Citation: Yufeng Cao, Yanmei Chen, Zhecheng Zhang, Jin Wang, Xiaolei Yuan, Qin Zhao, Yue Ding, Yong Yao. CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest[J]. Chinese Chemical Letters, ;2021, 32(1): 349-352. doi: 10.1016/j.cclet.2020.03.058 shu

CO2 and photo-controlled reversible conversion of supramolecular assemblies based on water soluble pillar[5]arene and coumarin-containing guest

    * Corresponding authors.
    E-mail addresses: zhao.q@ntu.edu.cn (Q. Zhao), yaoyong1986@ntu.edu.cn (Y. Yao).
  • Received Date: 8 February 2020
    Revised Date: 14 March 2020
    Accepted Date: 23 March 2020
    Available Online: 27 March 2020

Figures(4)

  • In this communication, a new supramolecualr amphiphile was successfully constructed based on water soluble pillar[5]arene and a unique guest which contain a CO2 responsive tertiary amine unit and a UV responsive coumarin group. When guest molecule 1 dispersed in water, it self-assembled into sheet-like structures. Upon bubbling CO2, 1 transformed into 1H due to the tertiary amine unit was protonated, accompany the nano-sheets transformed into vesicles. Further irradiation of 1H with 365 nm light for 3 h, the coumarin group reacted with each other to form bola-type amphiphie 2H. In this case, vesicles collapsed and re-assembled into nano-tubes. However, when addition of WP5 into the solution of 1H, the vesicles transformed into micelles, this is due to the formation of supramolecular amphiphile WP5&1H. Upon irradiation of WP5&1H with 365 nm light for 3 h, nano-ribbons observed instead of micelles in the solution. Notably, nanotubes from 2H could also transform into nano-ribbons after adding WP5. The self-assembly process and the resultant assemblies were characterized by TEM, SEM, DLS, SAXS and NMR technologies. Due to both CO2 and light are pgreenq for living organisms, we anticipated our system can offer the possibilities in pon demandq drug absorption and release.
  • 加载中
    1. [1]

      (a) Y. Chang, Y. Jiao, H.E. Symons, et al., Chem. Soc. Rev. 48 (2019) 989-1003;
      (b) Y. Kim, W. Li, S. Shin, M. Lee, Acc. Chem. Res. 46 (2013) 2888-2897;
      (c) S. Moaven, J. Yu, M. Vega, D.K. Unruh, A. Cozzolino, Chem. Commun. 54 (2018) 8849-8852;
      (d) S.H.R. Shin, P.T. McAninch, I.M. Henderson, et al., Chem. Commun. 54 (2018) 9043-9046;
      (e) T.B. Schuster, D.B. Ouboter, C. Palivan, W. Meier, Langmuir 27 (2011) 4578-4584;
      (f) M.A.J. Gillissen, M.M.E. Koenigs, J.J.H. Spiering, et al., J. Am. Chem. Soc. 136 (2014) 336-343;
      (g) X. Yan, S. Li, T.R. Cook, et al., J. Am. Chem. Soc. 135 (2013) 14036-14039;
      (h) A. Zumbuehl, Langmuir 35 (2019) 10223-10232;
      (i) K. Helttunen, P. Shahgaldian, New J. Chem. 34 (2010) 2704-2714;
      (j) Z. Zhang, Z. Zhao, Y. Hou, et al., Angew. Chem. Int. Ed. 58 (2019) 8862-8866;
      (k) Y. Cai, Y. Wang, C. Wang, et al., Chin. Chem. Lett. 31 (2020) 689-692.

    2. [2]

      (a) W. Zhang, C. Gao, J. Mater. Chem. A 5 (2017) 16059-16104;
      (b) H. Xiong, D. Zhou, X. Zheng, et al., Chem. Commun. 53 (2017) 3422-3425;
      (c) C. Wang, Q. Chen, Z. Wang, X. Zhang, Angew. Chem. Int. Ed. 49 (2010) 8612-8615;
      (d) Y. Wang, H. Xu, X. Zhang, Adv. Mater. 21 (2009) 2849-2864.

    3. [3]

      (a) Y. Zhou, E. Li, R. Zhao, K. Jie, Org. Lett. 20 (2018) 4888-4892;
      (b) Q. Yan, J. Wang, Y. Yin, J. Yuan, Angew. Chem. Int. Ed. 52 (2013) 5070-5073;
      (c) C. Park, K. Lee, C. Kim, Angew. Chem., Int. Ed. 48 (2009) 1275-1278;
      (d) W. Shao, X. Liu, X.Y. Hu, J.J. Zhu, L. Wang, Chem. Commun. 54 (2018) 9462-9465;
      (e) Q. Cheng, H. Yin, C. Sun, et al., Chem. Commun. 54 (2018) 8128-8131.

    4. [4]

      (a) T. Ogoshi, S. Kanai, S. Fujinami, T.A. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 130 (2008) 5022-5023;
      (b) T. Kakuta, T.A. Yamagishi, T. Ogoshi, Acc. Chem. Res. 51 (2018) 1656-1666;
      (c) J. Chen, Y. Wang, C. Wang, et al., Chem. Commum. 55 (2019) 6817-6826;
      (d) P. Li, Q. Yao, B. Lil, G. Ma, M. Yin, Macromol. Rapid Comm. 39 (2018) 1800133;
      (e) J. Chen, H. Ni, Z. Meng, et al., Nat. Commun. 10 (2019) 3546;
      (f) X. Zhang, X. Wang, B. Wang, Z.J. Ding, C. Li, Chin. Chem. Lett. 31 (2020) 3230-3232;
      (g) Y. Chen, S. Sun, D. Lu, Y. Shi, Y. Yao, Chin. Chem. Lett. 30 (2019) 37-43.

    5. [5]

      (a) B. Zheng, F. Wang, S. Dong, F. Huang, Chem. Soc. Rev. 41 (2012) 1621-1636;
      (b) T. Yokoyama, M. Mizuguzhi, J. Med. Chem. 62 (2019) 2076-2082.

    6. [6]

      V. Ramamurthy, S. Gupta, Chem. Soc. Rev. 44 (2015) 119-135.  doi: 10.1039/C4CS00284A

    7. [7]

      Y. Chen, F. Huang, Z.T. Li, Y. Liu, Sci. China Chem. 61 (2018) 979-992.  doi: 10.1007/s11426-018-9337-4

    8. [8]

      (a) K.L. Assal, W.M. Nau, Chem. Soc. Rev. 44 (2015) 394-418;
      (b) D. Shetty, J.K. Khedkar, K.M. Park, K. Kim, Chem. Soc. Rev. 44 (2015) 8747-8761.

    9. [9]

      (a) W. Feng, M. Jin, K. Yang, Y. Pei, Z. Pei, Chem. Commun. 54 (2018) 13626-13640;
      (b) S. Sun, M. Geng, L. Huang, et al., Chem. Commun. 54 (2018) 13006-13009;
      (c) Y.J. Zhou, K. Jie, F. Huang, Chem. Commun. 54 (2018) 12856-12859;
      (d) N. Song, T. Kakuta, T.A. Yamagishi, Y.W. Yang, T. Ogoshi, Chemistry 4 (2018) 2029-2053;
      (e) Q. Lin, X.M. Jiang, X. Ma, et al., Sens. Actuator. B: Chem. 272 (2018) 139-145;
      (f) X. Zeng, H. Deng, X. Jia, et al., Chem. Commun. 54 (2018) 11634-1163;
      (g) M. Zuo, W. Qian, Z. Xu, et al., Small 14 (2018)1801942;
      (h) Y. Sun, F. Zhang, J. Quan, et al., Nat. Comm. 9 (2018) 2617;
      (i) H. Zhang, Z. Liu, Y. Zhao, Chem. Soc. Rev. 47 (2018) 5491-5528;
      (j) F. Zhang, J. Ma, Y. Sun, et al., Anal. Chem. 90 (2018) 8270-8275;
      (k) X. Li, Z. Li, Y.W. Yang, Adv. Mater. 30 (2018)1800177.

    10. [10]

      (a) V. Kardelis, K. Li, I. Nierengarten, et al., Macromolecules 50 (2017) 9144-9150;
      (b) M.K. Dhinakaran, W. Gong, Y. Yin, A. Wajahat, X. Kuang, L. Wang, G. Ning, Polym. Chem. 8 (2017) 5295;
      (c) Y. Wang, M.Z. Lv, N. Song, et al., Macromolecules 50 (2017) 5759-5766.

    11. [11]

      K. Jie, Y. Yao, X. Chi, F. Huang, Chem. Commun. 50 (2014) 5503-5505.  doi: 10.1039/c4cc01704h

  • 加载中
    1. [1]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    2. [2]

      Ting-Ting HuangJin-Fa ChenJuan LiuTai-Bao WeiHong YaoBingbing ShiQi Lin . A novel fused bi-macrocyclic host for sensitive detection of Cr2O72− based on enrichment effect. Chinese Chemical Letters, 2024, 35(7): 109281-. doi: 10.1016/j.cclet.2023.109281

    3. [3]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    4. [4]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    5. [5]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    6. [6]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    7. [7]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    8. [8]

      Qianyun YeYuanyuan LiangYuhe YuanXiaohuan SunLiqi ZhuXuan WuJie HanRong Guo . pH-responsive chiral supramolecular cysteine-Zn2+-indocyanine green assemblies for triple-level chirality-specific anti-tumor efficacy. Chinese Chemical Letters, 2025, 36(5): 110432-. doi: 10.1016/j.cclet.2024.110432

    9. [9]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    10. [10]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    11. [11]

      Xiangjun ZhangXiaodi YangYan WangZhongping XuSisi YiTao GuoYue LiaoXiyu TangJianxiang ZhangRuibing Wang . A supramolecular nanoprodrug for prevention of gallstone formation. Chinese Chemical Letters, 2025, 36(2): 109854-. doi: 10.1016/j.cclet.2024.109854

    12. [12]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    13. [13]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    14. [14]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    15. [15]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    16. [16]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    17. [17]

      Yan WangSi-Meng ZhaiPeng LuoXi-Yan DongJia-Yin WangZhen HanShuang-Quan Zang . Vapor- and temperature-triggered reversible optical switching for multi-response Cu8 cluster supercrystals. Chinese Chemical Letters, 2024, 35(11): 109493-. doi: 10.1016/j.cclet.2024.109493

    18. [18]

      Xingyu MaYi-Xin ChenZi YeChong-Jing Zhang . Isotope-labeled click-free probes to identify protein targets of lysine-targeting covalent reversible molecules. Chinese Chemical Letters, 2025, 36(5): 110203-. doi: 10.1016/j.cclet.2024.110203

    19. [19]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    20. [20]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

Metrics
  • PDF Downloads(8)
  • Abstract views(1017)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return