Citation: Xinlong Liu, Xin Zhong, Chong Li. Challenges in cell membrane-camouflaged drug delivery systems: Development strategies and future prospects[J]. Chinese Chemical Letters, ;2021, 32(8): 2347-2358. doi: 10.1016/j.cclet.2021.03.015 shu

Challenges in cell membrane-camouflaged drug delivery systems: Development strategies and future prospects

    * Corresponding author.
    E-mail address: chongli2009@gmail.com (C. Li).
  • Received Date: 21 January 2021
    Revised Date: 5 March 2021
    Accepted Date: 7 March 2021
    Available Online: 11 March 2021

Figures(9)

  • Extensive research has been performed on cell membrane camouflaged-based drug delivery systems in recent years. Herein, we provide an overview of the challenges in system preparation, functional design, continuous industrial production of these systems, and solution strategies for these challenges. Further, we analyze and discuss the frontier medical applications of cell membrane-camouflaged drug delivery systems in anti-inflammatory, anti-pathogenic microorganisms, and biological detoxification. This review takes a challenge-oriented perspective and seeks innovative strategies, provides a literature review of research into cell membrane-camouflaged drug delivery systems, and promotes the development of personalized clinical treatments.
  • Quinoxalin-2(1H)-one, as a significant heterocyclic unit, has been found important applications in synthetic chemistry, materials, natural products and pharmaceuticals because of their innate outstanding biological activities and excellent chemical characters [1], and their biological activities can be significantly influenced if the substituents is introduced into the N1- and C3-positions of the quinoxalin-2(1H)-one [2]. In particular, 3-substituted quinoxalin-2(1H)-ones have been developed into powerful drugs due to their strong pharmacological effects [3], such as ataquimast, antinicrobial, anticancer, Fxa coagulation inhibitors and glycogen phosphorylase inhibitor (Fig. 1) [4]. Therefore, a number of methods have been developed for their synthesis [5]. Generally, they are synthesized by cyclization of derivatives of aniline or 1, 2-diaminobenzene with suitable partners. However, the disadvantages including pre-functionalization of the partners and multi-step synthesis limit its application [6]. In recent years, direct C-H bond functionalization at the C3-position of quinoxalin-2(1H)-one has become a straightforward access to the 3-substituted quinoxalin-2(1H)-one derivatives, and various remarkable work has been achieved [7-12]. For instances, our group in 2019 reported a first example of oxidative C-H fluoroalkoxylation of quinoxalinones with fluoroalkyl alcohols under transition-metal and solvent-free conditions [8b]. This method can also be extended to the facile and efficient synthesis of histamine-4 receptor. The same year, Sun's group presented an efficient electrochemical approach for the C(sp2)–H phosphonation of quinoxalin-2(1H)-ones and C(sp3)–H phosphonation of xanthenes [9a]. More interestingly, the group of Pan disclosed a photocatalyst-free visible-light-promoted sulfenylation of quinoxalinones with thiols via cross-dehydrogenative coupling [10b]. Shortly after this discovery, He's group demonstrated a visible-light-promoted amidation of quinoxalin-2(1H)-ones [11b]. In a very recent contribution, a mild and eco-friendly visible-light-induced decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo carboxylic acids using ambient air as the sole oxidant at room temperature was also established by the same group [12a]. In sharp contrast, the alkenylation of quinoxalin-2(1H)-ones was rarely reported.

    Figure 1

    Figure 1.  Examples of quinoxalin-2(1H)-one skeleton-based bioactive molecules.

    Photocatalysis has become a powerful strategy for organic synthesis due to the advantages of low energy consumption and environmental protection [13]. For example, MacMillan et al. in 2016 reported a photocatalyzed C-H arylation of aliphatic amines with aryl bromides, providing a complement to existing cross-coupling technologies [13a]. In 2021, He' group developed the first example of visible-light induced one-pot tandem reaction of arylacrylamides, CHF2CO2H and PhI(OAc)2, affording an eco-friendly and practical method to access various difluoromethylated oxindoles [13b]. The same year, Jin and coworkers developed photocatalyst-free radical tandem cyclization of quinazolinones containing an unactivated alkene moiety with difluoro bromides under illumination, giving a practical method for the synthesis of fluorine-containing ring-fused quinazolinones [13f]. In recent years, with increasing attention to renewable energy, considerable efforts have been switched to the development of photocatalytic reactions that excited by the sunlight, which is known as a renewable and simple accessible light source [14]. Our research interests focus on the development of novel and effective methodologies for the direct modification ofN-containing heterocycles [15], herein, we demonstrated a direct alkenylation reaction between quinoxalin-2(1H)-ones and methyl ketones. Compared with our previous work [15a], this transformation was achieved through a combination of Mannich-type reaction and solar photocatalysis, which could be completed within 15min, providing a green and efficient solution for the synthesis of potentially bioactive compounds that containing a 3, 4-dihydroquinoxalin-2(1H)-one structure (Scheme 1b).

    Scheme 1

    Scheme 1.  Modification of quinoxalin-2(1H)-ones by C-H functionalization.

    1-Methylquinoxalin-2(1H)-one (1a) and acetone (2a) were chosen as starting materials to screen the reaction conditions. The target product (3a) was obtained in 80% yield when the reaction was performed by using 25mol% of CH3SO3H as a catalyst under the irradiation of sunlight for 15min (Table 1, entry 1). Other acid catalyst, such as CF3COOH and HBF4 gave the relative lower yield under the same conditions (Table 1, entries 2 and 3). No product was obtained in the absence of any acid catalyst (Table 1, entry 4). When used MeCN or DMF as solvent and 2.0 equiv. of acetone as substrate, 76% or 52% yield was obtained respectively (Table 1, entries 5 and 6). Extended reaction time to 30min did not enhanced product yield (Table 1, entry 7). There was no desired product generated when the reaction was carried out under dark condition (Table 1, entry 8).

    Table 1

    Table 1.  Screening of reaction conditions.a
    DownLoad: CSV

    With the optimum reaction conditions in hands, we then examined the substrate scope of the reaction by employing various quinoxalin-2(1H)-ones (1) with acetone (2a) (Scheme 2). Firstly, the N-substituted groups such as N-methyl, N-ethyl, N-cyclopropylmethyl, N-keto and N-ester were well compatible under the standard conditions, giving the desired products (3a-e) in 72%–80% yields. It is worth mentioning that quinoxalin-2(1H)-one with a sensitive allyl group, which could be further functionalized, also could give the product (3f) in 69% yield. A wide range of quinoxalin-2(1H)-ones with different benzyl groups, bearing both electron-donating and electron-withdrawing substituents at ortho-, meta-, or para-position could undergo the reaction smoothly, affording the corresponding products (3g–n) in 40%–72% yields. Importantly, the N-free quinoxalin-2(1H)-one could undergo the reaction smoothly, providing the product (3o) in 45% yield. Besides, plenty of quinoxalin-2(1H)-ones that bear the functional groups including methyl, halogen, tert-butyl, methoxy or trifluoromethyl at C5-, C6- or C7-position also gave the desired products in satisfactory yield (3p-3w). To expand the substrate scope of N-heterocycles, we also tested quinoline, isoquinoline, quinoxaline, benzimidazole and benzothiazole under standard conditions, however, no corresponding product was obtained (see Supporting information).

    Scheme 2

    Scheme 2.  Substrate scope of quinoxalin-2(1H)-ones. Reaction conditions: 1 (0.2 mmol), 2a (1.0 mL), CH3SO3H (25 mol%), open flask, sunlight, room temperature, 15 min. Isolated yields. a Reaction was performed on a 1 mmol scale.

    Subsequently, we evaluated the substrate scope of methyl ketones for the reaction (Scheme 3). To reduce the dosage of reactant, the reactions were performed with 2.0 equiv. of methyl ketones by using acetonitrile as solvent. To our delight, both long-chain and cycloalkyl methyl ketones could undergo the reaction smoothly, giving the corresponding products (3x3ad) in 58%–79% yields. The molecular structure of 3y was confirmed by X-ray crystallographic analysis (CCDC: 2060383). It was found that the molecular structure was more stable in (Z)-configuration probably because the effect of hydrogen bond interaction between amine and carbonyl group. Then, we found that cyclopentanone skeleton could also react with quinoxalin-2(1H)-one smoothly to deliver the target products (3ae and 3af) in moderate yield. The subsequent exploration found that the aryl methyl ketones, such as acetophenone, 1-(furan-2-yl)ethan-1-one and 1-(thiophen-2-yl)ethan-1-one were also could be converted into target products (3ag-3ai) in acceptable yields. Unfortunately, the substrates like ethyl acetate, acetonitrile, nitromethane, ethyl acetoacetate, and acetylacetone were not compatible under standard conditions (Supporting information).

    Scheme 3

    Scheme 3.  Substrate scope of methyl ketones. Reaction conditions: 1a (0.2 mmol), 2 (2.0 equiv.), CH3SO3H (25 mol%), MeCN (1.0 mL), open flask, sunlight, room temperature, 15min. Isolated yields.

    To show the synthetic utility of this protocol, a gram-scale synthesis experiment was performed to give the target product (3a) in 75% yield (Scheme 4). Interestingly, the anticancer compound (3aj) and antimicrobial compound (3ak) were obtained in moderate yields by using our strategy [16]. Moreover, since the molecules that bearing a 3, 4 dihydroquinoxalin-2(1H)-one framework are a promising class of biologically active compounds, in this regard, several bioactive molecules such as naproxen derivative, frambinone, ibuprofen derivative, vanillylacetone, nabumetone and pregnenolone acetate were selected to react with 1-methylquinoxalin-2(1H)-one directly, providing the potentially active molecules (3al-3aq) in 52%–70% yields.

    Scheme 4

    Scheme 4.  Gram-scale synthesis and application. Reaction conditions: 1a (0.2mmol), 2 (2.0 equiv.), CH3SO3H (25mol%), MeCN (1.0mL), open flask, sunlight, room temperature, 15min. Isolated yields.

    To study the reaction mechanism, a series of control experiments were carried out. Product 4 was generated instead of target product 3a when the reaction was performed under nitrogen atmosphere (Scheme 5). This result showed that oxygen in air was included in the subsequent oxidation process. To confirm the assumption, the oxidation process of compound 4 was studied. First, target product 3 was formed in 0%, 79% and 82% yields when the reaction performed under nitrogen, air or oxygen atmosphere respectively (Scheme 5). Second, the reaction was inhibited when singlet oxygen inhibitor (NaN3) was involved in the transformation (Scheme 5). Furthermore, compound 4 could not be converted into target product 3 when the reaction was performed in dark condition (Scheme 5). These experimental results strongly supported that the singlet oxygen 1O2, which was generated from triplet oxygen 3O2 through photocatalysis, serves as the real oxidant.

    Scheme 5

    Scheme 5.  Control experiments.

    On the basis of above results and previous reports [8-12], we proposed a possible mechanism for this reaction (Scheme 6). Firstly, substrate 1a was transformed into intermediate A through a protonation process. Meanwhile, acetone 2a was converted to the enol form B under acidic condition. Then, a Mannich-type reaction took place between intermediates A and B to give the intermediate C, which underwent a deprotonation process to provide the key compound 4. It was found that organic molecules that containing a quinoxalin-2(1H)-one skeleton could act as a photosensitizer to generate 1O2 from O2 under the irradiation of visible light [12p]. In this regard, compounds1a, 4 or 3a was excited by visible light to provide the excited-species 1a*, 4* or 3a*, which acted as a photosensitizer and underwent an energy transfer (ET) process with O2 to give 1O2, along with the regeneration of ground-state compounds 1a, 4 or 3a. Finally, compound 4 underwent the single-electron-transfer (SET) process with 1O2 to give the desired product with the generation of H2O2, which was detected by H2O2 test paper (Supporting information) [12a] [17]. We proposed that the electron-withdrawing effects of carbonyl group that exists in quinoxalin-2(1H)-one skeleton lower down the electron cloud density of the enamine moiety, making it difficult to be oxidized and can survive under this H2O2 oxidation conditions.

    Scheme 6

    Scheme 6.  Plausible mechanism.

    In conclusion, this study described a novel strategy for the olefination of quinoxalin-2(1H)-ones with methyl ketones. Various substrates were compatible under standard condition, providing the corresponding products in moderate to good yields. Control experiments revealed that a Mannich-type reaction and oxidative process were involved in the transformation.

    The authors declare that they have no conflict of interest.

    We thank the Natural Science Foundation of Zhejiang Province (No. LY21B060009) and the National Natural Science Foundation of China (No. 21871071) for financial support.

    Supplementary material related to this article can befound, in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.04.016.


    1. [1]

      L. Tang, Z. Wang, Q. Mu, et al., Adv. Mater. 32(2020) 2002739.  doi: 10.1002/adma.202002739

    2. [2]

      Y. Yang, Y. Yu, H. Chen, et al., ACS Nano 14(2020) 13536-13547.  doi: 10.1021/acsnano.0c05541

    3. [3]

      G. Chen, Y. Yang, Q. Xu, et al., Nano Lett. 20(2020) 8141-8150.  doi: 10.1021/acs.nanolett.0c03127

    4. [4]

      M. He, L. Yu, Y. Yang, et al., Chin. Chem. Lett. 31(2020) 3178-3182.  doi: 10.1016/j.cclet.2020.05.034

    5. [5]

      C.M.J. Hu, L. Zhang, S. Aryal, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011) 10980-10985.  doi: 10.1073/pnas.1106634108

    6. [6]

      R. Li, Y. He, Y. Zhu, et al., Nano Lett. 19(2018) 124-134.

    7. [7]

      L. Rao, L.L. Bu, B. Cai, et al., Adv. Mater. 28(2016) 3460-3466.  doi: 10.1002/adma.201506086

    8. [8]

      P.E.J. van der Meijden, J.W.M. Heemskerk, Nat. Rev. Cardiol. 16(2018) 166-179.

    9. [9]

      A.M. Davy, H.F. Kildegaard, M.R. Andersen, Cell Syst. 4(2017) 262-275.  doi: 10.1016/j.cels.2017.02.010

    10. [10]

      A. Bauer, B. Kuster, Eur. J. Biochem. 270(2003) 570-578.  doi: 10.1046/j.1432-1033.2003.03428.x

    11. [11]

      B.T. Luk, C. Jack Hu, R.H. Fang, et al., Nanoscale 6(2013) 2730-2737.  doi: 10.1039/C3NR06371B

    12. [12]

      M. Sancho-Albero, M. d. M. Encabo-Berzosa, M. Beltrán-Visiedo, et al., Nanoscale 11(2019) 18825-18836.  doi: 10.1039/C9NR06183E

    13. [13]

      M.J. Haney, Y. Zhao, Y.S. Jin, et al., J. Neuroimmune Pharmacol. 15(2019) 487-500.

    14. [14]

      Y. Li, J. Wu, J. Wang, et al., Acta Biomater. 101(2020) 519-530.  doi: 10.1016/j.actbio.2019.10.022

    15. [15]

      G. Liang, Y. Zhu, D.J. Ali, et al., J. Nanobiotechnol. 18(2020) 10.  doi: 10.1186/s12951-019-0563-2

    16. [16]

      B. Pang, Y. Zhu, J. Ni, et al., Theranostics 10(2020) 2309-2326.  doi: 10.7150/thno.39486

    17. [17]

      M.J. Haney, N.L. Klyachko, Y. Zhao, et al., J. Control. Release 207(2015) 18-30.  doi: 10.1016/j.jconrel.2015.03.033

    18. [18]

      S.C. Jang, O.Y. Kim, C.M. Yoon, et al., ACS Nano 7(2013) 7698-7710.  doi: 10.1021/nn402232g

    19. [19]

      Y.T. Sato, K. Umezaki, S. Sawada, et al., Sci. Rep. 6(2016) 21933.  doi: 10.1038/srep21933

    20. [20]

      Z. Fan, H. Zhou, P.Y. Li, et al., J. Mater. Chem. B 2(2014) 8231-8238.  doi: 10.1039/C4TB00980K

    21. [21]

      J. Xie, Q. Shen, K. Huang, et al., ACS Nano 13(2019) 5268-5277.  doi: 10.1021/acsnano.8b09681

    22. [22]

      C. Liu, J. Guo, F. Tian, et al., ACS Nano 11(2017) 6968-6976.  doi: 10.1021/acsnano.7b02277

    23. [23]

      L. Rao, B. Cai, L. Bu, et al., ACS Nano 11(2017) 3496-3505.  doi: 10.1021/acsnano.7b00133

    24. [24]

      Y. He, R. Li, H. Li, et al., ACS Nano 13(2019) 4148-4159.  doi: 10.1021/acsnano.8b08964

    25. [25]

      W. Liu, M. Ruan, Y. Wang, et al., Small 14(2018) 1801754.  doi: 10.1002/smll.201801754

    26. [26]

      A. Pitchaimani, T.D.T. Nguyen, S. Aryal, Biomaterials 160(2018) 124-137.  doi: 10.1016/j.biomaterials.2018.01.018

    27. [27]

      Z. Chen, P. Zhao, Z. Luo, et al., ACS Nano 10(2016) 10049-10057.  doi: 10.1021/acsnano.6b04695

    28. [28]

      G. Liu, X. Zhao, Y. Zhang, et al., Adv. Mater. 31(2019) 1900795.

    29. [29]

      K. Ding, C. Zheng, L. Sun, et al., Chin. Chem. Lett. 31(2020) 1168-1172.  doi: 10.1016/j.cclet.2019.10.040

    30. [30]

      W. Szlasa, I. Zendran, A. Zalesińska, et al., J. Bioenerg. Biomembr. 52(2020) 321-342.  doi: 10.1007/s10863-020-09846-4

    31. [31]

      X. Han, S. Shen, Q. Fan, et al., Sci. Adv. 5(2019) eaaw6870.  doi: 10.1126/sciadv.aaw6870

    32. [32]

      Q. Jiang, Y. Liu, R. Guo, et al., Biomaterials 192(2019) 292-308.  doi: 10.1016/j.biomaterials.2018.11.021

    33. [33]

      H. He, C. Guo, J. Wang, et al., Nano Lett. 18(2018) 6164-6174.  doi: 10.1021/acs.nanolett.8b01892

    34. [34]

      D. Dehaini, X. Wei, R.H. Fang, et al., Adv. Mater. 29(2017) 1606209.  doi: 10.1002/adma.201606209

    35. [35]

      G. Dou, R. Tian, X. Liu, et al., Sci. Adv. 6(2020) eaba2987.  doi: 10.1126/sciadv.aba2987

    36. [36]

      Q. Chen, G. Huang, W. Wu, et al., Adv. Mater. 32(2020) 1908185.  doi: 10.1002/adma.201908185

    37. [37]

      C. Qiu, H. Han, J. Sun, et al., Nat. Commun. 10(2019) 2702.  doi: 10.1038/s41467-019-10562-w

    38. [38]

      F. Gao, L. Xu, B. Yang, et al., ACS Infect. Dis. 5(2018) 218-227.

    39. [39]

      L. Rao, Q. Meng, L. Bu, et al., ACS Appl. Mater. Interfaces 9(2017) 2159-2168.  doi: 10.1021/acsami.6b14450

    40. [40]

      H. Ding, Y. Lv, D. Ni, et al., Nanoscale 7(2015) 9806-9815.  doi: 10.1039/C5NR02470F

    41. [41]

      Y. Guo, D. Wang, Q. Song, et al., ACS Nano 9(2015) 6918-6933.  doi: 10.1021/acsnano.5b01042

    42. [42]

      F. Gao, W. Li, J. Kan, et al., Adv. Biosyst. 4(2020) 1900235.  doi: 10.1002/adbi.201900235

    43. [43]

      F. Gao, W. Li, J. Deng, et al., ACS Appl. Mater. Interfaces 11(2019) 18681-18690.  doi: 10.1021/acsami.9b01725

    44. [44]

      Z. Chai, X. Hu, X. Wei, et al., J. Control. Release 264(2017) 102-111.  doi: 10.1016/j.jconrel.2017.08.027

    45. [45]

      Z. Chai, D. Ran, L. Lu, et al., ACS Nano 13(2019) 5591-5601.  doi: 10.1021/acsnano.9b00661

    46. [46]

      D. Zhu, W. Xie, Y. Xiao, et al., Nanotechnol. 29(2018) 084002.  doi: 10.1088/1361-6528/aa9ca1

    47. [47]

      H. Zhou, Z. Fan, P.K. Lemons, H. Cheng, Theranostics 6(2016) 1012-1022.  doi: 10.7150/thno.15095

    48. [48]

      X. Dong, L.L. Mu, X.L. Liu, et al., Adv. Funct. Mater. 30(2020) 2000309.  doi: 10.1002/adfm.202000309

    49. [49]

      C. Wang, Y. Wang, L. Zhang, et al., Adv. Mater. 30(2018) 1804023.  doi: 10.1002/adma.201804023

    50. [50]

      L. Pascucci, V. Coccè, A. Bonomi, et al., J. Control. Release 192(2014) 262-270.  doi: 10.1016/j.jconrel.2014.07.042

    51. [51]

      J. Wang, B.Z. Yeung, M. Cui, et al., J. Control. Release 268(2017) 147-158.  doi: 10.1016/j.jconrel.2017.10.020

    52. [52]

      H. Wang, H. Sui, Y. Zheng, et al., Nanoscale 11(2019) 7481-7496.  doi: 10.1039/C9NR01255A

    53. [53]

      Y. Jiang, N. Krishnan, J. Zhou, et al., Adv. Mater. 32(2020) 2001808.  doi: 10.1002/adma.202001808

    54. [54]

      L. Rao, S.K. Zhao, C. Wen, et al., Adv. Mater. 32(2020) 2004853.  doi: 10.1002/adma.202004853

    55. [55]

      Y. Shi, F. Xie, P. Rao, et al., J. Control. Release 320(2020) 304-313.  doi: 10.1016/j.jconrel.2020.01.054

    56. [56]

      L. Rao, L. Wu, Z. Liu, et al., Nat. Commun. 11(2020) 4909.  doi: 10.1038/s41467-020-18626-y

    57. [57]

      M. Gao, C. Liang, X. Song, et al., Adv. Mater. 29(2017) 1701429.  doi: 10.1002/adma.201701429

    58. [58]

      L. Li, J. Xu, G. Qi, et al., ACS Nano 8(2014) 4975-4983.  doi: 10.1021/nn501040h

    59. [59]

      C. Gao, Z. Lin, B. Jurado-Sánchez, et al., Small 12(2016) 4056-4062.  doi: 10.1002/smll.201600624

    60. [60]

      J. Su, H. Sun, Q. Meng, et al., Theranostics 7(2017) 523-537.  doi: 10.7150/thno.17259

    61. [61]

      L. Rao, Q. Meng, Q. Huang, et al., Adv. Healthcare Mater. 5(2016) 1420-1427.  doi: 10.1002/adhm.201600303

    62. [62]

      M. Xuan, J. Shao, L. Dai, et al., Adv. Healthcare Mater. 4(2015) 1645-1652.  doi: 10.1002/adhm.201500129

    63. [63]

      W. Gao, C.J. Hu, R.H. Fang, et al., Adv. Mater. 25(2013) 3549-3553.  doi: 10.1002/adma.201300638

    64. [64]

      J. Piao, L. Wang, F. Gao, et al., ACS Nano 8(2014) 10414-10425.  doi: 10.1021/nn503779d

    65. [65]

      T. Jiang, B. Zhang, S. Shen, et al., ACS Appl. Mater. Interfaces 9(2017) 31497-31508.  doi: 10.1021/acsami.7b09458

    66. [66]

      L. Rao, L. Bu, J. Xu, et al., Small 11(2015) 6225-6236.  doi: 10.1002/smll.201502388

    67. [67]

      X. Ren, R. Zheng, X. Fang, et al., Biomaterials 92(2016) 13-24.  doi: 10.1016/j.biomaterials.2016.03.026

    68. [68]

      J. Guo, Y. Yu, W. Zhu, et al., Adv. Funct. Mater. 31(2020) 2005935.

    69. [69]

      J. Zhuang, Y. Duan, Q. Zhang, et al., Nano Lett. 20(2020) 4051-4058.  doi: 10.1021/acs.nanolett.0c01654

    70. [70]

      S. Li, B. Xie, H. Cheng, et al., Biomaterials 151(2018) 1-12.  doi: 10.1016/j.biomaterials.2017.10.021

    71. [71]

      S. Li, H. Cheng, W. Qiu, et al., Biomaterials 142(2017) 149-161.  doi: 10.1016/j.biomaterials.2017.07.026

    72. [72]

      D. Zhang, Z. Ye, L. Wei, et al., ACS Appl. Mater. Interfaces 11(2019) 39594-39602.  doi: 10.1021/acsami.9b14084

    73. [73]

      J. Zhuang, H. Gong, J. Zhou, et al., Sci. Adv. 6(2020) eaaz6108.  doi: 10.1126/sciadv.aaz6108

    74. [74]

      L. Chen, X. Zhao, Y. Liu, X. Yan, J. Mater. Chem. B 8(2020) 8071-8083.  doi: 10.1039/D0TB01272F

    75. [75]

      Y. Xiao, W. Huang, D. Zhu, et al., RSC Adv. 10(2020) 7194-7205.  doi: 10.1039/C9RA09233A

    76. [76]

      C. Gong, J. Tian, Z. Wang, et al., J. Nanobiotechnol. 17(2019) 93.  doi: 10.1186/s12951-019-0526-7

    77. [77]

      J. Yang, S. Wu, L. Hou, et al., Mol. Ther. -Nucleic Acids 21(2020) 512-522.  doi: 10.1016/j.omtn.2020.06.013

    78. [78]

      R. Chen, H. Huang, H. Liu, et al., Small 15(2019) 1902686.  doi: 10.1002/smll.201902686

    79. [79]

      L. Gao, L. Han, X. Ding, et al., Nanotechnol. 28(2017) 335101.  doi: 10.1088/1361-6528/aa7c43

    80. [80]

      X. Pang, X. Liu, Y. Cheng, et al., Adv. Mater. 31(2019) 1902530.  doi: 10.1002/adma.201902530

    81. [81]

      X. Liu, C. Liu, Z. Zheng, et al., Adv. Mater. 31(2019) 1808294.  doi: 10.1002/adma.201808294

    82. [82]

      L. Peltonen, J. Hirvonen, Int. J. Pharm. 537(2018) 73-83.  doi: 10.1016/j.ijpharm.2017.12.005

    83. [83]

      P. Maudens, C.A. Seemayer, F. Pfefferlé, et al., J. Control. Release 276(2018) 102-112.  doi: 10.1016/j.jconrel.2018.03.007

    84. [84]

      S. Aryal, C.J. Hu, R.H. Fang, et al., Nanomedicine 8(2013) 1271-1280.  doi: 10.2217/nnm.12.153

    85. [85]

      R.H. Fang, C.J. Hu, B.T. Luk, et al., Nano Lett. 14(2014) 2181-2188.  doi: 10.1021/nl500618u

    86. [86]

      W. Chen, K. Zeng, H. Liu, et al., Adv. Funct. Mater. 27(2017) 1605795.  doi: 10.1002/adfm.201605795

    87. [87]

      P. Zheng, Y. Liu, J. Chen, et al., Chin. Chem. Lett. 31(2020) 1178-1182.  doi: 10.1016/j.cclet.2019.12.001

    88. [88]

      X. Li, Y. Zhang, Z. Ma, et al., Chin. Chem. Lett. 30(2019) 489-493.  doi: 10.1016/j.cclet.2018.03.019

    89. [89]

      Y. Zhang, K. Cai, C. Li, et al., Nano Lett. 18(2018) 1908-1915.  doi: 10.1021/acs.nanolett.7b05263

    90. [90]

      S. Ye, F. Wang, Z. Fan, et al., ACS Appl. Mater. Interfaces 11(2019) 15262-15275.  doi: 10.1021/acsami.9b00897

    91. [91]

      Q. Song, Y. Yin, L. Shang, et al., Nano Lett. 17(2017) 6366-6375.  doi: 10.1021/acs.nanolett.7b03186

    92. [92]

      H. Liu, W. Jiang, Q. Wang, et al., Biomater. Sci. 7(2019) 3706-3716.  doi: 10.1039/C9BM00634F

    93. [93]

      C. Gao, Q. Huang, C. Liu, et al., Nat. Commun. 11(2020) 2622.  doi: 10.1038/s41467-020-16439-7

    94. [94]

      W. Lv, J. Xu, X. Wang, et al., ACS Nano 12(2018) 5417-5426.  doi: 10.1021/acsnano.8b00477

    95. [95]

      Q. Feng, X. Yang, Y. Hao, et al., ACS Appl. Mater. Interfaces 11(2019) 32729-32738.  doi: 10.1021/acsami.9b10948

    96. [96]

      S. Li, H. Cheng, B. Xie, et al., ACS Nano 11(2017) 7006-7018.  doi: 10.1021/acsnano.7b02533

    97. [97]

      C. Hu, T. Lei, Y. Wang, et al., Biomaterials 255(2020) 120159.  doi: 10.1016/j.biomaterials.2020.120159

    98. [98]

      S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 12(2013) 991-1003.  doi: 10.1038/nmat3776

    99. [99]

      A. Raza, T. Rasheed, F. Nabeel, et al., Molecules 24(2019) 1117.  doi: 10.3390/molecules24061117

    100. [100]

      R. Li, Y. He, S. Zhang, et al., Acta Pharm. Sin. B 8(2018) 14-22.  doi: 10.1016/j.apsb.2017.11.009

    101. [101]

      Z. He, Y. Zhang, N. Feng, Mater. Sci. Eng. C 106(2020) 110298.  doi: 10.1016/j.msec.2019.110298

    102. [102]

      Y. Zhou, W. Zhou, X. Chen, et al., Acta Pharm. Sin. B 10(2020) 1563-1575.  doi: 10.1016/j.apsb.2019.11.013

    103. [103]

      X. Zhen, P. Cheng, K. Pu, Small 15(2019) 1804105.  doi: 10.1002/smll.201804105

    104. [104]

      K. Jin, Z. Luo, B. Zhang, Z. Pang, Acta Pharm. Sin. B 8(2018) 23-33.  doi: 10.1016/j.apsb.2017.12.002

    105. [105]

      H. Wang, Y. Liu, R. He, et al., Biomater. Sci. 8(2020) 552-568.  doi: 10.1039/C9BM01392J

    106. [106]

      C. Corbo, W.E. Cromer, R. Molinaro, et al., Nanoscale 9(2017) 14581-14591.  doi: 10.1039/C7NR04734G

    107. [107]

      C.J. Hu, R.H. Fang, K. Wang, et al., Nature 526(2015) 118-121.  doi: 10.1038/nature15373

    108. [108]

      Q. Hu, W. Sun, C. Qian, et al., Adv. Mater. 29(2017) 1605803.  doi: 10.1002/adma.201605803

    109. [109]

      R. Molinaro, A. Pastò, C. Corbo, et al., Nanoscale 11(2019) 13576-13586.  doi: 10.1039/C9NR04253A

    110. [110]

      X. Wei, M. Ying, D. Dehaini, et al., ACS Nano 12(2017) 109-116.

    111. [111]

      L.J.V. Piddock, Nat. Rev. Microbiol. 15(2017) 639-640.  doi: 10.1038/nrmicro.2017.121

    112. [112]

      H. Chang, T. Cohen, Y.H. Grad, etal., Microbiol. Mol. Biol. Rev. 79(2015) 101-116.  doi: 10.1128/MMBR.00039-14

    113. [113]

      R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Biomaterials 128(2017) 69-83.  doi: 10.1016/j.biomaterials.2017.02.041

    114. [114]

      R.H. Fang, B.T. Luk, C.J. Hu, L. Zhang, Adv. Drug Deliv. Rev. 90(2015) 69-80.  doi: 10.1016/j.addr.2015.04.001

    115. [115]

      Y. Chen, Y. Zhang, M. Chen, et al., Small 15(2019) 1804994.  doi: 10.1002/smll.201804994

    116. [116]

      X. Wei, D. Ran, A. Campeau, et al., Nano Lett. 19(2019) 4760-4769.  doi: 10.1021/acs.nanolett.9b01844

    117. [117]

      K. Wang, Y. Lei, D. Xia, et al., Colloids Surf. B 188(2020) 110755.  doi: 10.1016/j.colsurfb.2019.110755

    118. [118]

      Y. Zhang, Y. Chen, C. Lo, et al., Angew. Chem., Int. Ed. 58(2019) 11404-11408.  doi: 10.1002/anie.201906280

    119. [119]

      X. Wei, G. Zhang, D. Ran, et al., Adv. Mater. 30(2018) 1802233.  doi: 10.1002/adma.201802233

    120. [120]

      Q. Zhang, A. Honko, J. Zhou, et al., Nano Lett. 20(2020) 5570-5574.  doi: 10.1021/acs.nanolett.0c02278

    121. [121]

      J. Zhou, A.V. Kroll, M. Holay, et al., Adv. Mater. 32(2019) 1901255.

    122. [122]

      P. Masson, F. Nachon, J. Neurochem. 142(2017) 26-40.  doi: 10.1111/jnc.14026

    123. [123]

      Z. Pang, C.J. Hu, R.H. Fang, et al., ACS Nano 9(2015) 6450-6458.  doi: 10.1021/acsnano.5b02132

    124. [124]

      Y. Chen, Y. Zhang, J. Zhuang, et al., ACS Nano 13(2019) 7209-7215.  doi: 10.1021/acsnano.9b02773

    125. [125]

      J. Li, P. Angsantikul, W. Liu, et al., Adv. Mater. 30(2018) 1704800.  doi: 10.1002/adma.201704800

    126. [126]

      X. Gong, J. Li, T. Tan, et al., Adv. Funct. Mater. 29(2019) 1903441.  doi: 10.1002/adfm.201903441

    127. [127]

      L. Rao, G.T. Yu, Q.F. Meng, et al., Adv. Funct. Mater. 29(2019) 1905671.  doi: 10.1002/adfm.201905671

    1. [1]

      L. Tang, Z. Wang, Q. Mu, et al., Adv. Mater. 32(2020) 2002739.  doi: 10.1002/adma.202002739

    2. [2]

      Y. Yang, Y. Yu, H. Chen, et al., ACS Nano 14(2020) 13536-13547.  doi: 10.1021/acsnano.0c05541

    3. [3]

      G. Chen, Y. Yang, Q. Xu, et al., Nano Lett. 20(2020) 8141-8150.  doi: 10.1021/acs.nanolett.0c03127

    4. [4]

      M. He, L. Yu, Y. Yang, et al., Chin. Chem. Lett. 31(2020) 3178-3182.  doi: 10.1016/j.cclet.2020.05.034

    5. [5]

      C.M.J. Hu, L. Zhang, S. Aryal, et al., Proc. Natl. Acad. Sci. U. S. A. 108(2011) 10980-10985.  doi: 10.1073/pnas.1106634108

    6. [6]

      R. Li, Y. He, Y. Zhu, et al., Nano Lett. 19(2018) 124-134.

    7. [7]

      L. Rao, L.L. Bu, B. Cai, et al., Adv. Mater. 28(2016) 3460-3466.  doi: 10.1002/adma.201506086

    8. [8]

      P.E.J. van der Meijden, J.W.M. Heemskerk, Nat. Rev. Cardiol. 16(2018) 166-179.

    9. [9]

      A.M. Davy, H.F. Kildegaard, M.R. Andersen, Cell Syst. 4(2017) 262-275.  doi: 10.1016/j.cels.2017.02.010

    10. [10]

      A. Bauer, B. Kuster, Eur. J. Biochem. 270(2003) 570-578.  doi: 10.1046/j.1432-1033.2003.03428.x

    11. [11]

      B.T. Luk, C. Jack Hu, R.H. Fang, et al., Nanoscale 6(2013) 2730-2737.  doi: 10.1039/C3NR06371B

    12. [12]

      M. Sancho-Albero, M. d. M. Encabo-Berzosa, M. Beltrán-Visiedo, et al., Nanoscale 11(2019) 18825-18836.  doi: 10.1039/C9NR06183E

    13. [13]

      M.J. Haney, Y. Zhao, Y.S. Jin, et al., J. Neuroimmune Pharmacol. 15(2019) 487-500.

    14. [14]

      Y. Li, J. Wu, J. Wang, et al., Acta Biomater. 101(2020) 519-530.  doi: 10.1016/j.actbio.2019.10.022

    15. [15]

      G. Liang, Y. Zhu, D.J. Ali, et al., J. Nanobiotechnol. 18(2020) 10.  doi: 10.1186/s12951-019-0563-2

    16. [16]

      B. Pang, Y. Zhu, J. Ni, et al., Theranostics 10(2020) 2309-2326.  doi: 10.7150/thno.39486

    17. [17]

      M.J. Haney, N.L. Klyachko, Y. Zhao, et al., J. Control. Release 207(2015) 18-30.  doi: 10.1016/j.jconrel.2015.03.033

    18. [18]

      S.C. Jang, O.Y. Kim, C.M. Yoon, et al., ACS Nano 7(2013) 7698-7710.  doi: 10.1021/nn402232g

    19. [19]

      Y.T. Sato, K. Umezaki, S. Sawada, et al., Sci. Rep. 6(2016) 21933.  doi: 10.1038/srep21933

    20. [20]

      Z. Fan, H. Zhou, P.Y. Li, et al., J. Mater. Chem. B 2(2014) 8231-8238.  doi: 10.1039/C4TB00980K

    21. [21]

      J. Xie, Q. Shen, K. Huang, et al., ACS Nano 13(2019) 5268-5277.  doi: 10.1021/acsnano.8b09681

    22. [22]

      C. Liu, J. Guo, F. Tian, et al., ACS Nano 11(2017) 6968-6976.  doi: 10.1021/acsnano.7b02277

    23. [23]

      L. Rao, B. Cai, L. Bu, et al., ACS Nano 11(2017) 3496-3505.  doi: 10.1021/acsnano.7b00133

    24. [24]

      Y. He, R. Li, H. Li, et al., ACS Nano 13(2019) 4148-4159.  doi: 10.1021/acsnano.8b08964

    25. [25]

      W. Liu, M. Ruan, Y. Wang, et al., Small 14(2018) 1801754.  doi: 10.1002/smll.201801754

    26. [26]

      A. Pitchaimani, T.D.T. Nguyen, S. Aryal, Biomaterials 160(2018) 124-137.  doi: 10.1016/j.biomaterials.2018.01.018

    27. [27]

      Z. Chen, P. Zhao, Z. Luo, et al., ACS Nano 10(2016) 10049-10057.  doi: 10.1021/acsnano.6b04695

    28. [28]

      G. Liu, X. Zhao, Y. Zhang, et al., Adv. Mater. 31(2019) 1900795.

    29. [29]

      K. Ding, C. Zheng, L. Sun, et al., Chin. Chem. Lett. 31(2020) 1168-1172.  doi: 10.1016/j.cclet.2019.10.040

    30. [30]

      W. Szlasa, I. Zendran, A. Zalesińska, et al., J. Bioenerg. Biomembr. 52(2020) 321-342.  doi: 10.1007/s10863-020-09846-4

    31. [31]

      X. Han, S. Shen, Q. Fan, et al., Sci. Adv. 5(2019) eaaw6870.  doi: 10.1126/sciadv.aaw6870

    32. [32]

      Q. Jiang, Y. Liu, R. Guo, et al., Biomaterials 192(2019) 292-308.  doi: 10.1016/j.biomaterials.2018.11.021

    33. [33]

      H. He, C. Guo, J. Wang, et al., Nano Lett. 18(2018) 6164-6174.  doi: 10.1021/acs.nanolett.8b01892

    34. [34]

      D. Dehaini, X. Wei, R.H. Fang, et al., Adv. Mater. 29(2017) 1606209.  doi: 10.1002/adma.201606209

    35. [35]

      G. Dou, R. Tian, X. Liu, et al., Sci. Adv. 6(2020) eaba2987.  doi: 10.1126/sciadv.aba2987

    36. [36]

      Q. Chen, G. Huang, W. Wu, et al., Adv. Mater. 32(2020) 1908185.  doi: 10.1002/adma.201908185

    37. [37]

      C. Qiu, H. Han, J. Sun, et al., Nat. Commun. 10(2019) 2702.  doi: 10.1038/s41467-019-10562-w

    38. [38]

      F. Gao, L. Xu, B. Yang, et al., ACS Infect. Dis. 5(2018) 218-227.

    39. [39]

      L. Rao, Q. Meng, L. Bu, et al., ACS Appl. Mater. Interfaces 9(2017) 2159-2168.  doi: 10.1021/acsami.6b14450

    40. [40]

      H. Ding, Y. Lv, D. Ni, et al., Nanoscale 7(2015) 9806-9815.  doi: 10.1039/C5NR02470F

    41. [41]

      Y. Guo, D. Wang, Q. Song, et al., ACS Nano 9(2015) 6918-6933.  doi: 10.1021/acsnano.5b01042

    42. [42]

      F. Gao, W. Li, J. Kan, et al., Adv. Biosyst. 4(2020) 1900235.  doi: 10.1002/adbi.201900235

    43. [43]

      F. Gao, W. Li, J. Deng, et al., ACS Appl. Mater. Interfaces 11(2019) 18681-18690.  doi: 10.1021/acsami.9b01725

    44. [44]

      Z. Chai, X. Hu, X. Wei, et al., J. Control. Release 264(2017) 102-111.  doi: 10.1016/j.jconrel.2017.08.027

    45. [45]

      Z. Chai, D. Ran, L. Lu, et al., ACS Nano 13(2019) 5591-5601.  doi: 10.1021/acsnano.9b00661

    46. [46]

      D. Zhu, W. Xie, Y. Xiao, et al., Nanotechnol. 29(2018) 084002.  doi: 10.1088/1361-6528/aa9ca1

    47. [47]

      H. Zhou, Z. Fan, P.K. Lemons, H. Cheng, Theranostics 6(2016) 1012-1022.  doi: 10.7150/thno.15095

    48. [48]

      X. Dong, L.L. Mu, X.L. Liu, et al., Adv. Funct. Mater. 30(2020) 2000309.  doi: 10.1002/adfm.202000309

    49. [49]

      C. Wang, Y. Wang, L. Zhang, et al., Adv. Mater. 30(2018) 1804023.  doi: 10.1002/adma.201804023

    50. [50]

      L. Pascucci, V. Coccè, A. Bonomi, et al., J. Control. Release 192(2014) 262-270.  doi: 10.1016/j.jconrel.2014.07.042

    51. [51]

      J. Wang, B.Z. Yeung, M. Cui, et al., J. Control. Release 268(2017) 147-158.  doi: 10.1016/j.jconrel.2017.10.020

    52. [52]

      H. Wang, H. Sui, Y. Zheng, et al., Nanoscale 11(2019) 7481-7496.  doi: 10.1039/C9NR01255A

    53. [53]

      Y. Jiang, N. Krishnan, J. Zhou, et al., Adv. Mater. 32(2020) 2001808.  doi: 10.1002/adma.202001808

    54. [54]

      L. Rao, S.K. Zhao, C. Wen, et al., Adv. Mater. 32(2020) 2004853.  doi: 10.1002/adma.202004853

    55. [55]

      Y. Shi, F. Xie, P. Rao, et al., J. Control. Release 320(2020) 304-313.  doi: 10.1016/j.jconrel.2020.01.054

    56. [56]

      L. Rao, L. Wu, Z. Liu, et al., Nat. Commun. 11(2020) 4909.  doi: 10.1038/s41467-020-18626-y

    57. [57]

      M. Gao, C. Liang, X. Song, et al., Adv. Mater. 29(2017) 1701429.  doi: 10.1002/adma.201701429

    58. [58]

      L. Li, J. Xu, G. Qi, et al., ACS Nano 8(2014) 4975-4983.  doi: 10.1021/nn501040h

    59. [59]

      C. Gao, Z. Lin, B. Jurado-Sánchez, et al., Small 12(2016) 4056-4062.  doi: 10.1002/smll.201600624

    60. [60]

      J. Su, H. Sun, Q. Meng, et al., Theranostics 7(2017) 523-537.  doi: 10.7150/thno.17259

    61. [61]

      L. Rao, Q. Meng, Q. Huang, et al., Adv. Healthcare Mater. 5(2016) 1420-1427.  doi: 10.1002/adhm.201600303

    62. [62]

      M. Xuan, J. Shao, L. Dai, et al., Adv. Healthcare Mater. 4(2015) 1645-1652.  doi: 10.1002/adhm.201500129

    63. [63]

      W. Gao, C.J. Hu, R.H. Fang, et al., Adv. Mater. 25(2013) 3549-3553.  doi: 10.1002/adma.201300638

    64. [64]

      J. Piao, L. Wang, F. Gao, et al., ACS Nano 8(2014) 10414-10425.  doi: 10.1021/nn503779d

    65. [65]

      T. Jiang, B. Zhang, S. Shen, et al., ACS Appl. Mater. Interfaces 9(2017) 31497-31508.  doi: 10.1021/acsami.7b09458

    66. [66]

      L. Rao, L. Bu, J. Xu, et al., Small 11(2015) 6225-6236.  doi: 10.1002/smll.201502388

    67. [67]

      X. Ren, R. Zheng, X. Fang, et al., Biomaterials 92(2016) 13-24.  doi: 10.1016/j.biomaterials.2016.03.026

    68. [68]

      J. Guo, Y. Yu, W. Zhu, et al., Adv. Funct. Mater. 31(2020) 2005935.

    69. [69]

      J. Zhuang, Y. Duan, Q. Zhang, et al., Nano Lett. 20(2020) 4051-4058.  doi: 10.1021/acs.nanolett.0c01654

    70. [70]

      S. Li, B. Xie, H. Cheng, et al., Biomaterials 151(2018) 1-12.  doi: 10.1016/j.biomaterials.2017.10.021

    71. [71]

      S. Li, H. Cheng, W. Qiu, et al., Biomaterials 142(2017) 149-161.  doi: 10.1016/j.biomaterials.2017.07.026

    72. [72]

      D. Zhang, Z. Ye, L. Wei, et al., ACS Appl. Mater. Interfaces 11(2019) 39594-39602.  doi: 10.1021/acsami.9b14084

    73. [73]

      J. Zhuang, H. Gong, J. Zhou, et al., Sci. Adv. 6(2020) eaaz6108.  doi: 10.1126/sciadv.aaz6108

    74. [74]

      L. Chen, X. Zhao, Y. Liu, X. Yan, J. Mater. Chem. B 8(2020) 8071-8083.  doi: 10.1039/D0TB01272F

    75. [75]

      Y. Xiao, W. Huang, D. Zhu, et al., RSC Adv. 10(2020) 7194-7205.  doi: 10.1039/C9RA09233A

    76. [76]

      C. Gong, J. Tian, Z. Wang, et al., J. Nanobiotechnol. 17(2019) 93.  doi: 10.1186/s12951-019-0526-7

    77. [77]

      J. Yang, S. Wu, L. Hou, et al., Mol. Ther. -Nucleic Acids 21(2020) 512-522.  doi: 10.1016/j.omtn.2020.06.013

    78. [78]

      R. Chen, H. Huang, H. Liu, et al., Small 15(2019) 1902686.  doi: 10.1002/smll.201902686

    79. [79]

      L. Gao, L. Han, X. Ding, et al., Nanotechnol. 28(2017) 335101.  doi: 10.1088/1361-6528/aa7c43

    80. [80]

      X. Pang, X. Liu, Y. Cheng, et al., Adv. Mater. 31(2019) 1902530.  doi: 10.1002/adma.201902530

    81. [81]

      X. Liu, C. Liu, Z. Zheng, et al., Adv. Mater. 31(2019) 1808294.  doi: 10.1002/adma.201808294

    82. [82]

      L. Peltonen, J. Hirvonen, Int. J. Pharm. 537(2018) 73-83.  doi: 10.1016/j.ijpharm.2017.12.005

    83. [83]

      P. Maudens, C.A. Seemayer, F. Pfefferlé, et al., J. Control. Release 276(2018) 102-112.  doi: 10.1016/j.jconrel.2018.03.007

    84. [84]

      S. Aryal, C.J. Hu, R.H. Fang, et al., Nanomedicine 8(2013) 1271-1280.  doi: 10.2217/nnm.12.153

    85. [85]

      R.H. Fang, C.J. Hu, B.T. Luk, et al., Nano Lett. 14(2014) 2181-2188.  doi: 10.1021/nl500618u

    86. [86]

      W. Chen, K. Zeng, H. Liu, et al., Adv. Funct. Mater. 27(2017) 1605795.  doi: 10.1002/adfm.201605795

    87. [87]

      P. Zheng, Y. Liu, J. Chen, et al., Chin. Chem. Lett. 31(2020) 1178-1182.  doi: 10.1016/j.cclet.2019.12.001

    88. [88]

      X. Li, Y. Zhang, Z. Ma, et al., Chin. Chem. Lett. 30(2019) 489-493.  doi: 10.1016/j.cclet.2018.03.019

    89. [89]

      Y. Zhang, K. Cai, C. Li, et al., Nano Lett. 18(2018) 1908-1915.  doi: 10.1021/acs.nanolett.7b05263

    90. [90]

      S. Ye, F. Wang, Z. Fan, et al., ACS Appl. Mater. Interfaces 11(2019) 15262-15275.  doi: 10.1021/acsami.9b00897

    91. [91]

      Q. Song, Y. Yin, L. Shang, et al., Nano Lett. 17(2017) 6366-6375.  doi: 10.1021/acs.nanolett.7b03186

    92. [92]

      H. Liu, W. Jiang, Q. Wang, et al., Biomater. Sci. 7(2019) 3706-3716.  doi: 10.1039/C9BM00634F

    93. [93]

      C. Gao, Q. Huang, C. Liu, et al., Nat. Commun. 11(2020) 2622.  doi: 10.1038/s41467-020-16439-7

    94. [94]

      W. Lv, J. Xu, X. Wang, et al., ACS Nano 12(2018) 5417-5426.  doi: 10.1021/acsnano.8b00477

    95. [95]

      Q. Feng, X. Yang, Y. Hao, et al., ACS Appl. Mater. Interfaces 11(2019) 32729-32738.  doi: 10.1021/acsami.9b10948

    96. [96]

      S. Li, H. Cheng, B. Xie, et al., ACS Nano 11(2017) 7006-7018.  doi: 10.1021/acsnano.7b02533

    97. [97]

      C. Hu, T. Lei, Y. Wang, et al., Biomaterials 255(2020) 120159.  doi: 10.1016/j.biomaterials.2020.120159

    98. [98]

      S. Mura, J. Nicolas, P. Couvreur, Nat. Mater. 12(2013) 991-1003.  doi: 10.1038/nmat3776

    99. [99]

      A. Raza, T. Rasheed, F. Nabeel, et al., Molecules 24(2019) 1117.  doi: 10.3390/molecules24061117

    100. [100]

      R. Li, Y. He, S. Zhang, et al., Acta Pharm. Sin. B 8(2018) 14-22.  doi: 10.1016/j.apsb.2017.11.009

    101. [101]

      Z. He, Y. Zhang, N. Feng, Mater. Sci. Eng. C 106(2020) 110298.  doi: 10.1016/j.msec.2019.110298

    102. [102]

      Y. Zhou, W. Zhou, X. Chen, et al., Acta Pharm. Sin. B 10(2020) 1563-1575.  doi: 10.1016/j.apsb.2019.11.013

    103. [103]

      X. Zhen, P. Cheng, K. Pu, Small 15(2019) 1804105.  doi: 10.1002/smll.201804105

    104. [104]

      K. Jin, Z. Luo, B. Zhang, Z. Pang, Acta Pharm. Sin. B 8(2018) 23-33.  doi: 10.1016/j.apsb.2017.12.002

    105. [105]

      H. Wang, Y. Liu, R. He, et al., Biomater. Sci. 8(2020) 552-568.  doi: 10.1039/C9BM01392J

    106. [106]

      C. Corbo, W.E. Cromer, R. Molinaro, et al., Nanoscale 9(2017) 14581-14591.  doi: 10.1039/C7NR04734G

    107. [107]

      C.J. Hu, R.H. Fang, K. Wang, et al., Nature 526(2015) 118-121.  doi: 10.1038/nature15373

    108. [108]

      Q. Hu, W. Sun, C. Qian, et al., Adv. Mater. 29(2017) 1605803.  doi: 10.1002/adma.201605803

    109. [109]

      R. Molinaro, A. Pastò, C. Corbo, et al., Nanoscale 11(2019) 13576-13586.  doi: 10.1039/C9NR04253A

    110. [110]

      X. Wei, M. Ying, D. Dehaini, et al., ACS Nano 12(2017) 109-116.

    111. [111]

      L.J.V. Piddock, Nat. Rev. Microbiol. 15(2017) 639-640.  doi: 10.1038/nrmicro.2017.121

    112. [112]

      H. Chang, T. Cohen, Y.H. Grad, etal., Microbiol. Mol. Biol. Rev. 79(2015) 101-116.  doi: 10.1128/MMBR.00039-14

    113. [113]

      R.H. Fang, Y. Jiang, J.C. Fang, L. Zhang, Biomaterials 128(2017) 69-83.  doi: 10.1016/j.biomaterials.2017.02.041

    114. [114]

      R.H. Fang, B.T. Luk, C.J. Hu, L. Zhang, Adv. Drug Deliv. Rev. 90(2015) 69-80.  doi: 10.1016/j.addr.2015.04.001

    115. [115]

      Y. Chen, Y. Zhang, M. Chen, et al., Small 15(2019) 1804994.  doi: 10.1002/smll.201804994

    116. [116]

      X. Wei, D. Ran, A. Campeau, et al., Nano Lett. 19(2019) 4760-4769.  doi: 10.1021/acs.nanolett.9b01844

    117. [117]

      K. Wang, Y. Lei, D. Xia, et al., Colloids Surf. B 188(2020) 110755.  doi: 10.1016/j.colsurfb.2019.110755

    118. [118]

      Y. Zhang, Y. Chen, C. Lo, et al., Angew. Chem., Int. Ed. 58(2019) 11404-11408.  doi: 10.1002/anie.201906280

    119. [119]

      X. Wei, G. Zhang, D. Ran, et al., Adv. Mater. 30(2018) 1802233.  doi: 10.1002/adma.201802233

    120. [120]

      Q. Zhang, A. Honko, J. Zhou, et al., Nano Lett. 20(2020) 5570-5574.  doi: 10.1021/acs.nanolett.0c02278

    121. [121]

      J. Zhou, A.V. Kroll, M. Holay, et al., Adv. Mater. 32(2019) 1901255.

    122. [122]

      P. Masson, F. Nachon, J. Neurochem. 142(2017) 26-40.  doi: 10.1111/jnc.14026

    123. [123]

      Z. Pang, C.J. Hu, R.H. Fang, et al., ACS Nano 9(2015) 6450-6458.  doi: 10.1021/acsnano.5b02132

    124. [124]

      Y. Chen, Y. Zhang, J. Zhuang, et al., ACS Nano 13(2019) 7209-7215.  doi: 10.1021/acsnano.9b02773

    125. [125]

      J. Li, P. Angsantikul, W. Liu, et al., Adv. Mater. 30(2018) 1704800.  doi: 10.1002/adma.201704800

    126. [126]

      X. Gong, J. Li, T. Tan, et al., Adv. Funct. Mater. 29(2019) 1903441.  doi: 10.1002/adfm.201903441

    127. [127]

      L. Rao, G.T. Yu, Q.F. Meng, et al., Adv. Funct. Mater. 29(2019) 1905671.  doi: 10.1002/adfm.201905671

  • 加载中
    1. [1]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    2. [2]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    3. [3]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    4. [4]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    5. [5]

      Boyuan LiuZixu LiuPing WangYu ZhangHaibing HeTian YinJingxin GouXing Tang . Nanomedicine-based targeting delivery systems for peritoneal cavity localized therapy: A promising treatment of ovarian cancer and its peritoneal metastasis. Chinese Chemical Letters, 2025, 36(6): 110229-. doi: 10.1016/j.cclet.2024.110229

    6. [6]

      Shaoqing DuXinyong LiuXueping HuPeng Zhan . Targeting novel sites represents an effective strategy for combating drug resistance. Chinese Chemical Letters, 2025, 36(1): 110378-. doi: 10.1016/j.cclet.2024.110378

    7. [7]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    8. [8]

      Cheng-Zhe GaoHao-Ran JiaTian-Yu WangXiao-Yu ZhuXiaofeng HanFu-Gen Wu . A dual drug-loaded tumor vasculature-targeting liposome for tumor vasculature disruption and hypoxia-enhanced chemotherapy. Chinese Chemical Letters, 2025, 36(1): 109840-. doi: 10.1016/j.cclet.2024.109840

    9. [9]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    10. [10]

      Qiang LiJiangbo FanHongkai MuLin ChenYongzhen YangShiping Yu . Nucleus-targeting orange-emissive carbon dots delivery adriamycin for enhanced anti-liver cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108947-. doi: 10.1016/j.cclet.2023.108947

    11. [11]

      Liqing ChenZheming ZhangYanhong LiuChenfei LiuCongcong XiaoLiming GongMingji JinZhonggao GaoWei Huang . Systemically intravenous siRNA delivery into brain with a targeting and efficient polypeptide carrier and its evaluation on anti-glioma efficacy. Chinese Chemical Letters, 2025, 36(3): 110228-. doi: 10.1016/j.cclet.2024.110228

    12. [12]

      Jiaqi LinPupu YangYimin JiangShiqian DuDongcai ZhangGen HuangJinbo WangJun WangQie LiuMiaoyu LiYujie WuPeng LongYangyang ZhouLi TaoShuangyin Wang . Surface decoration prompting the decontamination of active sites in high-temperature proton exchange membrane fuel cells. Chinese Chemical Letters, 2024, 35(11): 109435-. doi: 10.1016/j.cclet.2023.109435

    13. [13]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    14. [14]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    15. [15]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    16. [16]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    17. [17]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    18. [18]

      Liping ZhaoXixi GuoZhimeng ZhangXi LuQingxuan ZengTianyun FanXintong ZhangFenbei ChenMengyi XuMin YuanZhenjun LiJiandong JiangJing PangXuefu YouYanxiang WangDanqing Song . Novel berberine derivatives as adjuvants in the battle against Acinetobacter baumannii: A promising strategy for combating multi-drug resistance. Chinese Chemical Letters, 2024, 35(10): 109506-. doi: 10.1016/j.cclet.2024.109506

    19. [19]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    20. [20]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

Metrics
  • PDF Downloads(19)
  • Abstract views(919)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return