Citation: Sun Junjie, Zheng Wanzhen, Lyu Siliu, He Feng, Yang Bin, Li Zhongjian, Lei Lecheng, Hou Yang. Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate[J]. Chinese Chemical Letters, ;2020, 31(6): 1415-1421. doi: 10.1016/j.cclet.2020.04.031 shu

Bi/Bi2O3 nanoparticles supported on N-doped reduced graphene oxide for highly efficient CO2 electroreduction to formate

    * Corresponding authors.
    E-mail addresses: fenghe@zjut.edu.cn (F. He), yhou@zju.edu.cn (Y. Hou).
    1 These two authors contributed equally to this work.
  • Received Date: 28 March 2020
    Revised Date: 12 April 2020
    Accepted Date: 16 April 2020
    Available Online: 22 April 2020

Figures(6)

  • Electrocatalytic CO2 reduction (CO2ER) into formate is a desirable route to achieve efficient transformation of CO2 to value-added chemicals, however, it still suffers from limited catalytic activity and poor selectivity. Herein, we develop a hybrid electrocatalyst composed of bismuth and bismuth oxide nanoparticles (NPs) supported on nitrogen-doped reduced graphene oxide (Bi/Bi2O3/NrGO) nanosheets prepared by a combined hydrothermal with calcination treatment. Thanks to the combination of undercoordinated sites and strong synergistic effect between Bi and Bi2O3, Bi/Bi2O3/NrGO-700 hybrid displays a promoted CO2ER catalytic performance and selectivity for formate production, as featured by a small onset potential of -0.5 V, a high current density of -18 mA/cm2, the maximum Faradaic efficiency of 85% at -0.9 V, and a low Tafel slope of 166 mV/dec. Experimental results reveal that the higher CO2ER performance of Bi/Bi2O3/NrGO-700 than that of Bi NPs supported on NrGO (Bi/NrGO) can be due to the partial reduction of Bi2O3 NPs into Bi, which significantly increases undercoordinated active sites on Bi NPs surface, thus boosting its CO2ER performance. Furthermore, a two-electrode device with Ir/C anode and Bi/Bi2O3/NrGO-700 cathode could be integrated with two alkaline batteries or a planar solar cell to achieve highly active water splitting and CO2ER.
    1. [1]

      (a) F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 56 (2017) 505-509;
      (b) C. Lu, J. Yang, S. Wei, et al., Adv. Funct. Mater. 29 (2019) 1806884;
      (c) T. Wang, Q. Zhao, Y. Fu, et al., Small Methods 3 (2019) 1900210;
      (d) W. Xiong, J. Yang, L. Shuai, et al., ChemElectroChem 6 (2019) 5951-5957;
      (e) W. Zheng, J. Yang, H. Chen, et al., Adv. Funct. Mater. 30 (2019) 1907658;
      (f) W. Zheng, C. Guo, J. Yang, et al., Carbon 150 (2019) 52-59;
      (g) C. Wang, Y. Zhao, H. Xu, et al., Appl. Catal. B 263 (2020) 118314;
      (h) X. Wu, C. Wang, Y. Wei, et al., J. Catal. 377 (2019) 309-321;
      (i) Y. Zhao, Y. Wei, X. Wu, et al., Appl. Catal. B 226 (2018) 360-372.

    2. [2]

      L. Sun, V. Reddu, A.C. Fisher, X. Wang, Energy. Environ. Sci. 13(2020) 374-403.  doi: 10.1039/C9EE03660A

    3. [3]

      E. Irtem, T. Andreu, A. Parra, et al., J. Mater. Chem. A 4(2016) 13582-13588.  doi: 10.1039/C6TA04432H

    4. [4]

      Z.B. Hoffman, T.S. Gray, K.B. Moraveck, T.B. Gunnoe, G. Zangari, ACS Catal. 7(2017) 5381-5390.  doi: 10.1021/acscatal.7b01161

    5. [5]

      J. Schneider, H. Jia, K. Kobiro, et al., Energy. Environ. Sci. 5(2012) 9502-9510.  doi: 10.1039/c2ee22528j

    6. [6]

      C. Yan, H. Li, Y. Ye, et al., Energy. Environ. Sci. 11(2018) 1204-1210.  doi: 10.1039/C8EE00133B

    7. [7]

      N. Han, Y. Wang, H. Yang, et al., Nat. Commun. 9(2018) 1320.  doi: 10.1038/s41467-018-03712-z

    8. [8]

      (a) S. Gao, Y. Lin, X. Jiao, et al., Nature 529 (2016) 68-71;
      (b) H. Mistry, A.S. Varela, C.S. Bonifacio, et al., Nat. Commun. 7 (2016) 12123;
      (c) Y. Chen, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 1986-1989.

    9. [9]

      (a) S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Angew. Chem. Int. Ed. 58 (2019) 13828-13833;
      (b) Q. Gong, P. Ding, M. Xu, et al., Nat. Commun. 10 (2019) 13828-13833;
      (c) Y. Zhang, F. Li, X. Zhang, et al., J. Mater. Chem. A 6 (2018) 4714-4720;
      (d) C.C. Miao, G.Q. Yuan, ChemElectroChem 5 (2018) 3741-3747.

    10. [10]

      (a) H. Zhong, Y. Qiu, T. Zhang, et al., J. Mater. Chem. A 4 (2016) 13746-13753;
      (b) J.H. Koh, D.H. Won, T. Eom, et al., ACS Catal. 7 (2017) 5071-5077.

    11. [11]

      H. Huang, Y. He, X. Li, et al., J. Mater. Chem. A 3(2015) 24547-24556.  doi: 10.1039/C5TA07655B

    12. [12]

      C. Liu, X. Huang, J. Liu, et al., Adv. Sci. 7(2020) 1901480.  doi: 10.1002/advs.201901480

    13. [13]

      W. Zhang, Y. Hu, L. Ma, et al., Nano Energy 53(2018) 808-816.  doi: 10.1016/j.nanoen.2018.09.053

    14. [14]

      M. Ahila, M. Malligavathy, E. Subramanian, D.P. Padiyan, Solid State Ionics 298(2016) 23-34.  doi: 10.1016/j.ssi.2016.10.017

    15. [15]

      J. Hou, C. Yang, Z. Wang, et al., Appl. Catal. B 142-143(2013) 504-511.

    16. [16]

      Y. Wang, J. Zhao, Y. Zhu, et al., Colloids Surf. A 434(2013) 296-302.  doi: 10.1016/j.colsurfa.2013.05.078

    17. [17]

      Y. Yu, C. Cao, H. Liu, et al., J. Mater. Chem. A 2(2014) 1677-1681.  doi: 10.1039/C3TA14494A

    18. [18]

      P.T. Babar, A.C. Lokhande, B.S. Pawar, et al., Appl. Surf. Sci. 427(2018) 253-259.

    19. [19]

      G.H. Jiang, X. Li, Z. Wei, et al., Acta Metall. Sin. 28(2015) 460-466.  doi: 10.1007/s40195-015-0220-1

    20. [20]

      W. Tian, H. Zhang, H. Sun, et al., Adv. Funct. Mater. 26(2016) 8651-8661.  doi: 10.1002/adfm.201603937

    21. [21]

      Q. Lai, N. Yang, G. Yuan, Electrochem. Commun. 83(2017) 24-27.  doi: 10.1016/j.elecom.2017.08.015

    22. [22]

      C.W. Li, J. Ciston, M.W. Kanan, Nature 508(2014) 504-507.  doi: 10.1038/nature13249

    23. [23]

      X. Li, W. Bi, M. Chen, et al., J. Am. Chem. Soc. 139(2017) 14889-14892.  doi: 10.1021/jacs.7b09074

    1. [1]

      (a) F. Li, L. Chen, G.P. Knowles, D.R. MacFarlane, J. Zhang, Angew. Chem. Int. Ed. 56 (2017) 505-509;
      (b) C. Lu, J. Yang, S. Wei, et al., Adv. Funct. Mater. 29 (2019) 1806884;
      (c) T. Wang, Q. Zhao, Y. Fu, et al., Small Methods 3 (2019) 1900210;
      (d) W. Xiong, J. Yang, L. Shuai, et al., ChemElectroChem 6 (2019) 5951-5957;
      (e) W. Zheng, J. Yang, H. Chen, et al., Adv. Funct. Mater. 30 (2019) 1907658;
      (f) W. Zheng, C. Guo, J. Yang, et al., Carbon 150 (2019) 52-59;
      (g) C. Wang, Y. Zhao, H. Xu, et al., Appl. Catal. B 263 (2020) 118314;
      (h) X. Wu, C. Wang, Y. Wei, et al., J. Catal. 377 (2019) 309-321;
      (i) Y. Zhao, Y. Wei, X. Wu, et al., Appl. Catal. B 226 (2018) 360-372.

    2. [2]

      L. Sun, V. Reddu, A.C. Fisher, X. Wang, Energy. Environ. Sci. 13(2020) 374-403.  doi: 10.1039/C9EE03660A

    3. [3]

      E. Irtem, T. Andreu, A. Parra, et al., J. Mater. Chem. A 4(2016) 13582-13588.  doi: 10.1039/C6TA04432H

    4. [4]

      Z.B. Hoffman, T.S. Gray, K.B. Moraveck, T.B. Gunnoe, G. Zangari, ACS Catal. 7(2017) 5381-5390.  doi: 10.1021/acscatal.7b01161

    5. [5]

      J. Schneider, H. Jia, K. Kobiro, et al., Energy. Environ. Sci. 5(2012) 9502-9510.  doi: 10.1039/c2ee22528j

    6. [6]

      C. Yan, H. Li, Y. Ye, et al., Energy. Environ. Sci. 11(2018) 1204-1210.  doi: 10.1039/C8EE00133B

    7. [7]

      N. Han, Y. Wang, H. Yang, et al., Nat. Commun. 9(2018) 1320.  doi: 10.1038/s41467-018-03712-z

    8. [8]

      (a) S. Gao, Y. Lin, X. Jiao, et al., Nature 529 (2016) 68-71;
      (b) H. Mistry, A.S. Varela, C.S. Bonifacio, et al., Nat. Commun. 7 (2016) 12123;
      (c) Y. Chen, M.W. Kanan, J. Am. Chem. Soc. 134 (2012) 1986-1989.

    9. [9]

      (a) S. Liu, X.F. Lu, J. Xiao, X. Wang, X.W.D. Lou, Angew. Chem. Int. Ed. 58 (2019) 13828-13833;
      (b) Q. Gong, P. Ding, M. Xu, et al., Nat. Commun. 10 (2019) 13828-13833;
      (c) Y. Zhang, F. Li, X. Zhang, et al., J. Mater. Chem. A 6 (2018) 4714-4720;
      (d) C.C. Miao, G.Q. Yuan, ChemElectroChem 5 (2018) 3741-3747.

    10. [10]

      (a) H. Zhong, Y. Qiu, T. Zhang, et al., J. Mater. Chem. A 4 (2016) 13746-13753;
      (b) J.H. Koh, D.H. Won, T. Eom, et al., ACS Catal. 7 (2017) 5071-5077.

    11. [11]

      H. Huang, Y. He, X. Li, et al., J. Mater. Chem. A 3(2015) 24547-24556.  doi: 10.1039/C5TA07655B

    12. [12]

      C. Liu, X. Huang, J. Liu, et al., Adv. Sci. 7(2020) 1901480.  doi: 10.1002/advs.201901480

    13. [13]

      W. Zhang, Y. Hu, L. Ma, et al., Nano Energy 53(2018) 808-816.  doi: 10.1016/j.nanoen.2018.09.053

    14. [14]

      M. Ahila, M. Malligavathy, E. Subramanian, D.P. Padiyan, Solid State Ionics 298(2016) 23-34.  doi: 10.1016/j.ssi.2016.10.017

    15. [15]

      J. Hou, C. Yang, Z. Wang, et al., Appl. Catal. B 142-143(2013) 504-511.

    16. [16]

      Y. Wang, J. Zhao, Y. Zhu, et al., Colloids Surf. A 434(2013) 296-302.  doi: 10.1016/j.colsurfa.2013.05.078

    17. [17]

      Y. Yu, C. Cao, H. Liu, et al., J. Mater. Chem. A 2(2014) 1677-1681.  doi: 10.1039/C3TA14494A

    18. [18]

      P.T. Babar, A.C. Lokhande, B.S. Pawar, et al., Appl. Surf. Sci. 427(2018) 253-259.

    19. [19]

      G.H. Jiang, X. Li, Z. Wei, et al., Acta Metall. Sin. 28(2015) 460-466.  doi: 10.1007/s40195-015-0220-1

    20. [20]

      W. Tian, H. Zhang, H. Sun, et al., Adv. Funct. Mater. 26(2016) 8651-8661.  doi: 10.1002/adfm.201603937

    21. [21]

      Q. Lai, N. Yang, G. Yuan, Electrochem. Commun. 83(2017) 24-27.  doi: 10.1016/j.elecom.2017.08.015

    22. [22]

      C.W. Li, J. Ciston, M.W. Kanan, Nature 508(2014) 504-507.  doi: 10.1038/nature13249

    23. [23]

      X. Li, W. Bi, M. Chen, et al., J. Am. Chem. Soc. 139(2017) 14889-14892.  doi: 10.1021/jacs.7b09074

  • 加载中
    1. [1]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    2. [2]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    3. [3]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    4. [4]

      Yaoyin LouXiaoyang Jerry HuangKuang-Min ZhaoMark J. DouthwaiteTingting FanFa LuOuardia AkdimNa TianShigang SunGraham J. Hutchings . Stable core-shell Janus BiAg bimetallic catalyst for CO2 electrolysis into formate. Chinese Chemical Letters, 2025, 36(3): 110300-. doi: 10.1016/j.cclet.2024.110300

    5. [5]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    6. [6]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    7. [7]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    10. [10]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    11. [11]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    12. [12]

      Guanyang Zeng Xingqiang Liu Liangqiao Wu Zijie Meng Debin Zeng Changlin Yu . Novel visible-light-driven I- doped Bi2O2CO3 nano-sheets fabricated via an ion exchange route for dye and phenol removal. Chinese Journal of Structural Chemistry, 2024, 43(12): 100462-100462. doi: 10.1016/j.cjsc.2024.100462

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    15. [15]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    16. [16]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    17. [17]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    18. [18]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    19. [19]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    20. [20]

      Jijoe Samuel Prabagar Kumbam Lingeshwar Reddy Dong-Kwon Lim . Visible-light responsive gold nanoparticle and nano-sized Bi2O3-x sheet heterozygote structure for efficient photocatalytic conversion of N2 to NH3. Chinese Journal of Structural Chemistry, 2025, 44(4): 100564-100564. doi: 10.1016/j.cjsc.2025.100564

Metrics
  • PDF Downloads(10)
  • Abstract views(1327)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return