      A. Gorman, J. Killoran, C. O'Shea, et al., J. Am. Chem. Soc. 126 (2004)10619-10631.  doi: 10.1021/ja047649e

  • 加载中
    1. [1]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    2. [2]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

    3. [3]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    4. [4]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    5. [5]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    6. [6]

      Chenghao LiuXiaofeng LinJing LiaoMin YangMin JiangYue HuangZhizhi DuLina ChenSanjun FanQitong Huang . Carbon dots-based dopamine sensors: Recent advances and challenges. Chinese Chemical Letters, 2024, 35(12): 109598-. doi: 10.1016/j.cclet.2024.109598

    7. [7]

      Quan ZhangShunjie XingJingqian HanLi FengJianchun LiZhaosheng QianJin Zhou . Organic pollutant sensing for human health based on carbon dots. Chinese Chemical Letters, 2025, 36(1): 110117-. doi: 10.1016/j.cclet.2024.110117

    8. [8]

      Qiang FuShouhong SunKangzhi LuNing LiZhanhua Dong . Boron-doped carbon dots: Doping strategies, performance effects, and applications. Chinese Chemical Letters, 2024, 35(7): 109136-. doi: 10.1016/j.cclet.2023.109136

    9. [9]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    10. [10]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    11. [11]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    12. [12]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    13. [13]

      Wu-Jian LongYang YuChuang He . A novel and promising engineering application of carbon dots: Enhancing the chloride binding performance of cement. Chinese Chemical Letters, 2024, 35(6): 108943-. doi: 10.1016/j.cclet.2023.108943

    14. [14]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    15. [15]

      Xiaoning LiQuanyu ShiMeng LiNingxin SongYumeng XiaoHuining XiaoTony D. JamesLei Feng . Functionalization of cellulose carbon dots with different elements (N, B and S) for mercury ion detection and anti-counterfeit applications. Chinese Chemical Letters, 2024, 35(7): 109021-. doi: 10.1016/j.cclet.2023.109021

    16. [16]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    17. [17]

      Liwen WangBoyang WangSiyu LuShubo LvXiaoli Qu . High quantum yield yellow emission carbon dots for the construction of blue light blocking films. Chinese Chemical Letters, 2025, 36(2): 110497-. doi: 10.1016/j.cclet.2024.110497

    18. [18]

      Rui ChengXin HuangTingting ZhangJiazhuang GuoJian YuSu Chen . Solid superacid catalysts promote high-performance carbon dots with narrow-band fluorescence emission for luminescence solar concentrators. Chinese Chemical Letters, 2024, 35(8): 109278-. doi: 10.1016/j.cclet.2023.109278

    19. [19]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    20. [20]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

Metrics
  • PDF Downloads(5)
  • Abstract views(806)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return