Citation: Qian Zou, Jing-Cui Liu, Xin-Da Huang, Song-Song Bao, Li-Min Zheng. Thermo-induced structural transformation with synergistic optical and magnetic changes in ytterbium and erbium complexes[J]. Chinese Chemical Letters, ;2021, 32(4): 1519-1522. doi: 10.1016/j.cclet.2020.10.019 shu

Thermo-induced structural transformation with synergistic optical and magnetic changes in ytterbium and erbium complexes

    * Corresponding author.
    E-mail address: lmzheng@nju.edu.cn (L.-M. Zheng).
    1 These authors contributed equally to this work.
  • Received Date: 7 September 2020
    Revised Date: 6 October 2020
    Accepted Date: 16 October 2020
    Available Online: 17 October 2020

Figures(4)

  • Dinuclear ytterbium and erbium based bifunction complexes Ln2L2(depma2)Cl2 (1-Ln, Ln=Yb and Er, H2L=N1, N3-bis(salicylideneimino)diethylenetriamine, depma2 = dimerized 9-diethyl-phosphonomethylanthracene) are reported. They undergo thermo-induced consecutive phase transitions, first the dissociation of depma2 ligand forming LnL(depma)Cl (2-Ln) and then the release of chloroethane forming LnL(epma) (3-Ln, epma=9-ethylphosphonomethylanthrancene). The structural transformations are accompanied with synergetic switch of the luminescence in visible and NIR regions and also magnetic dynamics.

    1. [1]

      J. Long, Y. Guari, R.A.S. Ferreira, L.D. Carlos, J. Larionova, Coord. Chem. Rev. 363 (2018) 57-70.

    2. [2]

      J.H. Jia, Q.W. Li, Y.C. Chen, J.L. Liu, M.L. Tong, Coord. Chem. Rev. 378 (2019) 365-381.

    3. [3]

      (a) J. Long, Front. Chem. 7 (2019) 63;
      (b) F. Pointillart, B. le Guennic, O. Cador, et al., Acc. Chem. Res. 48 (2015) 2834-2842.

    4. [4]

      X.D. Huang, M. Kurmoo, S.S. Bao, et al., Chem. Commun. 54 (2018) 3278-3281.

    5. [5]

      W.B. Chen, Y.C. Chen, J.L. Liu, et al., Inorg. Chem. 56 (2017) 8730-8734.  doi: 10.1021/acs.inorgchem.7b01059

    6. [6]

      X.D. Huang, Y. Xu, K. Fan, et al., Angew. Chem. Int. Ed. 57 (2018) 8577-8581.  doi: 10.1002/anie.201804102

    7. [7]

      X.D. Huang, J.G. Jia, M. Kurmoo, S.S. Bao, L.M. Zheng, Dalton Trans. 48 (2019) 13769-13779.  doi: 10.1039/c9dt02854d

    8. [8]

      Y.J. Ma, J.X. Hu, S.D. Han, et al., J. Am. Chem. Soc. 142 (2020) 2682-2689.  doi: 10.1021/jacs.9b13461

    9. [9]

      S. Mohapatra, B. Rajeswaran, A. Chakraborty, A. Sundaresan, T.K. Maji, Chem. Mater. 25 (2013) 1673-1679.  doi: 10.1021/cm400116h

    10. [10]

      Y. Xin, J. Wang, M. Zychowicz, et al., J. Am. Chem. Soc. 141 (2019) 18211-18220.  doi: 10.1021/jacs.9b09103

    11. [11]

      J.C. Liu, X.D. Huang, Q. Zou, et al., J. Mater. Chem. C 8 (2020) 7369-7377.  doi: 10.1039/d0tc01111h

    12. [12]

      J.D. Rinehart, J.R. Long, Chem. Sci. 2 (2011) 2078-2085.  doi: 10.1039/c1sc00513h

    13. [13]

      F. Pointillart, O. Cador, B. Le Guennic, L. Ouahab, Coord. Chem. Rev. 346 (2017) 150-175.

    14. [14]

      S.M. Chen, J. Xiong, Y.Q. Zhang, et al., Chem. Sci. 9 (2018) 7540-7545.  doi: 10.1039/c8sc01626g

    15. [15]

      J.D. Hilgar, M.G. Bernbeck, J.D. Rinehart, J. Am. Chem. Soc. 141 (2019) 1913-1917.  doi: 10.1021/jacs.8b13514

    16. [16]

      J. Li, M. Kong, L. Yin, et al., Inorg. Chem. 58 (2019) 14440-14448.  doi: 10.1021/acs.inorgchem.9b01831

    17. [17]

      (a) J.C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34 (2005) 1048-1077;
      (b) X. Yang, X. Lin, Y. Zhao, et al., Angew. Chem. Int. Ed. 56 (2017) 7853-7857;
      (c) Y. Yang, K. Wang, D. Yan, ACS Appl. Mater. Interfaces 9 (2017) 17399-17407;
      (d) Y. Yang, K. Wang, D. Yan, Chem. Commun. 53 (2017) 7752-7755.

    18. [18]

      B. Casanovas, S. Speed, O. Maury, M. Font-Bardía, R. Vicente, Polyhedron 169 (2019) 187-194.

    19. [19]

      J.J. Zakrzewski, S. Chorazy, K. Nakabayashi, S. Ohkoshi, B. Sieklucka, Chem. Eur. J. 25 (2019) 11820-11825.  doi: 10.1002/chem.201902420

    20. [20]

      (a) D. Zeng, K. Fan, L.P. Wang, et al., J. Mag. Mag. Mater. 484 (2019) 139-145;
      (b) K. Fan, S.S. Bao, R. Huo, et al., Inorg. Chem. Front. (2020).

    21. [21]

      M. Fondo, J. Corredoira-Vázquez, A.M. García-Deibe, et al., Inorg. Chem. Front. 7 (2020) 3019-3029.  doi: 10.1039/d0qi00637h

    22. [22]

      W.B. Chen, L. Zhong, Y.J. Zhong, et al., Inorg. Chem. Front. 7 (2020) 3136-3145.  doi: 10.1039/d0qi00628a

    23. [23]

      M. Pinsky, D. Avnir, Inorg. Chem. 37 (1998) 5575-5582.

    24. [24]

      D.J. De Frees, M.D. Miller, D. Talbi, F. Pauzat, Y. Ellinger, Astrophys. J. 408 (1993) 530-538.

    25. [25]

      D. Mansfeld, C. Dietz, T. Rüffer, et al., Main Group Met. Chem. 36 (2013) 193-208.

    26. [26]

      K.B. Yatsimirskii, N.K. Davidenko, Coord. Chem. Rev. 27 (1979) 223-273.

    27. [27]

      (a) M. Ren, Z.L. Xu, S.S. Bao, et al., Dalton Trans. 45 (2016) 2974-2982;
      (b) M.R. Silva, P. Martín-Ramos, J.T. Coutinho, et al., Dalton Trans. 43 (2014) 6752-6761;
      (c) F. Pointillart, B. Le Guennic, S. Golhen, et al., Chem. Commun. 49 (2013) 615-617;
      (d) Y. Xu, S.S. Bao, X.D. Huang, et al., Cryst. Growth Des. 18 (2018) 4045-4053.

    28. [28]

      H.C. Liu, Y. Gao, B. Yang, Chin. Sci. Bull. 62 (2017) 4099-4112.

    29. [29]

      K.R. Meihaus, S.G. Minasian, et al., J. Am. Chem. Soc. 136 (2014) 6056-6068.  doi: 10.1021/ja501569t

    30. [30]

      Q. Zou, X.D. Huang, J.C. Liu, S.S. Bao, L.M. Zheng, Dalton Trans. 48 (2019) 2735-2740.  doi: 10.1039/c9dt00073a

    1. [1]

      J. Long, Y. Guari, R.A.S. Ferreira, L.D. Carlos, J. Larionova, Coord. Chem. Rev. 363 (2018) 57-70.

    2. [2]

      J.H. Jia, Q.W. Li, Y.C. Chen, J.L. Liu, M.L. Tong, Coord. Chem. Rev. 378 (2019) 365-381.

    3. [3]

      (a) J. Long, Front. Chem. 7 (2019) 63;
      (b) F. Pointillart, B. le Guennic, O. Cador, et al., Acc. Chem. Res. 48 (2015) 2834-2842.

    4. [4]

      X.D. Huang, M. Kurmoo, S.S. Bao, et al., Chem. Commun. 54 (2018) 3278-3281.

    5. [5]

      W.B. Chen, Y.C. Chen, J.L. Liu, et al., Inorg. Chem. 56 (2017) 8730-8734.  doi: 10.1021/acs.inorgchem.7b01059

    6. [6]

      X.D. Huang, Y. Xu, K. Fan, et al., Angew. Chem. Int. Ed. 57 (2018) 8577-8581.  doi: 10.1002/anie.201804102

    7. [7]

      X.D. Huang, J.G. Jia, M. Kurmoo, S.S. Bao, L.M. Zheng, Dalton Trans. 48 (2019) 13769-13779.  doi: 10.1039/c9dt02854d

    8. [8]

      Y.J. Ma, J.X. Hu, S.D. Han, et al., J. Am. Chem. Soc. 142 (2020) 2682-2689.  doi: 10.1021/jacs.9b13461

    9. [9]

      S. Mohapatra, B. Rajeswaran, A. Chakraborty, A. Sundaresan, T.K. Maji, Chem. Mater. 25 (2013) 1673-1679.  doi: 10.1021/cm400116h

    10. [10]

      Y. Xin, J. Wang, M. Zychowicz, et al., J. Am. Chem. Soc. 141 (2019) 18211-18220.  doi: 10.1021/jacs.9b09103

    11. [11]

      J.C. Liu, X.D. Huang, Q. Zou, et al., J. Mater. Chem. C 8 (2020) 7369-7377.  doi: 10.1039/d0tc01111h

    12. [12]

      J.D. Rinehart, J.R. Long, Chem. Sci. 2 (2011) 2078-2085.  doi: 10.1039/c1sc00513h

    13. [13]

      F. Pointillart, O. Cador, B. Le Guennic, L. Ouahab, Coord. Chem. Rev. 346 (2017) 150-175.

    14. [14]

      S.M. Chen, J. Xiong, Y.Q. Zhang, et al., Chem. Sci. 9 (2018) 7540-7545.  doi: 10.1039/c8sc01626g

    15. [15]

      J.D. Hilgar, M.G. Bernbeck, J.D. Rinehart, J. Am. Chem. Soc. 141 (2019) 1913-1917.  doi: 10.1021/jacs.8b13514

    16. [16]

      J. Li, M. Kong, L. Yin, et al., Inorg. Chem. 58 (2019) 14440-14448.  doi: 10.1021/acs.inorgchem.9b01831

    17. [17]

      (a) J.C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34 (2005) 1048-1077;
      (b) X. Yang, X. Lin, Y. Zhao, et al., Angew. Chem. Int. Ed. 56 (2017) 7853-7857;
      (c) Y. Yang, K. Wang, D. Yan, ACS Appl. Mater. Interfaces 9 (2017) 17399-17407;
      (d) Y. Yang, K. Wang, D. Yan, Chem. Commun. 53 (2017) 7752-7755.

    18. [18]

      B. Casanovas, S. Speed, O. Maury, M. Font-Bardía, R. Vicente, Polyhedron 169 (2019) 187-194.

    19. [19]

      J.J. Zakrzewski, S. Chorazy, K. Nakabayashi, S. Ohkoshi, B. Sieklucka, Chem. Eur. J. 25 (2019) 11820-11825.  doi: 10.1002/chem.201902420

    20. [20]

      (a) D. Zeng, K. Fan, L.P. Wang, et al., J. Mag. Mag. Mater. 484 (2019) 139-145;
      (b) K. Fan, S.S. Bao, R. Huo, et al., Inorg. Chem. Front. (2020).

    21. [21]

      M. Fondo, J. Corredoira-Vázquez, A.M. García-Deibe, et al., Inorg. Chem. Front. 7 (2020) 3019-3029.  doi: 10.1039/d0qi00637h

    22. [22]

      W.B. Chen, L. Zhong, Y.J. Zhong, et al., Inorg. Chem. Front. 7 (2020) 3136-3145.  doi: 10.1039/d0qi00628a

    23. [23]

      M. Pinsky, D. Avnir, Inorg. Chem. 37 (1998) 5575-5582.

    24. [24]

      D.J. De Frees, M.D. Miller, D. Talbi, F. Pauzat, Y. Ellinger, Astrophys. J. 408 (1993) 530-538.

    25. [25]

      D. Mansfeld, C. Dietz, T. Rüffer, et al., Main Group Met. Chem. 36 (2013) 193-208.

    26. [26]

      K.B. Yatsimirskii, N.K. Davidenko, Coord. Chem. Rev. 27 (1979) 223-273.

    27. [27]

      (a) M. Ren, Z.L. Xu, S.S. Bao, et al., Dalton Trans. 45 (2016) 2974-2982;
      (b) M.R. Silva, P. Martín-Ramos, J.T. Coutinho, et al., Dalton Trans. 43 (2014) 6752-6761;
      (c) F. Pointillart, B. Le Guennic, S. Golhen, et al., Chem. Commun. 49 (2013) 615-617;
      (d) Y. Xu, S.S. Bao, X.D. Huang, et al., Cryst. Growth Des. 18 (2018) 4045-4053.

    28. [28]

      H.C. Liu, Y. Gao, B. Yang, Chin. Sci. Bull. 62 (2017) 4099-4112.

    29. [29]

      K.R. Meihaus, S.G. Minasian, et al., J. Am. Chem. Soc. 136 (2014) 6056-6068.  doi: 10.1021/ja501569t

    30. [30]

      Q. Zou, X.D. Huang, J.C. Liu, S.S. Bao, L.M. Zheng, Dalton Trans. 48 (2019) 2735-2740.  doi: 10.1039/c9dt00073a

  • 加载中
    1. [1]

      Hao Jiang Yuan-Yuan He Hai-Chao Liang Meng-Jia Shang Han-Han Lu Chun-Hua Liu Yin-Shan Meng Tao Liu Yuan-Yuan Zhu . Tuning lanthanide luminescence from bipyridine-bis(oxazoline/thiazoline) tetradentate ligands. Chinese Journal of Structural Chemistry, 2024, 43(9): 100354-100354. doi: 10.1016/j.cjsc.2024.100354

    2. [2]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    3. [3]

      Wen-Jun XiaYong-Jiang WangYun-Fei CaoCai SunXin-Xiong LiYan-Qiong SunShou-Tian Zheng . A luminescent folded S-shaped high-nuclearity Eu19-oxo-cluster embedded polyoxoniobate for information encryption. Chinese Chemical Letters, 2025, 36(2): 110248-. doi: 10.1016/j.cclet.2024.110248

    4. [4]

      Ying-Yu ZhangJia-Qi LuoYan HanWan-Ying ZhangYi ZhangHai-Feng LuDa-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530

    5. [5]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    6. [6]

      Xiaoxue LiHongwei ZhouRongrong QianXu ZhangLei Yu . A concise synthesis of Se/Fe materials for catalytic oxidation reactions of anthracene and polyene. Chinese Chemical Letters, 2025, 36(3): 110036-. doi: 10.1016/j.cclet.2024.110036

    7. [7]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2024.100393

    8. [8]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    9. [9]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    10. [10]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    11. [11]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    12. [12]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    13. [13]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    14. [14]

      Yan ZhuJia LiuMeiheng LvTingting WangDongxiang ZhangRong ShangXin-Dong JiangJianjun DuGuiling Wang . Heavy-atom-free orthogonal configurative dye 1,7-di-anthra-aza-BODIPY for singlet oxygen generation. Chinese Chemical Letters, 2024, 35(10): 109446-. doi: 10.1016/j.cclet.2023.109446

    15. [15]

      Yupeng LiuHui WangSongnan Qu . Review on near-infrared absorbing/emissive carbon dots: From preparation to multi-functional application. Chinese Chemical Letters, 2025, 36(5): 110618-. doi: 10.1016/j.cclet.2024.110618

    16. [16]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    17. [17]

      Zhu ShuXin LeiYeye AiKe ShaoJianliang ShenZhegang HuangYongguang Li . ATP-induced supramolecular assembly based on chromophoric organic molecules and metal complexes. Chinese Chemical Letters, 2024, 35(11): 109585-. doi: 10.1016/j.cclet.2024.109585

    18. [18]

      Pengfei LiChulin QuFan WuHu GaoChengyan ZhaoYue ZhaoZhen Shen . Robust free-base and metalated corrole radicals with reduction-induced emission. Chinese Chemical Letters, 2025, 36(2): 110292-. doi: 10.1016/j.cclet.2024.110292

    19. [19]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    20. [20]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

Metrics
  • PDF Downloads(3)
  • Abstract views(764)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return