Citation: Liu Nana, Fan Yu, Ma Zhiheng, Lin Haixia, Xu Jiaqiang. Materials design and sensing mechanism of novel calix[6]arene composite for sensitively detecting amine drugs[J]. Chinese Chemical Letters, ;2020, 31(8): 2129-2132. doi: 10.1016/j.cclet.2020.01.034 shu

Materials design and sensing mechanism of novel calix[6]arene composite for sensitively detecting amine drugs

    * Corresponding authors.
    E-mail addresses: haixialin@staff.shu.edu.cn (H. Lin), xujiaqiang@shu.edu.cn (J. Xu).
  • Received Date: 19 December 2019
    Revised Date: 12 January 2020
    Accepted Date: 13 January 2020
    Available Online: 17 January 2020

Figures(9)

  • In order to improve the convenience and sensitivity of amphetamines drug testing and reduce the threat of drugs to humans, we have designed a QCM gas sensor to detect amine-containing drugs. The sensing material is designed based on the chemical nature of amine drugs. The sensing mechanism is derived from a reversible Schiff base interaction between the amino group of the drug and the carbonyl group of the novel calix[6]arene derivatives as well as the hydrogen bond interaction between amino group and hydroxyl. The new composite material was well characterized by different analytical techniques including 1H nuclear magnetic resonance (1H-NMR), fourier transform infrared spectroscopy (FT-IR), scanning electronic microscopy (SEM), transmission electron microscope (TEM), Raman spectra, powder X-ray diffraction, etc. The sensing experiments were conducted by coating the composite onto quartz crystal microbalance (QCM) transducers. The experimental results indicated that the novel calixarene derivatives and their GO complexes based on the design have excellent selectivity, high sensitivity and repeatability to β-phenylethylamine.
  • Amphetamines are one of the eight major drugs. The main component of drugs is organic amines which would cause air pollution and pose a threat to human health. Because organic amines are widely used in industrial production and pharmaceutical manufacturing [1], conveniently detection of organic amines has attracted more and more attention. Conventional amine- containing drug tests include blood test, sweat test, hair test, and saliva test, while many inadequacies are reflected in the fact that the inspection equipment is expensive, limited and susceptible to contamination by other substances. Over the years, analytical chemistry has been applied to the detection of organic amines, such as thin layer chromatography (TCL), GC-MS, high performance liquid chromatography (HPLC) and other immunoassay [2].

    Quartz crystal microbalance (QCM) is a kind of gas sensor with many advantages such as high sensitivity [3-6], convenient production, low price, easy digitization, wide application [7-9] and long distance measurement [10-13]. At present, QCM have been used in the detection of organic amines. For example, GO/Cu2O nanocomposite based QCM gas sensor for trimethylamine detection under low concentrations [14], QCM sensor for detection of aliphatic amines vapours [15], GO/chitosan nanocomposite coated QCM sensor for detection of amine vapors [16], slective chiral recognition of alanine enantiomers by chiral calix[4]arene coated QCM sensors [17]. However, these reports are rarely specific for the detection of amine-containing drugs. Some disadvantages generate from complicated and cumbersome material synthesis [18], and relatively expensive detection instrument.

    Among the organic amines, β-phenylethylamine is a trace, endogenous amine, an isomer of Philopon, and a reagent that can excite human nerves. Chemical synthesis can also be achieved by illegal molecules. Therefore, the preparation of a sensitive, stable phenethylamine gas sensor is very helpful for the detection of amine-containing drugs. The calixarene is a kind of oligomeric cyclic compound, the lower edge is a neatly arranged hydrophilic phenolic hydroxyl group, and the size of the hydrophobic cavity formed by the benzene ring can be freely adjusted according to different reaction conditions [19, 20]. The calixarene is easily modified by functional groups forming a complex with a substrate and a neutral molecule [21, 22]. So this advantage can be used to make a new underlay for the synthesis of novel calix-[6]arene derivativesis. It has high melting point, good thermal stability and chemical stability, as well as low toxicity and flexibility. In order to increase the surface area, further improve its performance, we synthesized a novel composite material with GO [23-25].

    In this work, a novel calix[6]arene (p-acetylcalix[6]arene) is synthesized through the methods of acylation and esterification and ketocarbonyl is introduced into the structure. Then GO is used to composite with this p-acetylcalix[6]arene and get the composite of both (see Section 1 in Supporting information for details). The composite we obtained has a high selective recognition of β-phenylethylamine. Bycomparisonwiththose methods in literature above, our method has high selectivity and sensitivity to amine- containing drugs, and the synthesis of raw materials is relatively simple. It is an innovative breakthrough in QCM.

    The FT-IR spectra was used to characterize p-acetylcalix[6]-arene, GO and the composite of both (Fig. S1 in Supporting information). Both the peaks of GO and p-acetylcalix[6]arene appears in the complex includes, so the composite of both was successfully doped. Raman spectrum can also prove the successful composition of the material (Fig. S2 in Supporting information). The characteristic peaks of GO are weakened and the intensity of the absorption peak for composite is enhanced.

    The surface topography of the sample was microscopically imaged by scanning electronic microscopy (SEM). From the Fig. 1, it can be observed that the p-cetylcalix[6]arene is a regular rod-like structure [26]. Fig. 2 presented the internal crystal structure of the sample are characterized Transmission Electron Microscope (TEM).

    Figure 1

    Figure 1.  The SEM images of p-acetylcalix[6]arene. (a) Scale bar=400 nm; (b) Scale bar = 50 nm.

    Figure 2

    Figure 2.  (a, b) The TEM image of p-acetylcalix[6]arene at different scales.

    The fluorescence spectrum of the reaction of p-acetylcalix[6]arene with β-phenethylamine is shown in the Fig. 3 [27]. It can be known that the excitation and emission spectra of the new calixarene derivative without reaction with β-phenethylamine liquid are 325 nm and 385 nm, respectively, and the strength is high. After reacting with β-phenethylamine liquid, both the excitation and emission spectra are red shifted. The absorption peak appears at 375 nm and 450 nm, and the intensity decreases. Fluorescence analysis just coincides with a schiff base mechanism, the amino group is a color-assisting group. During the reaction between the carbonyl group and amino group, a large number of color-promoting groups are introduced, so that the peak is red- shifted [28]. The Schiff base reaction produces a large amount of ionic intermediates in a reversible reaction, resulting in destruction of its conjugated structure, so that the fluorescence intensity is lowered.

    Figure 3

    Figure 3.  The fluorescence spectrum of the reaction of p-acetylcalix[6]arene with β-phenethylamine.

    In Fig. 4, it can be analyzed by SEM image that when the mass ratio of GO to p-acetylcalix[6]arene is 1:4.5, the rod-shaped p-acetylcalix[6]arene was observed to be uniformly and nonstacked on the sheet-like GO. This composite of both not only makes full use of multiple carbonyl groups on the novel p-acetylcalix[6]arene, but also utilizes the large specific surface area of the sheet of GO, combining the advantages of both to achieve high selectivity and adsorption of amine-containing drugs.

    Figure 4

    Figure 4.  The SEM images of different mass ratios of GO and p-acetylcalix[6]arene. (a) GO:p-acetylcalix[6]arene = 1:4; (b)GO:p-acetylcalix[6]arene = 1:4.5; (c) GO:p-acetylcalix-[6]arene= 1:5.

    For the study of material components, thermogravimetric analysis is a commonly used analytical method. As shown in Fig. 5, the first weight loss peak temperature of the p-acetylcalix[6]arene is between 145 ℃ and 180 ℃, and the weight loss rate is 6.3%, resulting from dehydration and weight loss ofhydroxyl groups. The second weight loss peak temperature is between 350-390 ℃, and the weight loss rate is 4.9%, which is caused by demethylation. The third weight loss peak can be found between 400-680 ℃ and the weight loss rate is 88.8%, which is the collapse of the calixarene ring structure. Due to the incorporation of GO, the weight loss rate in the temperature range of 200-700 ℃ is lower than that of the p-acetylcalix[6]arene [29].

    Figure 5

    Figure 5.  Image of the thermogravimetric analysis diagram of 0-800 ℃ air blowing.

    Fig. 6 shows the response of p-acetylcalix[6]arene and its complex to β-phenylethylamine adsorption at a low concentration of 10 ppm, with good response (15 s) and recovery time (12 s). And at 10 ppm phenylethylamine, the composite ofboth is 20 Hz higher than para-acetylcalixarene adsorption. Gradient tests show that as the concentration increases, the response of the compound gradually increases, and the gas response of the compound about 40 Hz higher than that of p-acetylcalix[6]arene. This advantage of the compound is even more pronounced at high concentrations. The principle ofthe QCM gas-sensitive elements, basic devices, and basic detection principles ofgas on QCM are introduced in detail in Section 3 in Supporting information.

    Figure 6

    Figure 6.  The gradient test of 50 ppm, 100 ppm, 150 ppm, 200 ppm β-phenylethylamme vapor.

    As we all know, the response time is the time required to contact a certain concentration of the measured gas to reach a stable frequency. Recovery time is the desorption time of the detected gas after N2 blowing. Fig. 6 shows that at 10 ppm phenylethylamine gas concentration, the response time is less than 15 s, and the recovery time is less than 12 s, so it has excellent response andrecovery dynamics. Compared with the adsorption and desorption properties at a low concentration of 10 ppm, the higher the concentration, the better the sensitivity, and the adsorption response time and the desorption response time are all lower than 10 s. In Fig. 7, we can see that at 40 ppm, the adsorption of β-phenethylamine has an advantage of about 50 Hz over other gases so p-acetylcalix[6]arene has excellent selectivity. At room temperature 25 ± 1 ℃, ambient humidity is 45%, using different saturated aqueous solutions ofLiCl, MgCl2, Mg(NO3)2, NaCl, KCl and KNO3 to achieve different gradient humidity control. The relative humidity was 11.3%, 33.3%, 55.87%, 75.61%, 85.92% and 95.41%, respectively, and humidity measurement experiments were performed within this range. Humidity and repeatability tests show that humidity has little effect on calixarene adsorption to amines and it has good stability in a month (Figs. S6 and S7 in Supporting information). In summary, the performance of such QCM sensors for the detection of amine-containing drugs is attributed to the following factors: The six hydroxyl groups introduced on the acetyl calixarene can undergo a Schiff base reaction with the amino group [30-32]. Mechanism reaction is shown in Fig. 8. The lone electron on β-phenylethylamine attacks the carbonyl carbon, and an addition elimination reaction occurs. The imine is unstable, so a reversible reaction occurs.

    Figure 7

    Figure 7.  The selectivity of the 12 gases (QCM sensor coated with p-acetylcalix[6]arene).

    Figure 8

    Figure 8.  Mechanism of Reaction of p-acetylcalix[6]arene with β-phenethylamine.

    In order to verify the adsorption mechanism of p-acetylcalix[6] arene and β-phenylethylamine, we calculated the adsorption enthalpy and molecular configuration between molecules by Gaussian simulation (Table S1 in Supporting information). As shown in Fig. 9, the enthalpy change (ΔH) is -52.2 kJ/mol. According to the classical physicochemical adsorption theory, when the AH value is in the range of -80 kJ/mol to -40 kJ/mol, reversible chemisorption is very suitable for meeting the needs of gas sensors.

    Figure 9

    Figure 9.  Adsorption enthalpy of Schiff base between p-acetylcalix[6]arene and amine groups of p-hydroxybenzaldehyde.

    In this paper, organic synthesis is used to introduce a carbonyl group onto calix[6]arene and constructing QCM high frequencygas sensor. The amine-containing drugs are detected by the characteristics of their groups. The results show that the novel calix[6]arene derivative sensor not only shows good response to β-phenethyl-amine at low concentrations (10 ppm), but also exhibits excellent selectivity, sensitivity, long-term stability and repeatability. Through thermodynamic experiments and Gaussian simulations and fluorescence detection, consistent results can be obtained, namely the reversible schiffbase mechanism principle of carbonyl and amino groups. The composite of GO and p-acetylcalix[6]arene aromatic materials notonly increases the specific surface areaof the material, but also disperses the material into a sheet structure, further promoting the advantages of the sensor and the drug sensitivity detection field.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    The authors acknowledge the support of National Natural Science Foundation of China (No. 61527818) and the Shanghai Municipal Education Commission (No. Peak Discipline Construction Program).

    Supplementary material related to thisarticle can be found, inthe online version, at doi:https://doi.org/10.1016/j.cclet.2020.01.034.


    1. [1]

      Y. Lv, H. Yu, P. Xu, J. Xu, X. Li, Sensor. Actuat. B-Chem. 256(2018) 639-647.  doi: 10.1016/j.snb.2017.09.195

    2. [2]

      R. Toniolo, A. Pizzariello, N. Dossi, et al., Anal. Chem. 85(2013) 7241-7247.  doi: 10.1021/ac401151m

    3. [3]

      Y. Zhu, Z. Cheng, Q. Xiang, Y. Zhu, J. Xu, Sensor. Actuat. B-Chem. 256(2018) 888-895.  doi: 10.1016/j.snb.2017.10.029

    4. [4]

      Y. Lu, S. Song, C. Hou, et al., Chin. Chem. Lett. 29(2018) 65-68.  doi: 10.1016/j.cclet.2017.08.003

    5. [5]

      H. Wang, X. Liu, J. Xie, M. Duan, J. Tang, Chin. Chem. Lett. 27(2016) 464-466.  doi: 10.1016/j.cclet.2015.12.027

    6. [6]

      L. Wang, Y. Yu, Q. Xiang, et al., Sensor. Actuat. B-Chem. 255(2018) 2704-2712.  doi: 10.1016/j.snb.2017.09.082

    7. [7]

      Z. Duan, Y. Jiang, M. Yan, et al., ACS Appl. Mater. Interfaces 11(2019) 21840-21849.  doi: 10.1021/acsami.9b05709

    8. [8]

      S. Wang, G. Xie, Y. Su, et al., Sensor. Actuat. B-Chem. 255(2018) 2203-2210.  doi: 10.1016/j.snb.2017.09.028

    9. [9]

      D. Battal, S. Akgonullu, M.S. Yalcin, et al., Biosens. Bioelectron.111(2018) 10-17.  doi: 10.1016/j.bios.2018.03.055

    10. [10]

      L. Wang, Y. Zhu, Q. Xiang, et al., Sensor. Actuat. B-Chem. 251(2017) 590-600.  doi: 10.1016/j.snb.2017.05.074

    11. [11]

      L. Wang, X. Cha, Y. Wu, et al., ACS Omega 3(2018) 2437-2443.  doi: 10.1021/acsomega.8b00061

    12. [12]

      L. Wang, J. Gao, J. Xu, Sensor. Actuat. B-Chem. 293(2019) 71-82.  doi: 10.1016/j.snb.2019.04.050

    13. [13]

      L. Wang, Z. Wang, Q. Xiang, et al., Sensor. Actuat. B-Chem. 248(2017) 820-828.  doi: 10.1016/j.snb.2016.12.015

    14. [14]

      W. Chen, F. Deng, M. Xu, et al., Sensor. Actuat. B-Chem. 273(2018) 498-504.  doi: 10.1016/j.snb.2018.06.062

    15. [15]

      M.M. Ayad, N.L. Torad, Sensor. Actuat. B-Chem. 147(2010) 481-487.  doi: 10.1016/j.snb.2010.03.064

    16. [16]

      K. Zhang, R. Hu, G. Fan, et al., Sensor. Actuat. B-Chem. 243(2017) 721-730.  doi: 10.1016/j.snb.2016.12.063

    17. [17]

      F. Temel, S. Erdemir, B. Tabakci, et al., Anal. Bioanal. Chem. 411(2019) 2675-2685.  doi: 10.1007/s00216-019-01705-5

    18. [18]

      Y. Liu, Z. Zhong, J. Macromol. Sci. Part A 54(2017) 678-683.  doi: 10.1080/10601325.2017.1321959

    19. [19]

      D.S. Guo, Y. Liu, Chem. Soc. Rev. 41(2012) 5907-5921.  doi: 10.1039/c2cs35075k

    20. [20]

      R.K. Castellano, D.M. Rudkevich, J. Julius Rebek, Nat. Acad. Sci. 94(1997) 7132-7137.  doi: 10.1073/pnas.94.14.7132

    21. [21]

      J. Rebek Jr, Chem. Commun. (2000) 637-643.  doi: 10.1039/A910339M

    22. [22]

      D.M.H.A.C. Redshaw, Chem. Rev. 108(2008) 5086-5130.  doi: 10.1021/cr8002196

    23. [23]

      D.R. Dreyer, S. Park, C.W. Bielawski, et al., Chem. Soc. Rev. 39(2010) 228-240.  doi: 10.1039/B917103G

    24. [24]

      M. Hirata, T. Gotou, S. Horiuchi, et al., Carbon 42(2004) 2929-2937.  doi: 10.1016/j.carbon.2004.07.003

    25. [25]

      N.I. Zaaba, K.L. Foo, U. Hashim, et al., Proc. Engin. 184(2017) 469-477.  doi: 10.1016/j.proeng.2017.04.118

    26. [26]

      I.A. Koshets, Z.I. Kazantseva, Y.M. Shirshov, et al., Sensor. Actuat. B-Chem. 106(2005) 177-181.  doi: 10.1016/j.snb.2004.05.054

    27. [27]

      J.H. Wosnick, T.M. Swager, Chem. Commun. (2004) 2744-2745.  doi: 10.1039/b411489b

    28. [28]

      M. Namba, M. Sugawara, P. Buhlmann, et al., Am. Chem. Soc. 11(1995) 635-638.  doi: 10.1023/A:1021373400660

    29. [29]

      A. Ganguly, S. Sharma, P. Papakonstantinou, et al., J. Phys. Chem. C 115(2011) 17009-17019.  doi: 10.1021/jp203741y

    30. [30]

      E. Valeur, M. Bradley, Chem. Soc. Rev. 38(2009) 606-631.  doi: 10.1039/B701677H

    31. [31]

      C.L. Aronson, D. Beloskur, I.S. Frampton, et al., Polym. Bull. 52(2004) 409-419.  doi: 10.1007/s00289-004-0305-x

    32. [32]

      S. Ren, Z. Wu, Q. Guo, B. Shen, Catal. Lett. 145(2014) 712-714.

    1. [1]

      Y. Lv, H. Yu, P. Xu, J. Xu, X. Li, Sensor. Actuat. B-Chem. 256(2018) 639-647.  doi: 10.1016/j.snb.2017.09.195

    2. [2]

      R. Toniolo, A. Pizzariello, N. Dossi, et al., Anal. Chem. 85(2013) 7241-7247.  doi: 10.1021/ac401151m

    3. [3]

      Y. Zhu, Z. Cheng, Q. Xiang, Y. Zhu, J. Xu, Sensor. Actuat. B-Chem. 256(2018) 888-895.  doi: 10.1016/j.snb.2017.10.029

    4. [4]

      Y. Lu, S. Song, C. Hou, et al., Chin. Chem. Lett. 29(2018) 65-68.  doi: 10.1016/j.cclet.2017.08.003

    5. [5]

      H. Wang, X. Liu, J. Xie, M. Duan, J. Tang, Chin. Chem. Lett. 27(2016) 464-466.  doi: 10.1016/j.cclet.2015.12.027

    6. [6]

      L. Wang, Y. Yu, Q. Xiang, et al., Sensor. Actuat. B-Chem. 255(2018) 2704-2712.  doi: 10.1016/j.snb.2017.09.082

    7. [7]

      Z. Duan, Y. Jiang, M. Yan, et al., ACS Appl. Mater. Interfaces 11(2019) 21840-21849.  doi: 10.1021/acsami.9b05709

    8. [8]

      S. Wang, G. Xie, Y. Su, et al., Sensor. Actuat. B-Chem. 255(2018) 2203-2210.  doi: 10.1016/j.snb.2017.09.028

    9. [9]

      D. Battal, S. Akgonullu, M.S. Yalcin, et al., Biosens. Bioelectron.111(2018) 10-17.  doi: 10.1016/j.bios.2018.03.055

    10. [10]

      L. Wang, Y. Zhu, Q. Xiang, et al., Sensor. Actuat. B-Chem. 251(2017) 590-600.  doi: 10.1016/j.snb.2017.05.074

    11. [11]

      L. Wang, X. Cha, Y. Wu, et al., ACS Omega 3(2018) 2437-2443.  doi: 10.1021/acsomega.8b00061

    12. [12]

      L. Wang, J. Gao, J. Xu, Sensor. Actuat. B-Chem. 293(2019) 71-82.  doi: 10.1016/j.snb.2019.04.050

    13. [13]

      L. Wang, Z. Wang, Q. Xiang, et al., Sensor. Actuat. B-Chem. 248(2017) 820-828.  doi: 10.1016/j.snb.2016.12.015

    14. [14]

      W. Chen, F. Deng, M. Xu, et al., Sensor. Actuat. B-Chem. 273(2018) 498-504.  doi: 10.1016/j.snb.2018.06.062

    15. [15]

      M.M. Ayad, N.L. Torad, Sensor. Actuat. B-Chem. 147(2010) 481-487.  doi: 10.1016/j.snb.2010.03.064

    16. [16]

      K. Zhang, R. Hu, G. Fan, et al., Sensor. Actuat. B-Chem. 243(2017) 721-730.  doi: 10.1016/j.snb.2016.12.063

    17. [17]

      F. Temel, S. Erdemir, B. Tabakci, et al., Anal. Bioanal. Chem. 411(2019) 2675-2685.  doi: 10.1007/s00216-019-01705-5

    18. [18]

      Y. Liu, Z. Zhong, J. Macromol. Sci. Part A 54(2017) 678-683.  doi: 10.1080/10601325.2017.1321959

    19. [19]

      D.S. Guo, Y. Liu, Chem. Soc. Rev. 41(2012) 5907-5921.  doi: 10.1039/c2cs35075k

    20. [20]

      R.K. Castellano, D.M. Rudkevich, J. Julius Rebek, Nat. Acad. Sci. 94(1997) 7132-7137.  doi: 10.1073/pnas.94.14.7132

    21. [21]

      J. Rebek Jr, Chem. Commun. (2000) 637-643.  doi: 10.1039/A910339M

    22. [22]

      D.M.H.A.C. Redshaw, Chem. Rev. 108(2008) 5086-5130.  doi: 10.1021/cr8002196

    23. [23]

      D.R. Dreyer, S. Park, C.W. Bielawski, et al., Chem. Soc. Rev. 39(2010) 228-240.  doi: 10.1039/B917103G

    24. [24]

      M. Hirata, T. Gotou, S. Horiuchi, et al., Carbon 42(2004) 2929-2937.  doi: 10.1016/j.carbon.2004.07.003

    25. [25]

      N.I. Zaaba, K.L. Foo, U. Hashim, et al., Proc. Engin. 184(2017) 469-477.  doi: 10.1016/j.proeng.2017.04.118

    26. [26]

      I.A. Koshets, Z.I. Kazantseva, Y.M. Shirshov, et al., Sensor. Actuat. B-Chem. 106(2005) 177-181.  doi: 10.1016/j.snb.2004.05.054

    27. [27]

      J.H. Wosnick, T.M. Swager, Chem. Commun. (2004) 2744-2745.  doi: 10.1039/b411489b

    28. [28]

      M. Namba, M. Sugawara, P. Buhlmann, et al., Am. Chem. Soc. 11(1995) 635-638.  doi: 10.1023/A:1021373400660

    29. [29]

      A. Ganguly, S. Sharma, P. Papakonstantinou, et al., J. Phys. Chem. C 115(2011) 17009-17019.  doi: 10.1021/jp203741y

    30. [30]

      E. Valeur, M. Bradley, Chem. Soc. Rev. 38(2009) 606-631.  doi: 10.1039/B701677H

    31. [31]

      C.L. Aronson, D. Beloskur, I.S. Frampton, et al., Polym. Bull. 52(2004) 409-419.  doi: 10.1007/s00289-004-0305-x

    32. [32]

      S. Ren, Z. Wu, Q. Guo, B. Shen, Catal. Lett. 145(2014) 712-714.

  • 加载中
    1. [1]

      Yuanyu YANGJianhua XUEYujia BAILulu CUIDongdong YANGQi MA . Design, synthesis, and detection of Al3+ of two zinc complexes based on Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1207-1216. doi: 10.11862/CJIC.20250005

    2. [2]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    3. [3]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Ruofan QiJing ZhangWang SunBai YuZhenhua WangKening Sun . Solid-acid-Lewis-base interaction accelerates lithium ion transport for uniform lithium deposition. Chinese Chemical Letters, 2025, 36(6): 110009-. doi: 10.1016/j.cclet.2024.110009

    6. [6]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    7. [7]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

    8. [8]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    9. [9]

      Jingyu ChenSha WuYuhao WangJiong Zhou . Near-perfect separation of alicyclic ketones and alicyclic alcohols by nonporous adaptive crystals of perethylated pillar[5]arene and pillar[6]arene. Chinese Chemical Letters, 2025, 36(4): 110102-. doi: 10.1016/j.cclet.2024.110102

    10. [10]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    11. [11]

      Yijian ZhaoJvzhe LiYunyi ShiJie HuMeiyi LiuYao ShenXinglin HouQiuyue WangQi WangZhiyi Yao . A label-free and ratiometric fluorescent sensor based on porphyrin-metal-organic frameworks for sensitive detection of ochratoxin A in cereal. Chinese Chemical Letters, 2025, 36(4): 110132-. doi: 10.1016/j.cclet.2024.110132

    12. [12]

      Ren ShenYanmei FangChunxiao YangQuande WeiPui-In MakRui P. MartinsYanwei Jia . UV-assisted ratiometric fluorescence sensor for one-pot visual detection of Salmonella. Chinese Chemical Letters, 2025, 36(4): 110143-. doi: 10.1016/j.cclet.2024.110143

    13. [13]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    14. [14]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    15. [15]

      Huakang ZongXinyue LiYanlin ZhangFaxun WangXingxing YuGuotao DuanYuanyuan Luo . Pt/Ti3C2 electrode material used for H2S sensor with low detection limit and high stability. Chinese Chemical Letters, 2025, 36(5): 110195-. doi: 10.1016/j.cclet.2024.110195

    16. [16]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    17. [17]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    18. [18]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    19. [19]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    20. [20]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

Metrics
  • PDF Downloads(6)
  • Abstract views(936)
  • HTML views(64)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return