Citation: Guangjin Li, Jiali Wang, Dongyang Li, Shenghua Liu, Jun Yin, Zhibing Lai, Guangfu Yang. A Hg(Ⅱ)-specific probe for imaging application in living systems and quantitative analysis in environmental/food samples[J]. Chinese Chemical Letters, ;2021, 32(4): 1527-1531. doi: 10.1016/j.cclet.2020.09.040 shu

A Hg(Ⅱ)-specific probe for imaging application in living systems and quantitative analysis in environmental/food samples

Figures(4)

  • Mercury ions are highly toxic and can accumulate along food chains in water, soil, crops and animals. Effective detection of mercury ions in various media is of great significance for maintaining the ecological environment and protecting people's health. In this work, a mercury ions specific fluorescent probe was developed by a simple one-step reaction of commercial substrates of 4-chloro-7-nitro-2, 1, 3-benzoxadiazole and 1-(2-aminoethyl)-4-methylpiperazine. Investigation on sensing behavior showed that this probe had high sensitivity and selectivity towards mercury ions. Furthermore, this probe could be used as a tool to track the level of mercury ions in living system. In living cells, the probe with green emission emitted a bright red fluorescence when it was bound to mercury ions. In Arabidopsis thaliana, similar red emission could be detected from the root tip and stalk when A. thaliana was grown in culture medium containing mercury ions. The imaging in zebrafish showed that mercury ions were mainly concentrated in the stomach and head of zebrafish. Especially, this probe could be applied in quantitative analysis of mercury ions in tap water, green tea, sea shrimp and soil. This work provided a practical tool for the detection of mercury ions in living systems and quantitative analysis in real samples.
  • 加载中
    1. [1]

      L. Zou, Z. Gu, M. Sun, Toxicol. Environ. Chem. 97 (2015) 477-490.  doi: 10.1080/02772248.2015.1050201

    2. [2]

      P.A. Nogara, M. Farina, M. Aschner, et al., Chem. Res. Toxicol. 32 (2019) 1459-1461.  doi: 10.1021/acs.chemrestox.9b00126

    3. [3]

      Z. Hao, R. Zhu, P. Chen, Curr. Opin. Chem. Biol. 43 (2018) 87-96.

    4. [4]

      Y. Yang, Q. Zhao, W. Feng, et al., Chem. Rev. 113 (2013) 192-270.  doi: 10.1021/cr2004103

    5. [5]

      Z. Liang, C. Wang, J. Yang, New J. Chem. 31 (2007) 906-910.  doi: 10.1039/b701201m

    6. [6]

      B. Yin, B. Ye, W. Tan, et al., J. Am. Chem. Soc. 131 (2009) 14624-14625.  doi: 10.1021/ja9062426

    7. [7]

      (a) R.A. Sánchez-Moreno, M.J. Gismera, M.T. Sevilla, et al., Phytochem. Anal. 21 (2010) 340-347;
      (b) M. Porento, V. Sutinen, T. Julku, et al., Appl. Spectrosc. 65 (2011) 678-683.

    8. [8]

      A.R. Date, A.E. Davis, Y.Y. Cheung, Analyst 112 (1987) 1217-1222.

    9. [9]

      E.M. Nolan, S.J. Lippard, Chem. Rev. 108 (2008) 3443-3480.  doi: 10.1021/cr068000q

    10. [10]

      (a) J.A. Caruso, B. Klaue, B. Michalke, et al., Ecotox. Environ. Saf. 56 (2003) 32-44;
      (b) T.T. Shih, W.Y. Tseng, K.H. Tsai, et al., Microchem. J. 99 (2011) 260-266.

    11. [11]

      (a) S. Saracoglu, M. Soylak, D.K. Peker, et al., Anal. Chim. Acta 575 (2006) 133-137;
      (b) Y. Boukraa, D. Barkat, T. Benabdellah, et al., Phys. Chem. Liq. 44 (2006) 693-700.

    12. [12]

      (a) F. Deng, Z. Xu, Chin. Chem. Lett. 30 (2019) 1667-1681;
      (b) D. Wu, L. Chen, W. Lee, et al., Coord. Chem. Rev. 354 (2018) 74-97;
      (c) J. Yin, Y. Hu, J. Yoon, Chem. Soc. Rev. 44 (2015) 4619-4644.

    13. [13]

      (a) L. Yu, Y. Qiao, L. Miao, et al., Chin. Chem. Lett. 29 (2018) 1545-1559;
      (b) H.N. Kim, W.X. Ren, J.S. Kim, et al., Chem. Soc. Rev. 41 (2012) 3210-3244;
      (c) P.R. Sahoo, K. Prakash, S. Kumar, Coord. Chem. Rev. 357 (2018) 18-49;
      (d) G. Zhu, C. Zhang, Analyst 139 (2014) 6326-6342;
      (e) Q. Zhao, F. Li, C. Huang, Chem. Soc. Rev. 39 (2010) 3007-3030;
      (f) X. Ma, L. Hu, X. Han, et al., Chin. Chem. Lett. 29 (2018) 1489-1492;
      (g) W. Chen, Y. Pan, J. Chen, et al., Chin. Chem. Lett. 29 (2018) 1429-1435.

    14. [14]

      (a) L. Li, Y. Chen, W. Chen, et al., Chin. Chem. Lett. 30 (2019) 1689-1703;
      (b) Y. Chen, L. Li, W. Chen, et al., Chin. Chem. Lett. 30 (2019) 1353-1360;
      (c) H. Xiao, W. Zhang, P. Li, et al., Angew. Chem. Int. Ed. 59 (2020) 4216-4230;
      (d) S. Park, N. Kwon, J. Lee, et al., Chem. Soc. Rev. 49 (2020) 143-179;
      (e) A. Aliyan, N.P. Cook, A.A. Marti, Chem. Rev. 119 (2019) 11819-11856;
      (f) H. Singh, K. Tiwari, R. Tiwari, et al., Chem. Rev. 119 (2019) 11718-11760;
      (g) Y. Wen, F. Huo, C. Yin, Chin. Chem. Lett. 30 (2019) 1834-1842;
      (h) M. Yang, J. Fan, J. Du, et al., Chem. Sci. 11 (2020) 5127-5141;
      (i) W. Chi, Jie Chen, W. Liu, et al., J. Am. Chem. Soc. 142 (2020) 6777-6785.

    15. [15]

      (a) J. Zhu, P. Jia, N. Li, et al., Chin. Chem. Lett. 29 (2018) 1445-1450;
      (b) Z. Lei, X. Li, X. Luo, et al., Angew. Chem. Int. Ed. 56 (2017) 2979-2983;
      (c) J. Zhu, X. Liu, J. Huang, et al., Chin. Chem. Lett. 30 (2019) 1767-1774.

    16. [16]

      B.A.D. Neto, P.H.P.R. Carvalho, J.R. Correa, Acc. Chem. Res. 48 (2015) 1560-1569.  doi: 10.1021/ar500468p

    17. [17]

      (a) X. Han, X. Lv, Z. Chen, et al., Chin. J. Chem. 33 (2015) 1064-1068;
      (b) G. Li, Y. Guan, F. Ye, et al., Spectrochim. Acta A: Mol. Biomol. Spectrosc. 239 (2020);
      (c) Y. Zhang, H. Chen, D. Chen, et al., Sens. Actuators B: Chem. 224 (2016) 907-914;
      (d) S. Oh, J. Jeon, J. Jeong, et al., Anal. Chem. 92 (2020) 4917-4925;
      (e) J.J. Lee, Y.S. Kim, E. Nam, et al., Dalton Trans. 45 (2016) 5700-5712;
      (f) Y. Liu, M. Chen, T. Cao, et al., J. Am. Chem. Soc. 135 (2013) 9869-9876;
      (g) Z. Guo, W. Zhu, L. Shen, et al., Angew. Chem. Int. Ed. 46 (2007) 5549-5553;
      (h) J. Du, J. Fan, X. Peng, et al., Org. Lett. 12 (2010) 476-479;
      (i) Y. Zhang, W. Shi, D. Feng, et al., Sens. Actuators B: Chem. 153 (2011) 261-265;
      (j) A. CosKun, E.U. Akkaya, J. Am. Chem. Soc. 128 (2006) 14474-14475;
      (k) E.M. Nolan, S.J. Lippard, J. Am. Chem. Soc. 125 (2003) 14270-14271;
      (l) X. Zhang, Y. Xiao, X. Qian, Angew. Chem. Int. Ed. 47 (2008) 8025-8029;
      (m) G. Feng, Y. Ding, Z. Gong, et al., Anal. Sci. 29 (2013) 735-740;
      (n) L. Tang, H. Yu, K. Zhong, et al., RSC Adv. 9 (2019) 23316-23323.

  • 加载中
    1. [1]

      Huamei ZhangJingjing LiuMingyue LiShida MaXucong ZhouAixia MengWeina HanJin Zhou . Imaging polarity changes in pneumonia and lung cancer using a lipid droplet-targeted near-infrared fluorescent probe. Chinese Chemical Letters, 2024, 35(12): 110020-. doi: 10.1016/j.cclet.2024.110020

    2. [2]

      Han-Min WangYan-Chen LiLu-Lu SunMing-Ye TangJia LiuJiahao CaiLei DongJia LiYi ZangHai-Hao HanXiao-Peng He . Protein-encapsulated long-wavelength fluorescent probe hybrid for imaging lipid droplets in living cells and mice with non-alcoholic fatty liver. Chinese Chemical Letters, 2024, 35(11): 109603-. doi: 10.1016/j.cclet.2024.109603

    3. [3]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    4. [4]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    5. [5]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    6. [6]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    7. [7]

      Shu TianWenxin HuangJunrui HuHuiling WangZhipeng ZhangLiying XuJunrong LiYao Sun . Exploring the frontiers of plant health: Harnessing NIR fluorescence and surface-enhanced Raman scattering modalities for innovative detection. Chinese Chemical Letters, 2025, 36(3): 110336-. doi: 10.1016/j.cclet.2024.110336

    8. [8]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    9. [9]

      Tao LiuXuwei HanXueyi SunWeijie ZhangKe GaoRunan MinYuting TianCaixia Yin . An activated fluorescent probe to monitor NO fluctuation in Parkinson’s disease. Chinese Chemical Letters, 2025, 36(3): 110170-. doi: 10.1016/j.cclet.2024.110170

    10. [10]

      Fan ZhengRunsha XiaoShuai HuangZhikang ChenChen LaiAnyao BiHeying YaoXueping FengZihua ChenWenbin Zeng . Accurate visualization colorectal cancer by monitoring viscosity variations with a novel mitochondria-targeted fluorescent probe. Chinese Chemical Letters, 2025, 36(2): 109876-. doi: 10.1016/j.cclet.2024.109876

    11. [11]

      Zhixiao XiongShanni QiuYuyu WangHouna DuanYi XiaoYufang XuWeiping ZhuXuhong Qian . Photocalibrated NO release from the zinc ion fluorescent probe based on naphthalimide and its application in living cells. Chinese Chemical Letters, 2025, 36(4): 110002-. doi: 10.1016/j.cclet.2024.110002

    12. [12]

      Jiayu ZengMinhui LiuTing YangJia HuangSongjiao LiWanting ZhangDan ChengLongwei HeJia Zhou . Two-dimensional design strategy to construct smart dual-responsive fluorescent probe for the precise tracking of ischemic stroke. Chinese Chemical Letters, 2025, 36(5): 110166-. doi: 10.1016/j.cclet.2024.110166

    13. [13]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    14. [14]

      Lei ShenHongmei LiuMing JinJinchao ZhangCaixia YinShuxiang WangYutao Yang . “Three-in-one” strategy of trifluoromethyl regulated blood-brain barrier permeable fluorescent probe for peroxynitrite and antiepileptic evaluation of edaravone. Chinese Chemical Letters, 2024, 35(10): 109572-. doi: 10.1016/j.cclet.2024.109572

    15. [15]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

    16. [16]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    17. [17]

      Meiling ZhaoYao LuYutao ZhangHaoyun XueZhiqian Guo . Ultra-high signal-to-noise ratio near-infrared chemiluminescent probe for in vivo sensing singlet oxygen. Chinese Chemical Letters, 2025, 36(5): 110105-. doi: 10.1016/j.cclet.2024.110105

    18. [18]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    19. [19]

      Brandon BishopShaofeng HuangHongxuan ChenHaijia YuHai LongJingshi ShenWei Zhang . Artificial transmembrane channel constructed from shape-persistent covalent organic molecular cages capable of ion and small molecule transport. Chinese Chemical Letters, 2024, 35(11): 109966-. doi: 10.1016/j.cclet.2024.109966

    20. [20]

      Xu QuPengzhao WuKaixuan DuanGuangwei WangLiang-Liang GaoYuan GuoJianjian ZhangDonglei Shi . Self-calibrating probes constructed on a unique dual-emissive fluorescence platform for the precise tracking of cellular senescence. Chinese Chemical Letters, 2024, 35(12): 109681-. doi: 10.1016/j.cclet.2024.109681

Metrics
  • PDF Downloads(5)
  • Abstract views(730)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return