Citation: Zhiwen Chu, Ruiqi Tong, Yufan Yang, Xuanyi Song, Tian bao Hu, Yu Fan, Chen Zhao, Lu Gao, Zhenlei Song. Diverse synthesis of the C ring fragment of bryostatins via Zn/Cu-promoted conjugate addition of α-hydroxy iodide with enone[J]. Chinese Chemical Letters, ;2021, 32(1): 1-4. doi: 10.1016/j.cclet.2020.11.039 shu

Diverse synthesis of the C ring fragment of bryostatins via Zn/Cu-promoted conjugate addition of α-hydroxy iodide with enone

    * Corresponding authors.
    E-mail addresses: lugao@scu.edu.cn (L. Gao), zhenleisong@scu.edu.cn (Z. Song).
  • Received Date: 19 October 2020
    Revised Date: 16 November 2020
    Accepted Date: 19 November 2020
    Available Online: 1 December 2020

Figures(5)

  • A convergent approach to 1,5-hydroxy ketones, the general precursors for constructing the C ring of bryostatins, has been developed via a Zn/Cu-promoted conjugate addition of α-hydroxy iodides with enones. The reaction leads to direct formation of the C21-C22 bond and tolerates diverse functionalities at the C17-, C18- and C24-positions. The approach also enables a more concise synthesis of the known C ring intermediate (10 longest linear steps and 14 total steps), in contrast to its previous synthesis (17 longest linear steps and 22 total steps) in our total synthesis of bryostatin 8.
  • 加载中
    1. [1]

      (a) K.J. Hale, S. Manaviazar, Chem. Asian J. 5 (2010) 704-754;
      (b) X.R. Tian, H.F. Tang, X.L. Tian, et al., Future Med. Chem. 10 (2018) 1497-1514;
      (c) R. Wu, H. Chen, N. Chang, et al., Chem. Eur. J. 26 (2020) 1166-1195;
      (d) R. Raghuvanshi, S.B. Bharate, Curr. Top. Med. Chem. 20 (2020) 1124-1135.

    2. [2]

      G.R. Pettit, C.L. Herald, D.L. Doubek, et al., J. Am. Chem. Soc. 104 (1982) 6846-6848.  doi: 10.1021/ja00388a092

    3. [3]

      (a) M.R. Farlow, R.E. Thompson, L.J. Wei, et al., J. Alzheimers Dis. 67 (2019) 555-570;
      (b) J. Wang, Z. Wang, Y. Sun, et al., Biochem. Biophys. Res. Commun. 512 (2019) 473-478.

    4. [4]

      K.J. Way, N. Katai, G.L. King, Diabet. Med. 18 (2001) 945-949.  doi: 10.1046/j.0742-3071.2001.00638.x

    5. [5]

      K. Mizutani, S. Sonoda, H. Wakita, et al., Neuroreport. 27 (2016) 659-664.  doi: 10.1097/WNR.0000000000000592

    6. [6]

      (a) T.J. Nelson, M.K. Sun, C. Lim, et al., J. Alzheimer's Dis. 58 (2017) 521-535;
      (b) T. Sarajärvi, M. Jäntti, K.M.A. Paldanius, et al., Neuropharmacology 141 (2018) 76-88;
      (c) K. Murakami, M. Yoshimura, S. Nakagawa, et al., Int. J. Mol. Sci. 21 (2020) 1179-1191.

    7. [7]

      (a) M.D. Marsden, B.A. Loy, X.M. Wu, et al., PLoS Pathog. 13 (2017)e1006575;
      (b) M.Z. Zhao, E.D. Crignis, C. Rokx, et al., Pharmacol. Res. 139 (2019) 524-534;
      (c) E.F. Heffern, R. Ramani, G. Marshall, et al., J. Virus Erad. 5 (2019) 84-91;
      (d) A. Proust, C. Barat, M. Leboeuf, et al., J. Glia 68 (2020) 2212-2227;
      (e) B.X. Li, H. Zhang, Y. Liu, et al., Sci. Rep. 10 (2020) 3511-3522.

    8. [8]

      J.M. Ketcham, I. Volchkov, T.Y. Chen, et al., J. Am. Chem. Soc. 138 (2016) 13415-13423.  doi: 10.1021/jacs.6b08695

    9. [9]

      (a) B.M. Trost, H. Yang, O.R. Thiel, et al., J. Am. Chem. Soc. 129 (2007) 2206-2207;
      (b) N. Kedei, M.B. Kraft, G.E. Keck, et al., J. Nat. Prod. 78 (2015) 896-900;
      (c) D. Staveness, R. Abdelnabi, K.E. Near, et al., J. Nat. Prod. 79 (2016) 680-684;
      (d) D.O. Baumann, K.M. McGowan, N. Kedei, et al., J. Org. Chem. 81 (2016) 7862-7883;
      (e) P.R. Mears, S. Hoekman, C.E. Rye, et al., Org. Biomol. Chem. 17 (2019) 1487-1505;
      (f) M.B. Kraft, Y.B. Poudel, N. Kedei, et al., J. Am. Chem. Soc. 136 (2014) 13202-13208;
      (g) I.P. Andrews, J.M. Ketcham, P.M. Blumberg, et al., J. Am. Chem. Soc. 136 (2014) 13209-13216;
      (h) J.L. Sloane, N.L. Benner, K.N. Keenan, et al., Proc. Natl. Acad. Sci. U.S. A. 117 (2020) 10688-10698;
      (i) C. Hardman, S. Ho, A. Shimizu, Nat. Commun. 11 (2020) 1879-1889.

    10. [10]

      (a) G.E. Keck, Y.B. Poudel, T.J. Cummins, et al., J. Am. Chem. Soc. 133 (2011) 744-747;
      (b) P.A. Wender, C.T. Hardman, S. Ho, et al., Science 358 (2017) 218-223;
      (c) D.A. Evans, P.H. Carter, E.M. Carreira, et al., Angew. Chem. Int. Ed. 37 (1998) 2354-2359;
      (d) D.A. Evans, P.H. Carter, E.M. Carreira, et al., J. Am. Chem. Soc. 121 (1999) 7540-7552;
      (e) K. Ohmori, Y. Ogawa, T. Obitsu, et al., Angew. Chem. Int. Ed. 39 (2000) 2290-2294;
      (f) B.M. Trost, Y.L. Wang, A.K. Buckl, et al., Science 368 (2020) 1007-1011;
      (g) M. Kageyama, T. Tamura, M.H. Nantz, et al., J. Am. Chem. Soc. 112 (1990) 7407-7408;
      (h) Y. Lu, S.K. Woo, M.J. Krische, J. Am. Chem. Soc. 133 (2011) 13876-13879;
      (i) S. Manaviazar, M. Frigerio, G.S. Bhatia, et al., Org. Lett. 8 (2006) 4477-4480;
      (j) Y.B. Zhang, Q.Y. Guo, X.W. Sun, et al., Angew. Chem. Int. Ed. 57 (2018) 942-946;
      (k) P.A. Wender, A.J. Schrier, J. Am. Chem. Soc. 133 (2011) 9228-9231;
      (l) B.M. Trost, G. Dong, Nature 456 (2008) 485-488;
      (m) B.M. Trost, G. Dong, J. Am. Chem. Soc. 132 (2010) 16403-16416.

    11. [11]

      (a) P. Knochel, R.D. Singer, Chem. Rev. 93 (1993) 2117-2188;
      (b) A. Alexakis, J.E. Bäckvall, N. Krause, et al., Chem. Rev. 108 (2008) 2796-2823;
      (c) F. Zhou, X. Hu, W. Zhang, et al., Org. Chem. Front. 5 (2018) 3579-3584;
      (d) J.A. Shin, J. Kim, H. Lee, et al., J. Org. Chem. 84 (2019) 4558-4565;
      (e) Y. Ouyang, Y. Peng, W.D.Z. Li, Tetrahedron 75 (2019) 4486-4496.

    12. [12]

      (a) A. Krasovskiy, C. Duplais, B.H. Lipshutz, Org. Lett. 12 (2010) 4742-4744;
      (b) C. Duplais, A. Krasovskiy, B.H. Lipshutz, Organometallics 30 (2011) 6090-6097;
      (c) B.H. Lipshutz, S. Ghorai, W.W.Y. Leong, et al., J. Org. Chem. 76 (2011) 5061-5073;
      (d) B.H. Lipshutz, S.L. Huang, W.W.Y. Leong, et al., J. Am. Chem. Soc. 134 (2012) 19985-19988;
      (e) H. Pang, Y. Wang, F. Gallou, et al., J. Am. Chem. Soc. 141 (2019) 17117-17124.

    13. [13]

      (a) C. Petrier, C. Dupuy, J.L. Luche, Tetrahedron Lett. 27 (1986) 3149-3152;
      (b) J.L. Luche, C. Allavena, Tetrahedron Lett. 29 (1988) 5369-5372;
      (c) J.L. Luche, C. Allavena, C. Petrier, Tetrahedron Lett. 29 (1988) 5373-5374;
      (d) C. Dupuy, C. Petrier, L.A. Sarandeses, et al., Synth. Commun. 21 (1991) 643-651;
      (e) L.A. Sarandeses, A. Mourinoband, J.L. Luche, J. Chem, Soc. Chem. Commun. 11 (1992) 798-799.

    14. [14]

      (a) C.J. Li, Chem. Rev. 105 (2005) 3095-3165;
      (b) C.J. Li, L. Chen, Chem. Soc. Rev. 35 (2006) 68-82;
      (c) Y. Kim, C.J. Li, Green. Synth. Catal. 1 (2020) 1-11.

    15. [15]

      J.S. Yadav, M.S. Reddy, A.R. Prasad, Tetrahedron Lett. 46 (2005) 2133-2136.  doi: 10.1016/j.tetlet.2005.01.121

    16. [16]

      J.E. Baldwin, R.C. Thomas, L.I. Kruse, et al., J. Org. Chem. 42 (1977) 3846-3852.  doi: 10.1021/jo00444a011

  • 加载中
    1. [1]

      Kun TangFen SuShijie PanFengfei LuZhongfu LuoFengrui CheXingxing WuYonggui Robin Chi . Enones from aldehydes and alkenes by carbene-catalyzed dehydrogenative couplings. Chinese Chemical Letters, 2024, 35(9): 109495-. doi: 10.1016/j.cclet.2024.109495

    2. [2]

      Junjun HuangRan ChenYajian HuangHang ZhangAnran ZhengQing XiaoDan WuRuxia DuanZhi ZhouFei HeWei Yi . Discovery of an enantiopure N-[2-hydroxy-3-phenyl piperazine propyl]-aromatic carboxamide derivative as highly selective α1D/1A-adrenoceptor antagonist and homology modelling. Chinese Chemical Letters, 2024, 35(11): 109594-. doi: 10.1016/j.cclet.2024.109594

    3. [3]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    4. [4]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    5. [5]

      Siqi SunCheng ZhaoZhaohuan ZhangDing WangXinru YinJingting HanJinlei WeiYong ZhaoYongheng Zhu . Highly selective QCM sensor based on functionalized hierarchical hollow TiO2 nanospheres for detecting ppb-level 3-hydroxy-2-butanone biomarker at room temperature. Chinese Chemical Letters, 2025, 36(5): 109939-. doi: 10.1016/j.cclet.2024.109939

    6. [6]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

    7. [7]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    8. [8]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    9. [9]

      Xin DongJing LiangZhijin XuHuajie WuLei WangShihai YouJunhua LuoLina Li . Exploring centimeter-sized crystals of bismuth-iodide perovskite toward highly sensitive X-ray detection. Chinese Chemical Letters, 2024, 35(6): 108708-. doi: 10.1016/j.cclet.2023.108708

    10. [10]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    11. [11]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    12. [12]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    13. [13]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    14. [14]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

    15. [15]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    16. [16]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    17. [17]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    18. [18]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    19. [19]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    20. [20]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

Metrics
  • PDF Downloads(18)
  • Abstract views(1122)
  • HTML views(120)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return