Citation: Jie Zhou, Manna Huang, Xinhai Zhu, Yiqian Wan. One-pot synthesis of dual-state emission (DSE) luminogens containing the V-shape furo[2, 3-b]furan scaffold[J]. Chinese Chemical Letters, ;2021, 32(1): 445-448. doi: 10.1016/j.cclet.2020.02.038 shu

One-pot synthesis of dual-state emission (DSE) luminogens containing the V-shape furo[2, 3-b]furan scaffold

    * Corresponding authors.
    E-mail addresses: huangmn25@mail.sysu.edu.cn (M. Huang), ceswyq@mail.sysu.edu.cn (Y. Wan).
    1 This author now is working in Hengyang Normal University.
  • Received Date: 8 January 2020
    Revised Date: 11 February 2020
    Accepted Date: 20 February 2020
    Available Online: 21 February 2020

Figures(4)

  • To discover novel fluorophores of solution and solid dual-state emission (DSE) materials, unique V-shape furo[2, 3-b]furans have been designed and synthesized by a one-pot method for the first time and their photoluminescent properties have been explored in benzene, THF, DMF and DMSO, as well as in the solid state. As the best example, 2, 5-bis(4-(9H-carbazol-9-yl)phenyl)-6a-amino-3a, 6a-dihydrofuro[2, 3-b] furan-3, 3a, 4-tricarbonitrile (3g) exhibited solution and solid DSE properties in THF, benzene, and in the solid state with quantum yields of 55%, 92%, and 45%, respectively.
  • Conventional organic fluorophores generally exhibit highly efficient luminescence in dilute solution owing to the presence of planar polycyclic π-conjugated frameworks and have gained extensive applications in relatively dilute solution [1]. However, their aggregation-caused quenching (ACQ) is often detrimental to practical applications in the solid state, such as in the fabrication of organic light-emitting diodes (OLED) [2], optical devices [3] and organic luminescent displays [3a, 4]. In contrast to this effect, Tang and co-workers observed and conceptually coined aggregation-induced emission (AIE) at the turn of the century [5]. Since then, numerous organic AIEgens have been developed through restricting intramolecular motion, and they have been used in a wide range of applications including chemo/ biosensors [6] and bioimaging [7], OLEDs [2b], solar cells [8], and optical devices [9], and others [10].

    It should be noted that there remains a significant gap between ACQ and AIE photoluminogens [11]. Developing photoluminogens that are highly efficient both in solution and in the solid state (i.e., dual-state emission, DSE), is therefore important in order to bridge the gap so that both meet the fabrication requirements of various functional materials, as well as to provide additional materials for deeper exploration of the differences of photoluminescence in different types of solvents [11, 12]. As a result, several typical solution and solid DSE luminogens have recently been developed; however, solution and solid DSE luminogens that are active in all types of solvents (all-powerful solution and solid DSE molecules) are rare [13]. In contrast, solution and solid DSE molecules that are active only in the solid state, or in particular single solvents such as THF [14], dichloromethane [12, 15], chloroform [16] and other particular types of solvents, have been developed [13a–c, 17].

    The furo[2, 3-b]furan structure, a fused cyclic acetal, exists in several biologically active natural products and pharmaceuticals [18]. However, the parent furo[2, 3-b]furan system and substituted derivatives are not widely known as luminogens. It was easy to determine that the donor-acceptor-donor (D-A-D) V-shape scaffold [19] in 4-tricyanofuro-[2, 3-b]furans would enhance the intramolecular charge transfer (ICT) between donor and acceptor moieties. In addition, considering the other reported types of V-shape photoluminescence potentially removes the tendency of short-range π-π intermolecular interactions that lead to quenching of the fluorescence [20], and we assumed that compounds containing the unique V-shape furo[2, 3-b]furan scaffold would exhibit luminescence both in solution and in the solid state.

    To develop alternative methods for synthesis of the furo[2, 3-b]furan core and to search for novel solution and solid DSE luminophores, we report the design and synthesis of novel solution and solid DSE luminogens based on the V-shape furo[2, 3-b]furan scaffold.

    In the only reported synthetic method [19] for preparation of 6a-amino-2, 5-diaryl-furo[2, 3-b]furan-3, 3a, 4(6aH)-tricarbonitrile, 2-bromomalononitrile is reacted with various 2-cyanoacetophenones to afford the target compounds in moderate yields. Considering the cost and the commercial availability of 2-bromomalononitriles, we tried more readily available malononitriles instead of 2-bromomalononitriles to develop a novel preparative method. As shown in Scheme 1, SeO2 was assumed to oxidize malononitrile to 2-hydroxy-malononitrile, which can then react with 3-oxo-3-arylpropane-nitriles to provide the target compounds.

    Scheme 1

    Scheme 1.  Plausible mechanism of the novel protocol.

    Initially, the desired product 3a was obtained from 2-chlorobenzoylacetonitrile (1a) (0.5 mmol) by reacting with malononitrile (2) in isolated yield of 10% by means of oxidation of 1.1 equiv. of SeO2 in CH3CN in the presence of 1.1 equiv. of NH4H2PO4 at room temperature for 12 h (Table 1, entry 1). Further optimization of the main reaction conditions, including additives, solvents and ratio of starting materials (Table 1), gave rise to a novel one-pot protocol for the synthesis of 6a-amino-2, 5-diaryl-furo[2, 3-b]furan-3, 3a, 4(6aH)-tricarbonitriles: namely, 0.5 mmol of 1a was treated with 1.1 equiv. of 2 and 0.75 equiv. of SeO2 in CH3CN (2 mL) in the presence of 0.5 equiv. of benzoic acid at room temperature for 12 h (Table 1, entry16).

    Table 1

    Table 1.  Optimization of the model reaction.a
    DownLoad: CSV

    Based on the effective protocol, we designed two series of 6a-amino-2, 5-diaryl-furo[2, 3-b]furan3, 3a, 4(6aH)tricarbonitriles (with and without a phenyl group spacer). It should be noted that the phenyl group spacer was envisioned to allow the possibility of extending the conjugation and increasing intermolecular π-π interaction, thus leading to restriction of intramolecular rotation, which would result in effective photoluminescence. The target compounds were obtained although the isolated yields were moderate (Scheme 2) because of the expected side reaction of trimerization of acetonitriles (compound 1) as reported previously [21].

    Scheme 2

    Scheme 2.  Scope of the 3-oxo-3-arylpropanenitriles.

    The photoluminescence properties of the compounds were then explored, both in solution and in the solid state, to gain further mechanistic insight into whether the V-shape scaffold helps to avoid the short-range π-π intermolecular interactions that lead to fluorescence quenching [20a]. As shown in Table S1 (Supporting information), type Ⅰ compounds with phenyl spacer (3k, 3l) exhibited better photoluminescence (PL) efficiency than their counterparts without a phenyl spacer (type Ⅱ compounds 3b and 3d). We then focused on the type Ⅰ compounds to investigate the AIE/ACQ properties. The results (Fig. S6 in Supporting information) of classic ACQ/AIE distinctive experiments (i.e., determination of PL spectra in H2O/THF mixture with different water contents) [22] indicated that 3i, 3m, and 3n exhibited clear ACQ phenomena; meanwhile, 3h, 3j, and 3k, exhibited AIE phenomena. Interestingly, as shown in Table 2 and Fig. 1, 3g and 3l exhibited the desired solution and solid DSE properties in THF, benzene, and in the solid state with PL efficiencies of 55%, 92%, 45% and 17%, 14%, 18%, respectively, although they showed reduced solution and solid DSE PL efficiency in DMF (0.1% and 4%, respectively) and DMSO (6% and 2%, respectively). The relatively high fluorescence quantum yield of carbazole is thought to result from the nonbonding orbital overlap of the adjacent carbon atoms on the carbazole ring, while the enhanced basicity of the molecule in the excited state interacts with more acidic DMF, possible affording a great non-radiative and a leading to diminished PL efficiency. The most polar solvent, DMSO, reduced the energy level of the excited states, reducing the difference between the ground and excited states, which could be the main reason for the largest Stokes shift values of 179 nm and 178 nm, respectively.

    Table 2

    Table 2.  Optical properties of the compounds.
    DownLoad: CSV

    Figure 1

    Figure 1.  Normalized PL emission spectra of compounds 3g (a) and 3l (b) in different solvents (2 × 10-5 mol/L) and in the solid state. Excited by the longest wavelength absorption maximum. The solid is amorphous.

    To further understand the difference in PL efficiency between type Ⅰ and type Ⅱ compounds in the solid state, we investigated the molecular interaction in the solid state by single crystal X-ray diffraction. Representative 3d and 3g (type Ⅱ and type Ⅰ, respectively) were explored owing to their PL performance in the solid state. As shown in Fig. 2, intermolecular π-π interactions between two naphthalene-1-yl rings or between two carbazolyl rings, along with the intermolecular H-bonding between V-shape moieties, resulted in J-aggregate packing leading to restricted rotation of the aromatic rings. Most probably, the stronger intermolecular π-π interactions observed in 3d at least resulted in more non-radiative relaxation, owing to the increased planarity of the naphthalene ring in comparison with the low planarity of the carbazole ring in 3g. As a result, 3g displayed better PL efficiency in the solid state than 3d.

    Figure 2

    Figure 2.  Molecular interactions in single crystal 3d and 3g.

    In conclusion, we established a novel one-pot protocol for the preparation of V-shape furo[2, 3-b]furan molecules. Two series of 6a-amino-2, 5-diaryl-furo[2, 3-b]furan-3, 3a, 4(6aH)-tricarbonitrile photoluminogens (with and without a phenyl group spacer) were designed and synthesized. Both provided interesting photoluminescence properties both in examined solution and in the solid state. Compound 3g, as the best example, exhibited the desired solution and solid DSE properties in THF, benzene, and in the solid state with PL efficiencies of 55%, 92%, and 45%, respectively. Mechanistic investigation by single crystal X-ray diffraction analysis demonstrated that the high PL efficiency primarily resulted from the restriction of intramolecular rotation.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This work was supported by grants from the National Natural Science Foundation of China (No. 21702239), Guangzhou Science and Technology Plan Projects (No. 201707010271), the Fundamental Research Funds for the Central Universities (No. 16lgpy16).

    Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.cclet.2020.02.038.


    * Corresponding authors.
    E-mail addresses: huangmn25@mail.sysu.edu.cn (M. Huang), ceswyq@mail.sysu.edu.cn (Y. Wan).
    1 This author now is working in Hengyang Normal University.
    1. [1]

      (a) B. valeur, M.N. Berberan-Santos, Molecular Fluorescence-Principles and Applications, 2nd ed., Wiley-VCH Verlag & Co., Weinheim, 2012;
      (b) A.S. Klymchenko, Acc. Chem. Res. 50 (2017) 366-375;
      (c) V.M. Alexander, P.L. Choyke, H. Kobayashi, Curr. Mol. Med. 13 (2013) 1568-1578;
      (d) S. Mizukami, H. Houjou, K. Sugaya, et al., Chem. Mater. 17 (2005) 50-56;
      (e) S.C.F. Kui, S.S.Y. Chui, C.M. Che, N. Zhu, J. Am. Chem. Soc. 128 (2006) 8297-8309.

    2. [2]

      (a) T. Qin, W. Wiedemair, S. Nau, et al., J. Am. Chem. Soc. 133 (2011) 1301-1303;
      (b) L. Duan, J. Qiao, Y. Sun, Y. Qiu, Adv. Mater. 23 (2011) 1137-1144;
      (c) A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev. 109 (2009) 897-1091;
      (d) R.H. Friend, R.W. Gymer, A.B. Holmes, et al., Nature 397 (1999) 121-128;
      (e) T. Khanasa, N. Prachumrak, R. Rattanawan, et al., J. Org. Chem. 78 (2013) 6702-6713.

    3. [3]

      (a) J. Zhang, W. Chen, A.J. Rojas, et al., J. Am. Chem. Soc. 135 (2013) 16376-16379;
      (b) H. Lu, C. Zhang, G. Xia, et al., RSC Adv. 6 (2016) 96196-96201.

    4. [4]

      (a) T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Mullen, Angew. Chem. Int. Ed. 49 (2010) 9068-9093;
      (b) T. Mutai, T. Ohkawa, H. Shono, K. Araki, J. Mater. Chem. C 4 (2016) 3599-3606.

    5. [5]

      (a) Z. Zhang, B. Xu, J. Su, et al., Angew. Chem. Int. Ed. 50 (2011) 11654-11657;
      (b) B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park, J. Am. Chem. Soc. 124 (2002) 14410-14415;
      (c) J. Luo, Z. Xie, J.W. Y. Lam, et al., Chem. Commun. (2001) 1740-1741;
      (d) S.P. Anthony, ChemPlusChem 77 (2012) 518-531.

    6. [6]

      (a) X. You, G. Zhang, C. Zhan, Y. Wang, D. Zhang, ACS Symp. Ser. 1227 (2016) 93-127;
      (b) C. Zhan, X. You, G. Zhang, et al., Chem. Rec. 16 (2016) 2142-2160.

    7. [7]

      D. Mao, D. Ding, ACS Symp. Ser. 1227 (2016) 217-243.

    8. [8]

      (a) S.H. Bae, K.D. Seo, W.S. Choi, J.Y. Hong, H.K. Kim, Dyes Pigm. 113 (2015) 18-26;
      (b) N. Manfredi, B. Cecconi, A. Abbotto, Eur. J. Org. Chem. 2014 (2014) 7069-7086.

    9. [9]

      Z. Chi, J. Xu, Mechanochromic Aggregation-Induced Emission Materials in Aggregation-Induced Emiss. Appl, John Wiley & Sons, Ltd, 2013, pp. 61-86.

    10. [10]

      (a) X. Sun, Y. Wang, Y. Lei, Chem. Soc. Rev. 44 (2015) 8019-8061;
      (b) J.L. Banal, B. Zhang, D.J. Jones, K.P. Ghiggino, W.W. H. Wong, Acc. Chem. Res. 50 (2017) 49-57;
      (c) Y. Yuan, B. Liu, Chem. Sci. 8 (2017) 2537-2546;
      (d) X. Gu, T.K. Kwok Ryan, W.Y. Lam Jacky, B.Z. Tang, Biomaterials 146 (2017) 115-135;
      (e) Y. Hong, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361-5388;
      (f) T.K. Kwok Ryan, W.T. Leung Chris, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 44 (2015) 4228-4238;
      (g) P. Zhao, L. Zhu, Chin. Chem. Lett. 29 (2018) 1706-1708.

    11. [11]

      G. Chen, W. Li, T. Zhou, et al., Adv. Mater. 27 (2015) 4496-4501.  doi: 10.1002/adma.201501981

    12. [12]

      B. Chen, G. Yu, X. Li, et al., J. Mater. Chem. C 1 (2013) 7409-7417.  doi: 10.1039/c3tc31751j

    13. [13]

      (a) T. Beppu, K. Tomiguchi, A. Masuhara, Y.J. Pu, H. Katagiri, Angew. Chem. Int. Ed. 54 (2015) 7332-7335;
      (b) A. Patra, S.P. Anthony, T.P. Radhakrishnan, Adv. Funct. Mater. 17 (2007) 2077-2084;
      (c) S. Kumar, P. Singh, P. Kumar, et al., J. Phys. Chem. C 120 (2016) 12723-12733;
      (d) H. Wu, Z. Chen, W. Chi, et al., Angew. Chem. Int. Ed. 58 (2019) 11419-11423.

    14. [14]

      (a) D.K. You, J.H. Lee, B.H. Choi, et al., Eur. J. Inorg. Chem. 2017 (2017) 2496-2503;
      (b) A. Raghuvanshi, A.K. Jha, A. Sharma, et al., Chem. Eur. J. 23 (2017) 4527-4531;
      (c) H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 56 (2017) 254-259;
      (d) P. Gopikrishna, P.K. Iyer, J. Phys. Chem. C 120 (2016) 26556-26568.

    15. [15]

      A. C. Shaikh, D.S. Ranade, S. Thorat, et al., Chem. Commun. 51 (2015) 16115-16118.  doi: 10.1039/C5CC06351E

    16. [16]

      H. Yamane, K. Tanaka, Y. Chujo, Tetrahedron Lett. 56 (2015) 6786-6790.  doi: 10.1016/j.tetlet.2015.10.072

    17. [17]

      (a) M. Huang, S. Ye, K. Xu, et al., J. Mater. Chem. C 5 (2017) 3456-3460;
      (b) E. Heyer, J. Massue, G. Ulrich, Dyes Pigm. 143 (2017) 18-24;
      (c) E. Heyer, K. Benelhadj, S. Budzak, et al., Chem. Eur. J. 23 (2017) 7324-7336.

    18. [18]

      (a) P. Vila-Donat, S. Marin, V. Sanchis, A.J. Ramos, Food Chem. Toxicol. 114 (2018) 246-259;
      (b) Y. Hayashi, T. Aikawa, Y. Shimasaki, et al., Org. Process Res. Dev. 20 (2016) 1615-1620;
      (c) G.L. Moore, R.W. Stringham, D.S. Teager, T.Y. Yue, Org. Process Res. Dev. 21 (2017) 98-106.

    19. [19]

      V. J. Aran, N. Martin, C. Seoane, J.L. Soto, J. Sanz-Aparicio, F. Florencio, J. Org. Chem. 53 (1988) 5341-5343.  doi: 10.1021/jo00257a025

    20. [20]

      (a) G. Sathiyan, P. Sakthivel, Dyes Pigm. 143 (2017) 444-454;
      (b) G. Gopan, P.S. Salini, S. Deb, M. Hariharan, CrystEngComm 19 (2017) 419-425;
      (c) W.Y. Wong, S.F. Lee, H.S. Chan, et al., RSC Adv. 3 (2013) 26382-26390;
      (d) S. Sekiguchi, K. Kondo, Y. Sei, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 55 (2016) 6906-6910.

    21. [21]

      J. Zhou, X. Zhu, M. Huang, Y. Wan, Eur. J. Org. Chem. 2017 (2017) 2317-2321.  doi: 10.1002/ejoc.201700383

    22. [22]

      H. Tong, Y. Hong, Y. Dong, et al., J. Phys. Chem. B 111 (2007) 2000-2007.  doi: 10.1021/jp067374k

    1. [1]

      (a) B. valeur, M.N. Berberan-Santos, Molecular Fluorescence-Principles and Applications, 2nd ed., Wiley-VCH Verlag & Co., Weinheim, 2012;
      (b) A.S. Klymchenko, Acc. Chem. Res. 50 (2017) 366-375;
      (c) V.M. Alexander, P.L. Choyke, H. Kobayashi, Curr. Mol. Med. 13 (2013) 1568-1578;
      (d) S. Mizukami, H. Houjou, K. Sugaya, et al., Chem. Mater. 17 (2005) 50-56;
      (e) S.C.F. Kui, S.S.Y. Chui, C.M. Che, N. Zhu, J. Am. Chem. Soc. 128 (2006) 8297-8309.

    2. [2]

      (a) T. Qin, W. Wiedemair, S. Nau, et al., J. Am. Chem. Soc. 133 (2011) 1301-1303;
      (b) L. Duan, J. Qiao, Y. Sun, Y. Qiu, Adv. Mater. 23 (2011) 1137-1144;
      (c) A.C. Grimsdale, K.L. Chan, R.E. Martin, P.G. Jokisz, A.B. Holmes, Chem. Rev. 109 (2009) 897-1091;
      (d) R.H. Friend, R.W. Gymer, A.B. Holmes, et al., Nature 397 (1999) 121-128;
      (e) T. Khanasa, N. Prachumrak, R. Rattanawan, et al., J. Org. Chem. 78 (2013) 6702-6713.

    3. [3]

      (a) J. Zhang, W. Chen, A.J. Rojas, et al., J. Am. Chem. Soc. 135 (2013) 16376-16379;
      (b) H. Lu, C. Zhang, G. Xia, et al., RSC Adv. 6 (2016) 96196-96201.

    4. [4]

      (a) T. Weil, T. Vosch, J. Hofkens, K. Peneva, K. Mullen, Angew. Chem. Int. Ed. 49 (2010) 9068-9093;
      (b) T. Mutai, T. Ohkawa, H. Shono, K. Araki, J. Mater. Chem. C 4 (2016) 3599-3606.

    5. [5]

      (a) Z. Zhang, B. Xu, J. Su, et al., Angew. Chem. Int. Ed. 50 (2011) 11654-11657;
      (b) B.K. An, S.K. Kwon, S.D. Jung, S.Y. Park, J. Am. Chem. Soc. 124 (2002) 14410-14415;
      (c) J. Luo, Z. Xie, J.W. Y. Lam, et al., Chem. Commun. (2001) 1740-1741;
      (d) S.P. Anthony, ChemPlusChem 77 (2012) 518-531.

    6. [6]

      (a) X. You, G. Zhang, C. Zhan, Y. Wang, D. Zhang, ACS Symp. Ser. 1227 (2016) 93-127;
      (b) C. Zhan, X. You, G. Zhang, et al., Chem. Rec. 16 (2016) 2142-2160.

    7. [7]

      D. Mao, D. Ding, ACS Symp. Ser. 1227 (2016) 217-243.

    8. [8]

      (a) S.H. Bae, K.D. Seo, W.S. Choi, J.Y. Hong, H.K. Kim, Dyes Pigm. 113 (2015) 18-26;
      (b) N. Manfredi, B. Cecconi, A. Abbotto, Eur. J. Org. Chem. 2014 (2014) 7069-7086.

    9. [9]

      Z. Chi, J. Xu, Mechanochromic Aggregation-Induced Emission Materials in Aggregation-Induced Emiss. Appl, John Wiley & Sons, Ltd, 2013, pp. 61-86.

    10. [10]

      (a) X. Sun, Y. Wang, Y. Lei, Chem. Soc. Rev. 44 (2015) 8019-8061;
      (b) J.L. Banal, B. Zhang, D.J. Jones, K.P. Ghiggino, W.W. H. Wong, Acc. Chem. Res. 50 (2017) 49-57;
      (c) Y. Yuan, B. Liu, Chem. Sci. 8 (2017) 2537-2546;
      (d) X. Gu, T.K. Kwok Ryan, W.Y. Lam Jacky, B.Z. Tang, Biomaterials 146 (2017) 115-135;
      (e) Y. Hong, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 40 (2011) 5361-5388;
      (f) T.K. Kwok Ryan, W.T. Leung Chris, W.Y. Lam Jacky, B.Z. Tang, Chem. Soc. Rev. 44 (2015) 4228-4238;
      (g) P. Zhao, L. Zhu, Chin. Chem. Lett. 29 (2018) 1706-1708.

    11. [11]

      G. Chen, W. Li, T. Zhou, et al., Adv. Mater. 27 (2015) 4496-4501.  doi: 10.1002/adma.201501981

    12. [12]

      B. Chen, G. Yu, X. Li, et al., J. Mater. Chem. C 1 (2013) 7409-7417.  doi: 10.1039/c3tc31751j

    13. [13]

      (a) T. Beppu, K. Tomiguchi, A. Masuhara, Y.J. Pu, H. Katagiri, Angew. Chem. Int. Ed. 54 (2015) 7332-7335;
      (b) A. Patra, S.P. Anthony, T.P. Radhakrishnan, Adv. Funct. Mater. 17 (2007) 2077-2084;
      (c) S. Kumar, P. Singh, P. Kumar, et al., J. Phys. Chem. C 120 (2016) 12723-12733;
      (d) H. Wu, Z. Chen, W. Chi, et al., Angew. Chem. Int. Ed. 58 (2019) 11419-11423.

    14. [14]

      (a) D.K. You, J.H. Lee, B.H. Choi, et al., Eur. J. Inorg. Chem. 2017 (2017) 2496-2503;
      (b) A. Raghuvanshi, A.K. Jha, A. Sharma, et al., Chem. Eur. J. 23 (2017) 4527-4531;
      (c) H. Naito, K. Nishino, Y. Morisaki, K. Tanaka, Y. Chujo, Angew. Chem. Int. Ed. 56 (2017) 254-259;
      (d) P. Gopikrishna, P.K. Iyer, J. Phys. Chem. C 120 (2016) 26556-26568.

    15. [15]

      A. C. Shaikh, D.S. Ranade, S. Thorat, et al., Chem. Commun. 51 (2015) 16115-16118.  doi: 10.1039/C5CC06351E

    16. [16]

      H. Yamane, K. Tanaka, Y. Chujo, Tetrahedron Lett. 56 (2015) 6786-6790.  doi: 10.1016/j.tetlet.2015.10.072

    17. [17]

      (a) M. Huang, S. Ye, K. Xu, et al., J. Mater. Chem. C 5 (2017) 3456-3460;
      (b) E. Heyer, J. Massue, G. Ulrich, Dyes Pigm. 143 (2017) 18-24;
      (c) E. Heyer, K. Benelhadj, S. Budzak, et al., Chem. Eur. J. 23 (2017) 7324-7336.

    18. [18]

      (a) P. Vila-Donat, S. Marin, V. Sanchis, A.J. Ramos, Food Chem. Toxicol. 114 (2018) 246-259;
      (b) Y. Hayashi, T. Aikawa, Y. Shimasaki, et al., Org. Process Res. Dev. 20 (2016) 1615-1620;
      (c) G.L. Moore, R.W. Stringham, D.S. Teager, T.Y. Yue, Org. Process Res. Dev. 21 (2017) 98-106.

    19. [19]

      V. J. Aran, N. Martin, C. Seoane, J.L. Soto, J. Sanz-Aparicio, F. Florencio, J. Org. Chem. 53 (1988) 5341-5343.  doi: 10.1021/jo00257a025

    20. [20]

      (a) G. Sathiyan, P. Sakthivel, Dyes Pigm. 143 (2017) 444-454;
      (b) G. Gopan, P.S. Salini, S. Deb, M. Hariharan, CrystEngComm 19 (2017) 419-425;
      (c) W.Y. Wong, S.F. Lee, H.S. Chan, et al., RSC Adv. 3 (2013) 26382-26390;
      (d) S. Sekiguchi, K. Kondo, Y. Sei, M. Akita, M. Yoshizawa, Angew. Chem. Int. Ed. 55 (2016) 6906-6910.

    21. [21]

      J. Zhou, X. Zhu, M. Huang, Y. Wan, Eur. J. Org. Chem. 2017 (2017) 2317-2321.  doi: 10.1002/ejoc.201700383

    22. [22]

      H. Tong, Y. Hong, Y. Dong, et al., J. Phys. Chem. B 111 (2007) 2000-2007.  doi: 10.1021/jp067374k

  • 加载中
    1. [1]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    2. [2]

      Kuan DengFei YangZhi-Qi ChengBi-Wen RenHua LiuJiao ChenMeng-Yao SheLe YuXiao-Gang LiuHai-Tao FengJian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464

    3. [3]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    4. [4]

      Mengxing LiuJing LiuHongxing ZhangJianan TaoPeiwen FanXin LvWei Guo . One-pot accessing of meso–aryl heptamethine indocyanine NIR fluorophores and potential application in developing dye-antibody conjugate for imaging tumor. Chinese Chemical Letters, 2025, 36(4): 109994-. doi: 10.1016/j.cclet.2024.109994

    5. [5]

      Yan ChenXinnan WangYifan LinChun Liu . Shape/dimension-controllable organic heterostructures from one monomer pair. Chinese Chemical Letters, 2025, 36(3): 109903-. doi: 10.1016/j.cclet.2024.109903

    6. [6]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    7. [7]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    8. [8]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    9. [9]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    10. [10]

      You ZhouLi-Sheng WangShuang-Gui LeiBo-Cheng TangZhi-Cheng YuXing LiYan-Dong WuKai-Lu ZhengAn-Xin Wu . I2-DMSO mediated tetra-functionalization of enaminones for the construction of novel furo[2′,3′:4,5]pyrimido[1,2-b]indazole skeletons via in situ capture of ketenimine cations. Chinese Chemical Letters, 2025, 36(1): 109799-. doi: 10.1016/j.cclet.2024.109799

    11. [11]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    12. [12]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    13. [13]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    14. [14]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    15. [15]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    16. [16]

      He YaoWenhao JiYi FengChunbo QianChengguang YueYue WangShouying HuangMei-Yan WangXinbin Ma . Copper-catalyzed and biphosphine ligand controlled 3,4-boracarboxylation of 1,3-dienes with carbon dioxide. Chinese Chemical Letters, 2025, 36(4): 110076-. doi: 10.1016/j.cclet.2024.110076

    17. [17]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    18. [18]

      Yue ZhangXiaoya FanXun HeTingyu YanYongchao YaoDongdong ZhengJingxiang ZhaoQinghai CaiQian LiuLuming LiWei ChuShengjun SunXuping Sun . Ambient electrosynthesis of urea from carbon dioxide and nitrate over Mo2C nanosheet. Chinese Chemical Letters, 2024, 35(8): 109806-. doi: 10.1016/j.cclet.2024.109806

    19. [19]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    20. [20]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

Metrics
  • PDF Downloads(16)
  • Abstract views(1238)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return