Citation: Yuanhong Cai, Donghang Tan, Qiqi Zhang, Wenxin Lv, Qingjiang Li, Honggen Wang. Synthesis of difluoromethylated benzylborons via rhodium(I)-catalyzed fluorine-retainable hydroboration of gem-difluoroalkenes[J]. Chinese Chemical Letters, ;2021, 32(1): 417-420. doi: 10.1016/j.cclet.2020.03.031 shu

Synthesis of difluoromethylated benzylborons via rhodium(I)-catalyzed fluorine-retainable hydroboration of gem-difluoroalkenes

    * Corresponding author at: Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
    E-mail address: wanghg3@mail.sysu.edu.cn (H. Wang).
  • Received Date: 9 February 2020
    Revised Date: 1 March 2020
    Accepted Date: 11 March 2020
    Available Online: 13 March 2020

Figures(4)

  • The synthesis of borylated organofluorines is of great interest due to their potential values as synthons in modular construction of fluorine-containing molecules. Reported herein is a rhodium-catalyzed hydroboration of aryl gem-difluoroalkenes leading to a series of α-difluoromethylated benzylborons. The use of cationic rhodium catalyst and a biphosphine ligand with large bite angle was crucial for reactivity by offering good regioselectivity and diminishing the undesired β-F elimination. Preliminary derivatizations of the products were conducted to showcase the utility of this protocol.
  • 加载中
    1. [1]

      (a) K. Muller, C. Faeh, F. Diederich, Science 317 (2007) 1881-1886;
      (b) S. Purser, P.R. Moore, S. Swallow, V. Gouverneur, Chem. Soc. Rev. 37 (2008) 320-330;
      (c) W.K. Hagmann, J. Med. Chem. 51 (2008) 4359-4369;
      (d) J. Wang, M. Sanchez-Rosello, J.L. Acena, et al., Chem. Rev. 114 (2014) 2432-2506.

    2. [2]

      (a) J.A. Erickson, J.I. McLoughlin, J. Org. Chem. 60 (1995) 1626-1631;
      (b) N.A. Meanwell, J. Med. Chem. 54 (2011) 2529-2591;
      (c) J. Rong, C. Ni, J. Hu, Asian J. Org. Chem. 6 (2017) 139-152;
      (d) Z. Feng, Y.L. Xiao, X. Zhang, Acc. Chem. Res. 51 (2018) 2264-2278.

    3. [3]

      (a) W.J. Middleton, J. Org. Chem. 40 (1975) 574-578;
      (b) J.M. Shreeve, R.P. Singh, Synthesis (2002) 2561-2578;
      (c) P.R. Melvin, D.M. Ferguson, S.D. Schimler, D.C. Bland, M.S. Sanford, Org. Lett. 21 (2019) 1350-1353.

    4. [4]

      (a) Z. Feng, Q.Q. Min, X.P. Fu, L. An, X. Zhang, Nat. Commun. 9 (2017) 918-923;
      (b) C. Xu, W.H. Guo, X. He, et al., Nat. Chem. 9 (2018) 1170;
      (c) W. Miao, Y. Zhao, C. Ni, et al., J. Am. Chem. Soc. 140 (2018) 880-883.

    5. [5]

      (a) X. Zeng, W. Yan, S.B. Zacate, et al., J. Am. Chem. Soc. 141 (2019) 11398-11403;
      (b) Y. Zhao, W. Huang, J. Zheng, J. Hu, Org. Lett. 13 (2011) 5342-5345;
      (c) P.S. Fier, J.F. Hartwig, J. Am. Chem. Soc. 134 (2012) 5524-5527;
      (d) G.K. Prakash, S.K. Ganesh, J.P. Jones, et al., Angew. Chem. Int. Ed. 51 (2012) 12090-12094;
      (e) J.R. Bour, S.K. Kariofillis, M.S. Sanford, Organometallics 36 (2017) 1220-1223.

    6. [6]

      Y. Fujiwara, J.A. Dixon, F. O'Hara, et al., Nature 492 (2012) 95-99.  doi: 10.1038/nature11680

    7. [7]

      (a) T. Yokomatsu, T. Murano, K. Suemune, S. Shibuya, Tetrahedron 53 (1997) 815-822;
      (b) Q. Xie, Z. Zhu, L. Li, C. Ni, J. Hu, Angew. Chem. Int. Ed. 58 (2019) 6405-6410;
      (c) X. Peng, M.Y. Xiao, J.L. Zeng, F.G. Zhang, J. A. Ma, Org. Lett. 21 (2019) 4808-4811.

    8. [8]

      (a) S.V. Kohlhepp, T. Gulder, Chem. Soc. Rev. 45 (2016) 6270-6288;
      (b) N.O. Ilchenko, B.O. Tasch, K.J. Szabo, Angew. Chem. Int. Ed. 53 (2014) 12897-12901;
      (c) F. Scheidt, J. Neufeld, M. Schafer, C. Thiehoff, R. Gilmour, Org. Lett. 20 (2018) 8073-8076;
      (d)T. Kitamura, K. Muta, J. Oyamada, J. Oyamada, J. Org. Chem. 80 (2015) 10431-10436;
      (e) S.M. Banik, J.W. Medley, E.N. Jacobsen, Science 353 (2016) 51-54;
      (f) Z. Zhao, L. Racicot, G.K. Murphy, Angew. Chem. Int. Ed. 56 (2017) 11620-11623.

    9. [9]

      W.X. Lv, Q. Li, J.L. Li, et al., Angew. Chem. Int. Ed. 57 (2018) 16544-16548.  doi: 10.1002/anie.201810204

    10. [10]

      D.H. Tan, E. Lin, W.W. Ji, et al., Adv. Synth. Catal. 360 (2018) 1032-1037.  doi: 10.1002/adsc.201701497

    11. [11]

      (a) J. Zhang, W. Dai, Q. Liu, S. Cao, Org. Lett. 19 (2017) 3283-3286;
      (b) H. Sakaguchi, Y. Uetake, M. Ohashi, et al., J. Am. Chem. Soc. 139 (2017) 12855-12862;
      (c) H. Sakaguchi, M. Ohashi, S. Ogoshi, Angew. Chem. Int. Ed. 57 (2018) 328-332;
      (d) J. Hu, X. Han, Y. Yuan, Z. Shi, Angew. Chem. Int. Ed. 56 (2017) 13342-13346;
      (e) R. Kojima, K. Kubota, H. Ito, Chem. Commun. 53 (2017) 10688-10691.

    12. [12]

      (a) J.K. Jin, W.X. Zheng, H.M. Xia, F.L. Zhang, Y.F. Wang, Org. Lett. 21 (2019) 8414-8418;
      (b) X. Liu, E.E. Lin, G. Chen, et al., Org. Lett. 21 (2019) 8454-8458.

    13. [13]

      (a) D. Männig, H. Nöth, Angew. Chem. Int. Ed. 24 (1985) 878-879;
      (b) D.A. Evans, G.C. Fu, A.H. Hoveyda, J. Am. Chem. Soc. 110 (1988) 6917-6918;
      (c) T. Hayashi, Y. Matsumoto, Y. Ito, J. Am. Chem. Soc. 111 (1989) 3426-3428;
      (d) D.R. Edwards, Y.B. Hleba, C.J. Lata, L.A. Calhoun, C.M. Crudden, Angew. Chem. Int. Ed. 46 (2007) 7799-7802;
      (e) J.R. Smith, B.S.L. Collins, M.J. Hesse, et al., J. Am. Chem. Soc. 139 (2017) 9148-9151;
      (f) G.L. Hoang, J.M. Takacs, Chem. Sci. 8 (2017) 4511-4516;
      (g) C.M. Crudden, Y.B. Hleba, A.C. Chen, J. Am. Chem. Soc. 126 (2004) 9200-9201;
      (h) Y. Hu, W. Sun, C. Liu, Synlett 30 (2019) 1105-1110.

    14. [14]

      B.M. Trost, L.C. Czabaniuk, Angew. Chem. Int. Ed. 53 (2014) 2826-2851.  doi: 10.1002/anie.201305972

    15. [15]

      (a) Y. Xi, J.F. Hartwig, J. Am. Chem. Soc. 139 (2017) 12758-12772;
      (b) Y. Cai, X.T. Yang, S.Q. Zhang, et al., Angew. Chem. Int. Ed. 57 (2018) 1376-1380.

    16. [16]

      J. Huang, W. Yan, C. Tan, W. Wu, H. Jiang, Chem. Commun. 54 (2018) 1770-1773.  doi: 10.1039/C7CC09432A

    17. [17]

      (a) S.R. Tamang, D. Bedi, S. Shafiei-Haghighi, et al., Org. Lett. 20 (2018) 6695-6700;
      (b) J. Chen, J. Guo, Z. Lu, Chin. J. Chem. 36 (2018) 1075-1109.

  • 加载中
    1. [1]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    2. [2]

      Ying-Di HaoZhi-Qian LinXiao-Yu GuoJiao LiangCan-Kun LuoQian-Tao WangLi GuoYong Wu . Rhodium-catalyzed Doyle-Kirmse rearrangement reactions of sulfoxoniun ylides. Chinese Chemical Letters, 2024, 35(4): 108834-. doi: 10.1016/j.cclet.2023.108834

    3. [3]

      Yi-Fan WangHao-Yun YuHao XuYa-Jie WangXiaodi YangYu-Hui WangPing TianGuo-Qiang Lin . Rhodium(Ⅲ)-catalyzed diastereo- and enantioselective hydrosilylation/cyclization reaction of cyclohexadienone-tethered α, β-unsaturated aldehydes. Chinese Chemical Letters, 2024, 35(9): 109520-. doi: 10.1016/j.cclet.2024.109520

    4. [4]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    5. [5]

      Hua TianXin YangGe ShiHeng XuYi Dong . Rhodium-catalyzed site-selective cross-couplings of indoles and pyridotriazoles through carbene insertion. Chinese Chemical Letters, 2025, 36(7): 110434-. doi: 10.1016/j.cclet.2024.110434

    6. [6]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    7. [7]

      Mengyu WuKewei RenChengyu ZouJiacheng ChenRui MaChuan ZhuChao Feng . A general synthesis of gem–difluorobicyclo[2.1.1]hexanes. Chinese Chemical Letters, 2025, 36(5): 110213-. doi: 10.1016/j.cclet.2024.110213

    8. [8]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    9. [9]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    10. [10]

      Jiyang LiuXiangzhang TaoZhenlei ZouJia XuHui ShuYi PanWeigang ZhangShengyang NiYi Wang . Modular and practical synthesis of gem-difluoroalkenes via consecutive Ni-catalyzed reductive cross-coupling. Chinese Chemical Letters, 2025, 36(7): 110461-. doi: 10.1016/j.cclet.2024.110461

    11. [11]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    12. [12]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    13. [13]

      Dong-Sheng DengSu-Qin TangYong-Tu YuanDing-Xiong XieZhi-Yuan ZhuYue-Mei HuangYun-Lin Liu . C-F insertion reaction sheds new light on the construction of fluorinated compounds. Chinese Chemical Letters, 2024, 35(8): 109417-. doi: 10.1016/j.cclet.2023.109417

    14. [14]

      Shuige ZhaoPengcheng YanPeipei LiuHaishan LiuNing LiPeng FuWeiming Zhu . Pyridapeptides F‒I, cyclohexapeptides from marine sponge-derived Streptomyces sp. OUCMDZ-4539. Chinese Chemical Letters, 2024, 35(7): 108950-. doi: 10.1016/j.cclet.2023.108950

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Lan YangYu LiMou JiangRui ZhouHengjiang CongMinghui YangLei ZhangShenhui LiYunhuang YangMaili LiuXin ZhouZhong-Xing JiangShizhen Chen . Fluorinated [2]rotaxanes as sensitive 19F MRI agents: Threading for higher sensitivity. Chinese Chemical Letters, 2024, 35(10): 109512-. doi: 10.1016/j.cclet.2024.109512

    17. [17]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    18. [18]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    19. [19]

      Shuai QiuJia HeXiao HuHongxia YanZhao GaoWei Tian . Cation-π enhanced triplet-to-singlet Förster resonance energy transfer for fluorescence afterglow. Chinese Chemical Letters, 2025, 36(4): 110057-. doi: 10.1016/j.cclet.2024.110057

    20. [20]

      Qin WangHan LuoLuli WangLing HuangLiling CaoXuehua DongGuohong Zou . KSb2F7·2KNO3: Unveiling the peak birefringence in inorganic antimony oxysalts. Chinese Chemical Letters, 2025, 36(7): 110173-. doi: 10.1016/j.cclet.2024.110173

Metrics
  • PDF Downloads(9)
  • Abstract views(1348)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return