Citation: Kaida Zhou, Jianqiang Chen, Jie Wu. Assembly of 3-sulfonated 2H-pyrrol-2-ones through the insertion of sulfur dioxide with allenoic amides[J]. Chinese Chemical Letters, ;2020, 31(12): 2996-2998. doi: 10.1016/j.cclet.2020.08.037 shu

Assembly of 3-sulfonated 2H-pyrrol-2-ones through the insertion of sulfur dioxide with allenoic amides

    * Corresponding author at: School of Pharmaceutical and Materials Engineering &Institute for Advanced Studies, Taizhou University, Taizhou 318000, China.
    E-mail address: jie_wu@fudan.edu.cn (J. Wu).
  • Received Date: 27 July 2020
    Revised Date: 6 August 2020
    Accepted Date: 24 August 2020
    Available Online: 27 August 2020

Figures(3)

  • Generation of 3-sulfonated 2H-pyrrol-2-ones through a three-component reaction of allenoic amides, sulfur dioxide, and aryldiazonium tetrafluoroborates under metal-free conditions is achieved. This transformation proceeds under mild conditions without the addition of catalysts or additives, giving rise to 3-sulfonated 2H-pyrrol-2-ones in moderate to good yields. Good functional group compatibility is observed. A plausible mechanism is proposed, which is initiated by aryl radicals formed in situ from aryldiazonium tetrafluoroborates and DABCO·(SO2)2. Additionally, excellent chemoselectivity and regioselectivity are presented in this transformation.
  • 加载中
    1. [1]

      (a) K.C. Nicolaou, L. Shi, M. Lu, et al., Angew. Chem. Int. Ed. 53 (2014) 10970-10974;
      (b) H. Uchiro, N. Shionozaki, R. Tanaka, et al., Tetrahedron Lett. 54 (2013) 506-511;
      (c) R. Tanaka, K. Ohishi, N. Takanashi, et al., Org. Lett. 14 (2012) 4886-4889.

    2. [2]

      (a) L.N. Kirpotina, I.A. Schepetkin, A.I. Khlebnikov, et al., Biochem. Pharmacol. 142 (2017) 120-132;
      (b) K. Ma, P. Wang, W. Fu, et al., Bioorg. Med. Chem. Lett. 21 (2011) 6724-6727;
      (c) C. Zhuang, Z. Miao, L. Zhu, et al., J. Med. Chem. 55 (2012) 9630-9642;
      (d) C. Peifer, R. Selig, K. Kinkel, et al., J. Med. Chem. 51 (2008) 3814-3824.

    3. [3]

      X. del Corte, A. López-Francés, A. Maestro, et al., J. Org. Chem. 85(2020) 14369-14383.  doi: 10.1021/acs.joc.0c00280

    4. [4]

      (a) K.E.O. Ylijoki, J.M. Stryker, Chem. Rev. 113 (2013) 2244-2266;
      (b) M.E. Garst, B.J. McBride, J.G. Douglass Ⅲ, Tetrahedron Lett. 24 (1983) 1675-1678.

    5. [5]

      (a) J.T. Palmer, D. Rasnick, J.L. Klaus, D. Brömme, J. Med. Chem. 38 (1995) 3193-3196;
      (b) D.C. Meadows, T.B. Mathews, T.W. North, et al., J. Med. Chem. 48 (2005) 4526-4534;
      (c) D.C. Meadows, J. Gervay-Hague, Med. Res. Rev. 26(2006) 793-814;
      (d) R. Ettari, E. Nizi, M.E. Di Francesco, et al., J. Med. Chem. 51 (2008) 988-996;
      (e) R. van der Westhuyzen, E. Strauss, J. Am. Chem. Soc. 132 (2010) 12853-12855.

    6. [6]

      (a) G. Qiu, K. Zhou, L. Gao, J. Wu, Org. Chem. Front. 5 (2018) 691-705;
      (b) K. Hofman, N. Liu, G. Manolikakes, Chem. Eur. J. 24 (2018) 11852-11863;
      (c) G. Liu, C. Fan, J. Wu, Org. Biomol. Chem. 13 (2015) 1592-1599;
      (d) G. Qiu, L. Lai, J. Cheng, J. Wu, Chem. Commun. 54 (2018) 10405-10414;
      (e) G. Qiu, K. Zhou, J. Wu, Chem. Commun. 54 (2018) 12561-12569;
      (f) A.S. Deeming, E.J. Emmett, C.S. Richards-Taylor, M.C. Willis, Synthesis 46 (2014) 2701-2710;
      (g) S. Ye, M. Yang, J. Wu, Chem. Commun. 56 (2020) 4145-4155;
      (h) S. Ye, G. Qiu, J. Wu, Chem. Commun. 55 (2019) 1013-1019;
      (i) F.S. He, M. Yang, S. Ye, J. Wu, Chin. Chem. Lett. 31 (2020), doi: http://dx.doi.org/10.1016/j.cclet.2020.04.043.

    7. [7]

      (a) D. Zheng, Y. An, Z. Li, J. Wu, Angew. Chem. Int. Ed. 53 (2014) 2451-2454;
      (b) D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 55 (2016) 11925-11929;
      (c) X. Gong, M. Wang, S. Ye, J. Wu, Org. Lett. 21 (2019) 1156-1160;
      (d) S. Ye, D. Zheng, J. Wu, G. Qiu, Chem. Commun. 55 (2019) 2214-2217;
      (e) S. Ye, Y. Li, J. Wu, Z. Li, Chem. Commun. 55 (2019) 2489-2492;
      (f) X. Gong, X. Li, W. Xie, J. Wu, S. Ye, Org. Chem. Front. 6 (2019) 1863-1867;
      (g) S. Ye, T. Xiang, X. Li, J. Wu, Org. Chem. Front. 6 (2019) 2183-2199;
      (h) J. Zhang, W. Xie, S. Ye, J. Wu, Org. Chem. Front. 6 (2019) 2254-2259;
      (i) F.S. He, X. Gong, P. Rojsitthisak, J. Wu, J. Org. Chem. 84 (2019) 13159-13163;
      (j) S. Ye, X. Li, W. Xie, J. Wu, Asian J. Org. Chem. 8 (2019) 893-898.

    8. [8]

      (a) K. Zhou, J.B. Liu, W. Xie, S. Ye, J. Wu, Chem. Commun. 56 (2020) 2554-2557;
      (b) S. Ye, K. Zhou, P. Rojsitthisak, J. Wu, Org. Chem. Front. 7 (2020) 14-18;
      (c) J. Zhang, M. Yang, J.B. Liu, F.S. He, J. Wu, Chem. Commun. 56 (2020) 3225-3228;
      (d) X. Gong, M. Yang, J.B. Liu, F.S. He, X. Fan, J. Wu, Green Chem. 22 (2020) 1906-1910;
      (e) X. Gong, M. Yang, J.B. Liu, F.S. He, J. Wu, Org. Chem. Front. 7 (2020) 938-943.

    9. [9]

      (a) Y. Li, S. Chen, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59 (2020) 8907-8911;
      (b) Y. Meng, M. Wang, X. Jiang, Angew. Chem. Int. Ed. 59(2020) 1346-1353;
      (c) C.M. Huang, J. Li, S.Y. Wang, S.J. Ji, Chin. Chem. Lett. 31 (2020) 1923-1926;
      (d) M. Wang, J. Zhao, X. Jiang, ChemSusChem 12 (2019) 3064-3068;
      (e) M. Wang, Q. Fan, X. Jiang, Green Chem. 20 (2018) 5469-5473;
      (f) L.W. Ye, C. Shua, F. Gagosz, Org. Biomol. Chem. 12 (2014) 1833-1845;
      (g) Y. Park, S. Chang, Nat. Catal. 2 (2019) 219-227;
      (h) Q. Xing, C.M. Chan, Y.W. Yeung, W.Y. Yu, J. Am. Chem. Soc. 141 (2019) 3849-3853;
      (i) B.H. Zhu, C.M. Wang, H.Y. Su, L.W. Ye, Chin. J. Chem. 37 (2019) 58-62;
      (j) C. Shu, M.Q. Liu, S.S. Wang, L. Li, L.W. Ye, J. Org. Chem. 78 (2013) 3292-3299.

  • 加载中
    1. [1]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    2. [2]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    3. [3]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    4. [4]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    5. [5]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    6. [6]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    7. [7]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    8. [8]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    9. [9]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    10. [10]

      Xiuwen XuQuan ZhouYacong WangYunjie HeQiang WangYuan WangBing Chen . Expanding the toolbox of metal-free organic halide perovskite for X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109272-. doi: 10.1016/j.cclet.2023.109272

    11. [11]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    12. [12]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    13. [13]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    14. [14]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    15. [15]

      Jian Yang Guang Yang Zhijie Chen . Capturing carbon dioxide from air by using amine-functionalized metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(5): 100267-100267. doi: 10.1016/j.cjsc.2024.100267

    16. [16]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    17. [17]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    18. [18]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    19. [19]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    20. [20]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

Metrics
  • PDF Downloads(8)
  • Abstract views(959)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return