Citation: Zhan Haiyin, Wang Yutong, Mi Xueyue, Zhou Zhiruo, Wang Pengfei, Zhou Qixing. Effect of graphitic carbon nitride powders on adsorption removal of antibiotic resistance genes from water[J]. Chinese Chemical Letters, ;2020, 31(10): 2843-2848. doi: 10.1016/j.cclet.2020.08.015 shu

Effect of graphitic carbon nitride powders on adsorption removal of antibiotic resistance genes from water

    *Corresponding authors.
    E-mail addresses: pengfeiwang@hebut.edu.cn (P. Wang), zhouqx@nankai.edu.cn (Q. Zhou).
    1 These authors contributed equally to this work and should be considered cofirst authors.
  • Received Date: 15 June 2020
    Revised Date: 7 August 2020
    Accepted Date: 11 August 2020
    Available Online: 13 August 2020

Figures(5)

  • There is a growing need to eliminate antibiotic resistance genes (ARGs) in the environment and mitigate widespread antibiotic resistance. Graphitic carbon nitride (g-C3N4) was successfully synthesized via facile thermal polymerization approach and its potential for adsorption treatment of ARGs in water was examined. Batch adsorption experimental results revealed that g-C3N4 powders had robust adsorption activity for the gene ampC and ermB. Adsorption kinetics and isotherms were systematically investigated to explain the adsorption mechanism. The apparent adsorption equilibrium could be reached within 180 min. The adsorption process effectively removed ARGs (ampC and ermB) from water with 3.2 log and 4.2 log reductions, respectively. In addition, experimental data were analyzed by several models and simulated well with Langmuir isotherm and pseudo-second-order model. It indicated that adsorption process might be dominated by the chemical rate-limiting step. Moreover, the effects of temperature and pH on the removal of ARGs were conducted and the isoelectric point (IEP) was obtained. Finally, we have demonstrated that the g-C3N4 is a novel adsorbent and can be used as column packing to remove ARGs by filtration.
  • Heterocyclic substructures have been extensively studied for their powerful applications in construction of bioactive compounds [1-4]. Among them, pyrazole ring as an important functional group has already been used in the development of pharmaceuticals and agrochemicals due to its derivatives bearing multitudinous bioactivities, including anti-inflammatory, antitumor, herbicidal, insecticidal, antifungal, and antibacterial activities [5-13]. Furthermore, some pyrazole compounds have already been commercialized as fungicides, like sedaxane (Syngenta, 2005), isopyrazam (Syngenta, 2006), bixafen (Bayer, 2005), and fluxapyroxad (BASF, 2008) [14-17]. As another crucial scaffold, 1, 3, 4-oxadiazole, has exerted promising applications in creating new agrochemicals on account of the diverse bioactivities of its derivatives [18-21]. In our previous work, we had found a series of new 1, 3, 4-oxadiazole sulfone compounds (structure depicted in Fig. 1, lead compound) with high antibacterial/fungicidal bioactivities [22-24]. In order to find new structures with antibacterial/antifungal bioactivities, the two functional moieties of pyrazole and 1, 3, 4-oxadiazole were combined into one molecule by replacing the phenyl group to pyrazole moiety at the 5-position of the lead compound, as shown in Fig. 1. All the title compounds were bioassayed against pathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo) and five phytopathogenic fungi.

    图 1

    图 1  Design strategy of the target compounds.
    Figure 1.  Design strategy of the target compounds.

    All the chemicals were purchased from Aladdin and used as received. The organic solvents were distilled before used. NMR spectra were obtained by using a JEOL-ECX-500 apparatus. Chemical shifts were reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (J) were reported in Hz and referred to apparent peak multiplications. MS data were recorded on an Agilent ESI-MSD Trap (VL) mass instrument.

    A solution of carbon disulfide (0.015 mol) in ethanol (10 mL) was added dropwise to the mixture of compound 4 (0.01 mol) and potassium hydroxide (0.012 mol) in ethanol (40 mL) at room temperature. Then, the reaction mixture was heated under reflux with stirring for 8 h. After the reaction was completed, ethanol was evaporated to give unpurified intermediate 5. An appropriate halohydrocarbon (0.01 mol) was added to the solution of unpurified intermediate 5 in water (20 mL) and the mixture was stirred for 1 h at room temperature. The solid was filtered, purified by column chromatography using a mixture of petroleum ether and ethyl acetate (10:1) as the eluent, and then the pure target compounds (6a-6o) were obtained.

    The compound (6a-6i) (5 mmol) and acetic acid (15 mL) were added to a 50 mL three-neck round-bottom flask equipped with a magnetic stirrer. The resulting solution was stirred for 10 min when a clear solution was obtained, and then 7% KMnO4 solution (5 mmol) was added dropwise at room temperature and the progress of the reaction was monitored by thin layer chromatography (TLC) using petroleum ether:ethyl acetate (3:1). After the reaction was completed, 10% NaHSO3 solution was added to deoxidize the unreacted KMnO4. The resulted solid was filtered, washed with water, from which the pure compounds (7a-7i) can be obtained by column chromatography using a mixture of petroleum ether and ethyl acetate (15:1) as the eluent.

    In our study, all the synthesized target compounds were evaluated for their antibacterial activities against Xoo by the turbidimeter test in vitro. Dimethylsulfoxide in sterile distilled water served as a blank control, Bismerthiazol and Thiodiazole Copper served as the positive controls. Approximately 40 μL of solvent NB (1.5 g beef extract, 2.5 g peptone, 0.5 g yeast powder, 5.0 g glucose, and 500 mL distilled water; pH 7.0-7.2) containing Xoo, incubated on the phase of logarithmic growth, was added to 5 mL of solvent NB containing the test compounds and positive control. The inoculated test tubes were incubated at 28±1 ℃ and continuously shaken at 180 rpm for 24-48 h until the bacteria were incubated on the logarithmic growth phase. The growth of the cultures was monitored on a microplate reader by measuring the optical density at 595 nm (OD595) given by turbidity corrected values=ODbacterial wilt-ODno bacterial wilt, and the inhibition rate I was calculated by I=(C -T)/C × 100%. C is the corrected turbidity values of bacterial growth on untreated NB (blank control), and T is the corrected turbidity values of bacterial growth on treated NB. The experiment was repeated three times.

    The synthesis and structures of (6a-6o), and (7a-7i) are shown in Scheme 1. Briefly, ethyltrifluoroacetoacetate (1) was treated with triethoxymethane to give intermediate (E)-2-trifluoroacetyl-3-ethoxy-2-propenoate (2), followed by the cyclocondensation reaction to provide an important intermediate ethyl 1-phenyl-5-(trifluoromethyl)-1H-pyrazole-4-carboxylate (3) containing pyrazole group in 82% yield. Next, the hydrazide 4 was obtained through refluxing 3 in hydrazine hydrate with the yield of 94%. A subsequent reaction with carbon disulfide in the presence of potassium hydroxide leaded to the formation of the crucial intermediate 5 containing 1, 3, 4-oxadiazole. Finally, the corresponding target thioethers (6a-6o) were achieved via thioetherification with halogenated agents in good yields ranging from 76% to 85%, and subsequently converted into the corresponding sulfones (7a-7i) by oxidizing the related thioether at room temperature. All the structures were confirmed by 1H NMR, 13C NMR, and MS (detailed information see Supplementary data).

    Scheme 1

    Scheme 1  Synthetic route of 2-(thioether/sulfone)-5-pyrazolyl-1, 3, 4-oxadiazole derivatives (6a-6o) and (7a-7i).
    Scheme 1.  Synthetic route of 2-(thioether/sulfone)-5-pyrazolyl-1, 3, 4-oxadiazole derivatives (6a-6o) and (7a-7i).

    In our study, we first evaluated the antibacterial activity of all the title compounds via turbidmeter test [25-27] against pathogenic bacteria Xanthomonas oryzae pv. oryzae (Xoo), which was considered as one of devastative bacteria against rice in ricegrowing countries. Meanwhile, the commercial agricultural antibacterial bismerthiazol (BT) and thiodiazole copper (TC) were employed for the comparison of bioactivity in vitro. Preliminary bioassays revealed that most of the target compounds exerted appreciable inhibition bioactivity against Xoo in the dosage of 200 or 100 μg/mL (Table 1). Among them, compounds 6c, 6e, 6f, 6j, 7a, 7b, and 7c gives the inhibition rate above 72.3% against Xoo in the dosage of 200 μg/mL, which were better than that of BT (72.1%) and TC (64.2%); while compounds 6c, 6f, 7a, 7b, and 7c offersbetter inhibition rate above 66.2% against Xoo than that of BT (53.7%) and TC (43.1%) in the dosage of 100 μg/mL. The half-maximal effective concentration (EC50) values of 6c, 7a, 7b, and 7c were detected as 47.5, 31.6, 65.7, and 16.6 μg/mL, respectively, which were obviously better than that of commercial bactericides (92.6 or 121.8 μg/mL). Based on the above results, among all the thioether compounds (6a-6o), the isopropyl group compound (6c) exhibited the best bioactivity against Xoo than the other groups, while for benzyl thioether compounds, 4-methylbenzyl thioether (6f) gives superior activity than the other substituted benzyl in the dosage of 200 μg/mL or 100 μg/mL. For sulfone compounds, the antibacterial activity of alkyl sulfone compounds (such as 7a-7c) was dramatically better than the benzyl derivatives.

    表 1

    表 1  Inhibition effect of sulfides/sulfones against Xoo.
    Table 1.  Inhibition effect of sulfides/sulfones against Xoo.
    下载: 导出CSV

    The antifungal activity of (6a-6o) and (7a-7i) was examined via the poisonplate technique [28] against fivephytopathogenic fungi, Gibberella zeae (G. z.), Fusarium oxysporum (F. o.), Cytospora mandshurica (C. m.), Sclertinia sclerotiorum (S. s.), and Rhizoctonia solani (R. s.) at the concentrate of 100 μg/mL, Meanwhile, the commercial agricultural antifungal Hymexazol (HM) and Carbendazim (CB) were employed for the comparison of bioactivity. As shown in Table 2, compounds 7a and 7c were observed having comprehensive antifungal activity with the inhibition rate ranging from 53.8% to 75.5% against the five kinds of fungi, which were comparable to the commercial fungicide HM. It is worth pointing out that compound 6j exerted good antifungal activity with the inhibition rate of 86.4% against S. sclerotiorum. In comparison of 6a and 7a, 6b and 7b, 6c and 7c, 6d and 7d, 6f and 7f, the antifungal activity was improved after oxidizing the thioether into the sulfone, further suggested sulfonyl group as a crucial functional group may improve the bioactivity of the target compound. It can be seen that compound 7a showed the strongest antifungi activity against the five phytopathogenic fungi.

    表 2

    表 2  Inhibition effect of sulfides/sulfones at 100 μg/mL against five phytopathogenic fungi.
    Table 2.  Inhibition effect of sulfides/sulfones at 100 μg/mL against five phytopathogenic fungi.
    下载: 导出CSV

    In summary, a series of 2-(thioether/sulfone)-5-pyrazolyl-1, 3, 4-oxadiazole derivatives containing both pyrazole moiety and 1, 3, 4-oxadiazole moiety were designed and synthesized, and which antibacterial activity and antifungal activity were evaluated via turbidmeter test or the poison plate technique in vitro. Compounds 6c, 7a, 7b and 7c showed good inhibition effects against Xoo with the EC50 values ranging from 16.6 μg/mL to 65.7 μg/mL, which were better than those of commercial agricultural antibacterial bismerthiazol (92.6 μg/mL) and thiediazole copper (121.8 μg/mL). Meanwhile, compounds 7a, 7b, and 7c exerted good antifungal activities against fiveplant fungi, which were comparable tothatof HM. The results demonstrated that this kind of compounds can be further studied and developed as promising antifungal and antibacterial agents.

    We acknowledge the financial support of the Key Technologies R & D Program (No. 2014BAD23B01), National Natural Science Foundation of China (No. 21372052), the Research Project of Chinese Ministry of Education (Nos. 213033A, 20135201110005), and Scientific Research Foundation for the Introduced Talents of Guizhou University (2015-34).

    Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cclet.2016.06.055

    1. [1]

      S.P. Rong, Y.B. Sun, Z.H. Zhao, Chin. Chem. Lett. 25(2014) 187-192.  doi: 10.1016/j.cclet.2013.11.003

    2. [2]

      J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 74(2010) 417-433.  doi: 10.1128/MMBR.00016-10

    3. [3]

      D.I. Andersson, D. Hughes, FEMS Microbiol. Rev. 35(2011) 901-911.  doi: 10.1111/j.1574-6976.2011.00289.x

    4. [4]

      Y. Agersø, D. Sandvang, Appl. Environ. Microb. 71(2005) 7941-7947.  doi: 10.1128/AEM.71.12.7941-7947.2005

    5. [5]

      C. Rodriguez, L. Lang, A. Wang, K. Altendorf, et al., Appl. Environ. Microb. 72(2006) 5870-5876.  doi: 10.1128/AEM.00963-06

    6. [6]

      F.F. Reinthaler, J. Posch, G. Feierl, et al., Water Res. 37(2003) 1685-1690.  doi: 10.1016/S0043-1354(02)00569-9

    7. [7]

      J.C. Chee-Sanford, R.I. Aminov, I.J. Krapac, et al., Appl. Environ. Microb. 67(2001) 1494-1502.  doi: 10.1128/AEM.67.4.1494-1502.2001

    8. [8]

      C.W. Xi, Y.L. Zhang, C.F. Marrs, et al., Appl. Environ. Microb. 75(2009) 5714-5718.  doi: 10.1128/AEM.00382-09

    9. [9]

      J. Li, B. Shao, J.Z. Shen, et al., Environ. Sci. Technol. 47(2013) 2892-2897.  doi: 10.1021/es304616c

    10. [10]

      A. Pruden, R. Pei, H. Storteboom, K.H. Carlson, Environ. Sci. Technol. 40(2006) 7445-7450.  doi: 10.1021/es060413l

    11. [11]

      C.W. McKinney, A. Pruden, Environ. Sci. Technol. 46(2012) 13393-13400.  doi: 10.1021/es303652q

    12. [12]

      K.M. Nielsen, P.J. Johnsen, D. Bensasson, D. Daffonchio, Environ. Biosaf. Res. 6(2007) 37-53.  doi: 10.1051/ebr:2007031

    13. [13]

      D.N. Wang, L. Liu, Z.G. Qiu, et al., Water Res. 92(2016) 188-198.  doi: 10.1016/j.watres.2016.01.035

    14. [14]

      D.Q. Mao, Y. Luo, J. Mathieu, et al., Environ. Sci. Technol. 48(2014) 71-78.  doi: 10.1021/es404280v

    15. [15]

      G. Pietramellara, J. Ascher, F. Borgogni, et al., Biol. Fertil. Soils 45(2009) 219-235.  doi: 10.1007/s00374-008-0345-8

    16. [16]

      D.J. Levy-Booth, R.G. Campbell, R.H. Gulden, et al., Soil Biol. Biochem. 39(2007) 2977-2991.  doi: 10.1016/j.soilbio.2007.06.020

    17. [17]

      N.X. Lu, J.L. Zilles, T.H. Nguyen, Appl. Environ. Microb. 76(2010) 4179-4184.  doi: 10.1128/AEM.00193-10

    18. [18]

      B. Zhu, Water Res. 40(2006) 3231-3238.  doi: 10.1016/j.watres.2006.06.040

    19. [19]

      Q.B. Yuan, M.T. Guo, J. Yang, PLoS One 10(2015) e0119403.  doi: 10.1371/journal.pone.0119403

    20. [20]

      M.T. Guo, Q.B. Yuan, J. Yang, Environ. Sci. Technol. 49(2015) 5771-5778.  doi: 10.1021/acs.est.5b00644

    21. [21]

      W.W. He, N. Li, X. Wang, T.L. Hu, X.H. Bu, Chin. Chem. Lett. 29(2018) 857-860.  doi: 10.1016/j.cclet.2017.10.003

    22. [22]

      G.C. Sun, F.Z. Zhang, Q.S. Xie, W. Luo, J.P. Yang, Chin. Chem. Lett. 31(2020) 1603-1607.  doi: 10.1016/j.cclet.2019.10.018

    23. [23]

      Y.H. Wu, Q. Chen, S. Liu, et al., Chin. Chem. Lett. 30(2019) 2186-2190.  doi: 10.1016/j.cclet.2019.08.014

    24. [24]

      Y.Y. Zhang, Z.X. Zhou, Y.F. Shen, ACS Nano 10(2016) 9036-9043.  doi: 10.1021/acsnano.6b05488

    25. [25]

      R. Hu, X.K. Wang, S.Y. Dai, et al., Chem. Eng. J. 260(2015) 469-477.  doi: 10.1016/j.cej.2014.09.013

    26. [26]

      M. Groenewolt, M. Antonietti, Adv. Mater. 17(2005) 1789-1792.  doi: 10.1002/adma.200401756

    27. [27]

      H.S. Zhai, L. Cao, X.H. Xia, Chin. Chem. Lett. 24(2013) 103-106.  doi: 10.1016/j.cclet.2013.01.030

    28. [28]

      S. Hwang, S. Lee, J.S. Yu, Appl. Surf. Sci. 253(2007) 5656-5659.  doi: 10.1016/j.apsusc.2006.12.032

    29. [29]

      D.Y. Ni, Y.Y. Zhang, Y.F. Shen, S.Q. Liu, Y.J. Zhang, Chin. Chem. Lett. 31(2020) 115-118.  doi: 10.1016/j.cclet.2019.04.068

    30. [30]

      M.X. Ran, P. Chen, J.R. Li, et al., Chin. Chem. Lett. 30(2019) 875-880.  doi: 10.1016/j.cclet.2019.03.016

    31. [31]

      F. Dong, L.W. Wu, Y.J. Sun, et al., J. Mater. Chem. 21(2011) 15171-15174.  doi: 10.1039/c1jm12844b

    32. [32]

      M. Ding, J.J. Zhou, H.C. Yang, et al., Chin. Chem. Lett. 31(2020) 71-76.  doi: 10.1016/j.cclet.2019.05.029

    33. [33]

      Q. Liu, D.B. Zhu, M.L. Guo, Y. Yu, Y.J. Cao, Chin. Chem. Lett. 30(2019) 1639-1642.  doi: 10.1016/j.cclet.2019.05.058

    34. [34]

      Y.P. Chen, H.Y. Zhang, R. Lu, A.C. Yu, Chin. Chem. Lett. 29(2018) 543-546.  doi: 10.1016/j.cclet.2017.09.022

    35. [35]

      F. Dong, Z.Y. Wang, Y.H. Li, et al., Environ. Sci. Technol. 48(2014) 10345-10353.  doi: 10.1021/es502290f

    36. [36]

      Q.K. Chen, L. Chen, J.J. Qi, et al., Chin. Chem. Lett. 30(2019) 1214-1218.  doi: 10.1016/j.cclet.2019.03.002

    37. [37]

      T. Schwartz, W. Kohnen, B. Jansen, U. Obst, FFEMS Microbiol. Ecol. 43(2003) 325-335.  doi: 10.1111/j.1574-6941.2003.tb01073.x

    38. [38]

      A. Di Cesare, D. Fontaneto, J. Doppelbauer, G. Corno, Environ. Sci. Technol. 50(2016) 10153-10161.  doi: 10.1021/acs.est.6b02268

    39. [39]

      Y. Li, M.Q. Li, J. Zhang, X.Y. Xu, Chin. Chem. Lett. 30(2019) 762-766.  doi: 10.1016/j.cclet.2018.11.005

    40. [40]

      L. Fan, C. Luo, X. Li, et al., J. Hazard. Mater. 215-216(2012) 272-279.
       

    41. [41]

      M. Wu, R. Kempaiah, P.J. Huang, et al., Langmuir 27(2011) 2731-2738.  doi: 10.1021/la1037926

    42. [42]

      H.X. Li, L.J. Rothberg, J. Am. Chem. Soc. 126(2004) 10958-10961.  doi: 10.1021/ja048749n

    43. [43]

      H.X. Li, L.J. Rothberg, Anal. Chem. 76(2004) 5414-5417.  doi: 10.1021/ac049173n

    44. [44]

      S.J. Sowerby, C.A. Cohn, W.M. Heckl, N.G. Holm, Proc. Natl. Acad. Sci. U. S. A. 98(2001) 820-822.  doi: 10.1073/pnas.98.3.820

    45. [45]

      S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, S.Karna, Phys. Rev. B 76(2007) 033401.

    46. [46]

      X.Y. Sun, P.Z. Zhang, B. Ai, Y.B. Wang, Chin. Chem. Lett. 27(2016) 139-144.  doi: 10.1016/j.cclet.2015.08.008

    47. [47]

      M.J. Chang, W.N. Cui, J. Liu, K. Wang, X.J. Chai, J. Mater. Sci. Mater. Electron. 29(2018) 6771-6778.  doi: 10.1007/s10854-018-8663-6

    48. [48]

      Y.S. Ho, G. McKay, Water Res. 34(2000) 735-742.  doi: 10.1016/S0043-1354(99)00232-8

    49. [49]

      M.S. Chiou, P.Y. Ho, H.Y. Li, Dyes Pigm. 60(2004) 69-84.  doi: 10.1016/S0143-7208(03)00140-2

    50. [50]

      M. Wu, R. Kempaiah, P.J. Huang, V. Maheshwari, J. Liu, Langmuir 27(2011) 2731-2738.  doi: 10.1021/la1037926

    51. [51]

      Z. Li, K.M. Ashraf, M.M. Collinson, D.A. Higgins, Langmuir 33(2017) 8651-8662.  doi: 10.1021/acs.langmuir.7b00044

    52. [52]

      M. Wang, Y.X. Liu, D. Li, J.W. Tang, W.X. Huang, Chin. Chem. Lett. 30(2019) 985-988.  doi: 10.1016/j.cclet.2019.01.017

    53. [53]

      Y.Q. Chen, L.B. Chen, H. Bai, L. Lei, J. Mater. Chem. A 1(2013) 1992-2001.  doi: 10.1039/C2TA00406B

    1. [1]

      S.P. Rong, Y.B. Sun, Z.H. Zhao, Chin. Chem. Lett. 25(2014) 187-192.  doi: 10.1016/j.cclet.2013.11.003

    2. [2]

      J. Davies, D. Davies, Microbiol. Mol. Biol. Rev. 74(2010) 417-433.  doi: 10.1128/MMBR.00016-10

    3. [3]

      D.I. Andersson, D. Hughes, FEMS Microbiol. Rev. 35(2011) 901-911.  doi: 10.1111/j.1574-6976.2011.00289.x

    4. [4]

      Y. Agersø, D. Sandvang, Appl. Environ. Microb. 71(2005) 7941-7947.  doi: 10.1128/AEM.71.12.7941-7947.2005

    5. [5]

      C. Rodriguez, L. Lang, A. Wang, K. Altendorf, et al., Appl. Environ. Microb. 72(2006) 5870-5876.  doi: 10.1128/AEM.00963-06

    6. [6]

      F.F. Reinthaler, J. Posch, G. Feierl, et al., Water Res. 37(2003) 1685-1690.  doi: 10.1016/S0043-1354(02)00569-9

    7. [7]

      J.C. Chee-Sanford, R.I. Aminov, I.J. Krapac, et al., Appl. Environ. Microb. 67(2001) 1494-1502.  doi: 10.1128/AEM.67.4.1494-1502.2001

    8. [8]

      C.W. Xi, Y.L. Zhang, C.F. Marrs, et al., Appl. Environ. Microb. 75(2009) 5714-5718.  doi: 10.1128/AEM.00382-09

    9. [9]

      J. Li, B. Shao, J.Z. Shen, et al., Environ. Sci. Technol. 47(2013) 2892-2897.  doi: 10.1021/es304616c

    10. [10]

      A. Pruden, R. Pei, H. Storteboom, K.H. Carlson, Environ. Sci. Technol. 40(2006) 7445-7450.  doi: 10.1021/es060413l

    11. [11]

      C.W. McKinney, A. Pruden, Environ. Sci. Technol. 46(2012) 13393-13400.  doi: 10.1021/es303652q

    12. [12]

      K.M. Nielsen, P.J. Johnsen, D. Bensasson, D. Daffonchio, Environ. Biosaf. Res. 6(2007) 37-53.  doi: 10.1051/ebr:2007031

    13. [13]

      D.N. Wang, L. Liu, Z.G. Qiu, et al., Water Res. 92(2016) 188-198.  doi: 10.1016/j.watres.2016.01.035

    14. [14]

      D.Q. Mao, Y. Luo, J. Mathieu, et al., Environ. Sci. Technol. 48(2014) 71-78.  doi: 10.1021/es404280v

    15. [15]

      G. Pietramellara, J. Ascher, F. Borgogni, et al., Biol. Fertil. Soils 45(2009) 219-235.  doi: 10.1007/s00374-008-0345-8

    16. [16]

      D.J. Levy-Booth, R.G. Campbell, R.H. Gulden, et al., Soil Biol. Biochem. 39(2007) 2977-2991.  doi: 10.1016/j.soilbio.2007.06.020

    17. [17]

      N.X. Lu, J.L. Zilles, T.H. Nguyen, Appl. Environ. Microb. 76(2010) 4179-4184.  doi: 10.1128/AEM.00193-10

    18. [18]

      B. Zhu, Water Res. 40(2006) 3231-3238.  doi: 10.1016/j.watres.2006.06.040

    19. [19]

      Q.B. Yuan, M.T. Guo, J. Yang, PLoS One 10(2015) e0119403.  doi: 10.1371/journal.pone.0119403

    20. [20]

      M.T. Guo, Q.B. Yuan, J. Yang, Environ. Sci. Technol. 49(2015) 5771-5778.  doi: 10.1021/acs.est.5b00644

    21. [21]

      W.W. He, N. Li, X. Wang, T.L. Hu, X.H. Bu, Chin. Chem. Lett. 29(2018) 857-860.  doi: 10.1016/j.cclet.2017.10.003

    22. [22]

      G.C. Sun, F.Z. Zhang, Q.S. Xie, W. Luo, J.P. Yang, Chin. Chem. Lett. 31(2020) 1603-1607.  doi: 10.1016/j.cclet.2019.10.018

    23. [23]

      Y.H. Wu, Q. Chen, S. Liu, et al., Chin. Chem. Lett. 30(2019) 2186-2190.  doi: 10.1016/j.cclet.2019.08.014

    24. [24]

      Y.Y. Zhang, Z.X. Zhou, Y.F. Shen, ACS Nano 10(2016) 9036-9043.  doi: 10.1021/acsnano.6b05488

    25. [25]

      R. Hu, X.K. Wang, S.Y. Dai, et al., Chem. Eng. J. 260(2015) 469-477.  doi: 10.1016/j.cej.2014.09.013

    26. [26]

      M. Groenewolt, M. Antonietti, Adv. Mater. 17(2005) 1789-1792.  doi: 10.1002/adma.200401756

    27. [27]

      H.S. Zhai, L. Cao, X.H. Xia, Chin. Chem. Lett. 24(2013) 103-106.  doi: 10.1016/j.cclet.2013.01.030

    28. [28]

      S. Hwang, S. Lee, J.S. Yu, Appl. Surf. Sci. 253(2007) 5656-5659.  doi: 10.1016/j.apsusc.2006.12.032

    29. [29]

      D.Y. Ni, Y.Y. Zhang, Y.F. Shen, S.Q. Liu, Y.J. Zhang, Chin. Chem. Lett. 31(2020) 115-118.  doi: 10.1016/j.cclet.2019.04.068

    30. [30]

      M.X. Ran, P. Chen, J.R. Li, et al., Chin. Chem. Lett. 30(2019) 875-880.  doi: 10.1016/j.cclet.2019.03.016

    31. [31]

      F. Dong, L.W. Wu, Y.J. Sun, et al., J. Mater. Chem. 21(2011) 15171-15174.  doi: 10.1039/c1jm12844b

    32. [32]

      M. Ding, J.J. Zhou, H.C. Yang, et al., Chin. Chem. Lett. 31(2020) 71-76.  doi: 10.1016/j.cclet.2019.05.029

    33. [33]

      Q. Liu, D.B. Zhu, M.L. Guo, Y. Yu, Y.J. Cao, Chin. Chem. Lett. 30(2019) 1639-1642.  doi: 10.1016/j.cclet.2019.05.058

    34. [34]

      Y.P. Chen, H.Y. Zhang, R. Lu, A.C. Yu, Chin. Chem. Lett. 29(2018) 543-546.  doi: 10.1016/j.cclet.2017.09.022

    35. [35]

      F. Dong, Z.Y. Wang, Y.H. Li, et al., Environ. Sci. Technol. 48(2014) 10345-10353.  doi: 10.1021/es502290f

    36. [36]

      Q.K. Chen, L. Chen, J.J. Qi, et al., Chin. Chem. Lett. 30(2019) 1214-1218.  doi: 10.1016/j.cclet.2019.03.002

    37. [37]

      T. Schwartz, W. Kohnen, B. Jansen, U. Obst, FFEMS Microbiol. Ecol. 43(2003) 325-335.  doi: 10.1111/j.1574-6941.2003.tb01073.x

    38. [38]

      A. Di Cesare, D. Fontaneto, J. Doppelbauer, G. Corno, Environ. Sci. Technol. 50(2016) 10153-10161.  doi: 10.1021/acs.est.6b02268

    39. [39]

      Y. Li, M.Q. Li, J. Zhang, X.Y. Xu, Chin. Chem. Lett. 30(2019) 762-766.  doi: 10.1016/j.cclet.2018.11.005

    40. [40]

      L. Fan, C. Luo, X. Li, et al., J. Hazard. Mater. 215-216(2012) 272-279.
       

    41. [41]

      M. Wu, R. Kempaiah, P.J. Huang, et al., Langmuir 27(2011) 2731-2738.  doi: 10.1021/la1037926

    42. [42]

      H.X. Li, L.J. Rothberg, J. Am. Chem. Soc. 126(2004) 10958-10961.  doi: 10.1021/ja048749n

    43. [43]

      H.X. Li, L.J. Rothberg, Anal. Chem. 76(2004) 5414-5417.  doi: 10.1021/ac049173n

    44. [44]

      S.J. Sowerby, C.A. Cohn, W.M. Heckl, N.G. Holm, Proc. Natl. Acad. Sci. U. S. A. 98(2001) 820-822.  doi: 10.1073/pnas.98.3.820

    45. [45]

      S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey, S.Karna, Phys. Rev. B 76(2007) 033401.

    46. [46]

      X.Y. Sun, P.Z. Zhang, B. Ai, Y.B. Wang, Chin. Chem. Lett. 27(2016) 139-144.  doi: 10.1016/j.cclet.2015.08.008

    47. [47]

      M.J. Chang, W.N. Cui, J. Liu, K. Wang, X.J. Chai, J. Mater. Sci. Mater. Electron. 29(2018) 6771-6778.  doi: 10.1007/s10854-018-8663-6

    48. [48]

      Y.S. Ho, G. McKay, Water Res. 34(2000) 735-742.  doi: 10.1016/S0043-1354(99)00232-8

    49. [49]

      M.S. Chiou, P.Y. Ho, H.Y. Li, Dyes Pigm. 60(2004) 69-84.  doi: 10.1016/S0143-7208(03)00140-2

    50. [50]

      M. Wu, R. Kempaiah, P.J. Huang, V. Maheshwari, J. Liu, Langmuir 27(2011) 2731-2738.  doi: 10.1021/la1037926

    51. [51]

      Z. Li, K.M. Ashraf, M.M. Collinson, D.A. Higgins, Langmuir 33(2017) 8651-8662.  doi: 10.1021/acs.langmuir.7b00044

    52. [52]

      M. Wang, Y.X. Liu, D. Li, J.W. Tang, W.X. Huang, Chin. Chem. Lett. 30(2019) 985-988.  doi: 10.1016/j.cclet.2019.01.017

    53. [53]

      Y.Q. Chen, L.B. Chen, H. Bai, L. Lei, J. Mater. Chem. A 1(2013) 1992-2001.  doi: 10.1039/C2TA00406B

  • 加载中
    1. [1]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    2. [2]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    3. [3]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    4. [4]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    8. [8]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    9. [9]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    10. [10]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    11. [11]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    12. [12]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    13. [13]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    14. [14]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    15. [15]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    16. [16]

      Xudong ZhaoYuxuan WangXinxin GaoXinli GaoMeihua WangHongliang HuangBaosheng Liu . Anchoring thiol-rich traps in 1D channel wall of metal-organic framework for efficient removal of mercury ions. Chinese Chemical Letters, 2025, 36(2): 109901-. doi: 10.1016/j.cclet.2024.109901

    17. [17]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    18. [18]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    19. [19]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    20. [20]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

Metrics
  • PDF Downloads(2)
  • Abstract views(679)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return