Citation: Zhou Dan, Jiang Bei, Yang Rui, Hou Xiandeng, Zheng Chengbin. One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution[J]. Chinese Chemical Letters, ;2020, 31(6): 1540-1544. doi: 10.1016/j.cclet.2019.11.014 shu

One-step synthesis of monodispersed Pt nanoparticles anchored on 3D graphene foams and its application for electrocatalytic hydrogen evolution

    * Corresponding authors.
    E-mail addresses: bebejiang@scu.edu.cn (B. Jiang), abinscu@scu.edu.cn (C. Zheng).
  • Received Date: 7 September 2019
    Revised Date: 21 October 2019
    Accepted Date: 8 November 2019
    Available Online: 9 November 2019

Figures(4)

  • Although platinum-based materials are regarded as the state-of-the-art electro-catalysts for hydrogen evolution reaction (HER), high cost and quantity scarcity hamper their scale-up utilization in industrial deployment. Herein, a one-step strategy was developed to synthesize multi-walled carbon nanotubes and reduced graphene oxide supported Pt nanoparticle hydrogel (PtNP/rGO-MWCNT), in which only ascorbic acid was used as the reductant for one-pot reduction of both GO and chloroplatinic acid. The hydrogel can be directly used as a flexible binder-free catalytic electrode to achieve high performance of HER. Compared to conventional strategies, the current strategy not only significantly reduces the Pt loading to 3.48 wt%, simplifies the synthesis process, but also eliminates the use of any polymer binders, thus decreasing the series resistance and improving catalytic activity. An overpotential of only 11 mV was achieved on as-prepared PtNP/rGO-MWCNT to drive a geometrical current density of 10 mA/cm2 in 0.5 mol/L H2SO4, with its catalytic activity being kept over 15 h. In acidic medium, the HER activity of the PtNP/rGO-MWCNT catalyst exceeds most of the reported Pt-based electro-catalysts and is 3-fold higher than that obtained on commercial Pt/C electrode.
  • Chemotherapy, as one of the most common modalities to treat various diseases, such as cancers and human immunodeficiency virus (HIV), faces a variety of challenges in clinical applications, including but not limited to poor specificity and associated sideeffects. To address these challenges, a plethora of stimuliresponsive prodrugs including dimeric and polymeric prodrugs have been developed and exhibited therapeutic improvements in preclinical and even clinical settings [1-8]. For instance, camptothecin (CPT) dimer, connected by a reduction-labile maleimide thioether bond was designed and loaded into an acid-active nanoplatform for the targeted killing of tumor cells [9]. Moreover, the CPT dimer possesses Förster resonance energy transfer (FRET) effect between CPT and maleimide thioether bond, and the reversion of the dimer to monomeric CPT resulted in the "turnoff" of the FRET signal, making the drug release process trackable. Furthermore, abacavir dimeric prodrug was designed to facilitate the blood brain barrier penetration via inhibiting the drug's efflux by P-glycoprotein, and the dimeric drug was reverted back into potent monomeric therapeutic agent specifically inside target cells [10]. Although these covalent dimeric prodrugs exhibited promising selectivity towards cancer cells, the preparation of these materials often involves ingenious design and complex synthesis, and each synthetic strategy cannot be translated to dimerization of other drug systems. In addition, many of these dimeric prodrugs often need to be further loaded into nanomaterials for improved therapy [2]. A more facile, general approach to prepare dimeric prodrug that may be used directly as a therapeutic agent is highly sought after.

    Due to excellent guest-binding behaviours, macrocyclic cucurbit[n]uril (CB[n], n = 5–8 and 10) have attracted increasing attentions in supramolecular chemistry during recent years [11-18]. Recent studies have demonstrated that CB[7] may serve as an effective pharmaceutical excipient that offers a variety of benefits, such as taste-masking and side effect alleviation of the included drugs [19, 20]. On the other hand, CB[8] (Fig. 1) may simultaneously bind two guest drug molecules inside the cavity to form a stable ternary complex, doubling drug loading of that from either CB[7] or CB[8]-based binary complex systems [21-23]. Therefore, CB[8] has been frequently employed as a non-covalent crosslinker in construction of a variety of functional materials [11, 24-28]. One typical example is that peptides or proteins with tryptophan (Trp) or phenylalanine (Phe) residues at N-terminal could be dimerized by CB[8] via homo-ternary complexation, which was firstly discovered by Urbach and coworkers [23]. Such strategy has been applied to dimerize proteins and manipulate their enzymatic activity [29, 30]. Under the same principles, Scherman and co-workers demonstrated the preparation of supramolecular hydrogels by CB[8]-mediated crosslinking of Phe-functionalized polysaccharides, which have exhibited potential applications in controlled drug delivery and tissue engineering [31-33]. Similarly, Wang et al. reported an ecofriendly antibiotic based on CB[8] crosslinked Phe-functionalized polyethylenimine [34]. However, in all of these previous examples, CB[8] was employed to crosslink peptides, proteins and polymers, whereas CB[8]-crosslinked dimeric drug molecules are extremely rare. Herein we designed a doxorubicin (DOX) prodrug DOX-Trp that contains an acid-labile hydrazone bond, and we demonstrate for the first time that a supramolecular dimer of DOX based on CB[8] and Trp modified DOX (DOX-Trp) may act as a stimuli pHresponsive DOX dimer prodrug system that may transport DOX efficiently and selectively to cancer cells. This novel supramolecular drug dimer system resulted in improved therapeutic effect towards cancer cells with minimal cytotoxicity against noncancerous cells.

    Figure 1

    Figure 1.  Schematic illustration of CB[8] mediated dimerization of DOX-Trp and the selective release of DOX against cancer cells.

    Firstly, Trp conjugated DOX via a hydrazone bond, DOX-Trp was synthesized. The synthetic procedures are detailed in Scheme S1 (Supporting information), and its chemical structure was confirmed by 1H NMR and 13C NMR and HR-ESI-MS. Supramolecular dimer of DOX, crosslinked by CB[8], was formed when DOX-Trp and CB[8] were mixed at 2:1 molecular ratio in an aqueous solution. 1H NMR, isothermal titration calorimetry (ITC) and ESI-MS were employed to investigate the formation of such a ternary complex. As shown in Fig. S1 (Supporting information), the mixture exhibited significant exchange broadening on 1H NMR spectra during titration with CB[8], consistent with previous observations reported by Urbach and coworkers, which is inconclusive for the interaction and binding ratio between CB[8] and DOX-Trp [23]. The ITC experiment was conducted by injection of DOX-Trp (1.0 mmol/L) into CB[8] solution (0.024mmol/L) in the cell. The integrated thermogram (Fig. 2) performed after the deduction of the blank control was fitted to the "sequentialbinding"model, resultingina2:1binding stoichiometryof DOX-Trp@CB[8], with stepwise bimolecular association constants determined to be Ks1 = 1.99×106 L/mol and Ks2 = 1.14×105 L/mol, respectively, slightly larger than the previously reported values (Ks1 = 1.3×105 L/mol and Ks2 = 2.8×104 L/mol), likely due to the absenceof saltsin theultrapurewater solutionsinour study, instead of PBS used in the previous study [23, 35]. Furthermore, ESI-MS analysis (Fig. S2 in Supporting information) revealed a characteristic triply charged peak at m/z 939.67, corresponding to [(DOXTrp)2@CB[8]+3H]3+ (calcd. value 939.66), further supported the 2:1 binding ratio between DOX-Trp and CB[8].

    Figure 2

    Figure 2.  ITC results of the titration of DOX-Trp into CB[8] in aqueous solutions at 25.0 ℃. Top: Thermogram of 19 drops (0.4 μL for the first drop and 2 μL per drop for the rest 18 drops) of DOX-Trp (1.0 mmol/L, 0.04 μL) injected into CB[8] solution (0.024 mmol/L, 0.2 mL). Bottom: The dependence of △H against the molar ratio between DOX-Trp and CB[8] during titration; the solid line represents the best fit plot by using the "sequential binding" binding model.

    As the prodrug DOX-Trp contained an acid-labile hydrazone bond, it was expected that the dimer system would exhibit pH responsive release of DOX under acidic conditions typically encountered in tumour tissues and cells. As the typical pH in cancer tissues and around cancer cells is approximately 6.5 and even lower in lysosome (pH 5.0), and the pH of extracellular fluids and around normal cells is approximately 7.0 [36-38]. Therefore, we chose pH 5.0, 6.5 and 7.0 to examine the drug release behaviours of DOX-Trp@CB[8]. Thus, DOX release rate of the supramolecular dimer was studied under different pH conditions using HPLC. As shown in Fig. 3, the dimer system showed decent stability when incubated in a PBS solution at pH 7.0, with accumulated DOX release less than 16% after incubation for 72 h. Conversely, the release of free DOX reached up to 62% and 49% when incubated at pH 5.0 and 6.5, respectively, for 72 h, confirming the pH sensitivity of the dimer system.

    Figure 3

    Figure 3.  The time-dependent release efficiency of DOX from DOX-Trp@CB[8] under neutral and acidic conditions (n = 3).

    Next, the cellular uptake behaviours of the dimer system by LO2 and BEL 7402 cell lines, as representative noncancerous and cancer cell lines, were investigated via confocal laser scanning microscopy (CLSM) upon incubating the cells with the dimer system for 24 h. As shown in Fig. 4, DAPI was employed to stain the cell nucleus with blue fluorescence, while DOX possesses naturally-occurring red fluorescence. Upon incubation of the cells with DOX-Trp@CB[8] for 24 h, BEL 7402 and LO2 cells exhibited obviously different levels of uptake of DOX, as much higher-intensity of red fluorescence was observed in BEL 7402 cells than that in LO2 cells. In addition, most of red fluorescence in LO2 cells was concentrated in the cytoplasm, while in BEL 7402 cells red fluorescence was mainly situated in the nucleus, suggesting that DOX was effectively released by the dimer system and more efficiently taken up by the cancer cells. With regards to free DOX-Trp (Fig. S3 in Supporting information), both LO2 cells and BEL 7402 cells were infiltrated by red fluorescence produced by DOX, indicating that DOX-Trp does not have the ability to selectively release DOX. In contrast, the dimer system likely remained its integrity in the relatively neutral microenvironment of LO2 cell lines, which has limited its uptake by the cells. Subsequently, the quantitative analysis of cellular uptake by flow cytometry was conducted. As shown in Figs. S4 and S5 (Supporting information), the amount of DOX taken up by BEL 7402 cells was nearly 10-fold higher than that by LO2 cells. This was likely attributed to the different pH micro-environments of cancerous cells and noncancerous cells, where free DOX could not be released at neutral pH conditions encountered near noncancerous cells, resulting in significantly reduced uptake by noncancerous cells.

    Figure 4

    Figure 4.  CLSM images of BEL 7402 and LO2 cells incubated with DOX-Trp@CB[8] for 24 h. The cell nuclei were stained by DAPI (blue fluorescence).

    To further investigate the selective drug release profile of the supramolecular dimer system in cancer cells, cytotoxicity experiment was conducted in both cancerous and non-cancerous cell lines. For comparison, each cell line was incubated with free DOX, DOX-Trp, DOX-Trp@CB[8] and CB[8], respectively, and were subsequently investigated via MTT assays. As shown in Fig. 5, after incubation for 48 h, free DOX, DOX-Trp and DOX-Trp@CB[8] exhibited comparable anticancer activities against BEL 7402 cells with the IC50 (inhibitory concentration to produce 50% cell death) values determined to be 4.85±1.28 μmol/L, 7.168±1.23 μmol/L and 4.61±1.01 μmol/L, respectively. In contrast, the DOX-Trp@CB[8] group exhibited remarkably reduced cytotoxicity against LO2 cell line after 48 h of incubation, when compared to DOX-Trp group and free DOX group. The IC50 value was determined to be 13.66± 1.21 μmol/LforDOX-Trp@CB[8], significantly higher than thatoffree DOX (2.11±1.08 μmol/L) and DOX-Trp (8.01±0.88 μmol/L) against LO2 cells, suggesting that the dimer system may set the ammunition (DOX) free at the target site due to the inherent pH sensitivity. The dramatically improved safety profile of the dimer system against noncancerous cells was consistent with the reduced cellular uptake by noncancerous cells, likely attributed to the reduced transmembrane transport of the supramolecular dimer. Our previous studies have exhibited that supramolecular complexation of a guest species by cucurbituril may inhibit its cellular uptake [39, 40]. In fact, DOX has proven anticancer activity, however, its clinical application has been mainly hampered by its systemic toxicity. Thus, the supramolecular dimer system may provide a novel approach to alleviate the cytotoxicity of DOX while maintaining its cytotoxicity against cancer cells in a specific manner.

    Figure 5

    Figure 5.  Cytotoxicity results of free DOX, DOX-Trp, DOX-Trp@CB[8] and CB[8] against BEL 7402 and LO2 cells incubated for 48 h analysed by using MTT assay (n = 5).

    In summary, we have designed and developed a novel pHsensitive supramolecular DOX dimer system, via CB[8] mediated DOX-Trp homo-dimerization, which has exhibited selective ammunition (DOX) release in cancer cells, thus exerting a significantly improved safety profile against normal cells while maintaining effective cytotoxicity against cancer cells. Under this strategy, many other anticancer drugs could be chemically modified and loaded as a dimeric "ammunition" into this supramolecular dimer system for improved cancer therapy.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    This work was supported by the Science and Technology Development Fund, Macau SAR (No. 030/2017/A1), University of Macau (No. MYRG2016-00008-ICMS-QRCM) and the National Natural Science Foundation of China (No. 21871301).

    Supplementary material related to this article canbefound, in the online version, at doi:https://doi.org/10.1016/j.cclet.2019.10.020.


    1. [1]

      A.J. Bard, M.A. Fox, Acc. Chem. Res. 28 (1995) 141-145.  doi: 10.1021/ar00051a007

    2. [2]

      J. Chow, R.J. Kopp, P.R. Portney, Science 302 (2003) 1528-1531.  doi: 10.1126/science.1091939

    3. [3]

      G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57(2004) 39-44.  doi: 10.1063/1.1878333

    4. [4]

      D.G. Nocera, Acc. Chem. Res. 45 (2012) 767-776.  doi: 10.1021/ar2003013

    5. [5]

      X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.  doi: 10.1039/C4CS00448E

    6. [6]

      M.G. Walter, E.L. Warren, J.R. McKone, et al., Chem. Rev. 110 (2010) 6446-6473.  doi: 10.1021/cr1002326

    7. [7]

      A.L. Goff, V. Artero, B. Jousselme, et al., Science 326 (2009) 1384-1387.  doi: 10.1126/science.1179773

    8. [8]

      T. Guo, L. Wang, S. Sun, et al., Chin. Chem. Lett. 30 (2019) 1253-1260.  doi: 10.1016/j.cclet.2019.02.009

    9. [9]

      D. Zhou, L. He, W. Zhu, et al., J. Mater. Chem. A 4 (2016) 10114-10117.  doi: 10.1039/C6TA03628G

    10. [10]

      Y. Jia, J. Xie, Y. Yang, et al., Chin. Chem. Lett. 31 (2020) 855-858.  doi: 10.1016/j.cclet.2019.06.021

    11. [11]

      M. Streckova, E. Mudra, R. Orinakova, et al., Chem. Eng. J. 303 (2016) 167-181.  doi: 10.1016/j.cej.2016.05.147

    12. [12]

      X. Chen, X. Zhen, H. Gong, et al., Chin. Chem. Lett. 30 (2019) 681-685.  doi: 10.1016/j.cclet.2018.09.017

    13. [13]

      H.J. Yan, C.G. Tian, L. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 6325-6329.  doi: 10.1002/anie.201501419

    14. [14]

      V. Vij, S. Sultan, A.M. Harzandi, et al., ACS Catal. 7 (2017) 7196-7225.  doi: 10.1021/acscatal.7b01800

    15. [15]

      X. Liu, J.Z. Zhang, K.J. Huang, et al., Chem. Eng. J. 302 (2016) 437-445.  doi: 10.1016/j.cej.2016.05.074

    16. [16]

      W.Tang, J.Wang, L.Guo, etal., ACSAppl.Mater.Interfacses 9 (2017) 41347-41353.  doi: 10.1021/acsami.7b14466

    17. [17]

      C. Cui, R. Cheng, C. Zhang, et al., Chin. Chem. Lett. 31 (2020) 988-991.  doi: 10.1016/j.cclet.2019.08.026

    18. [18]

      X. Gan, R. Lv, X. Wang, et al., Carbon 132 (2018) 512-519.  doi: 10.1016/j.carbon.2018.02.025

    19. [19]

      P. Wang, X. Zhang, J. Zhang, et al., Nat. Commun. 8 (2017) 14580.  doi: 10.1038/ncomms14580

    20. [20]

      Z. Cao, Q. Chen, J. Zhang, et al., Nat. Commun. 8 (2017) 15131.  doi: 10.1038/ncomms15131

    21. [21]

      R. Wang, C. Wang, W.B. Cai, et al., Adv. Mater. 22 (2010) 1845-1848.  doi: 10.1002/adma.200903548

    22. [22]

      M. Tavakkoli, N. Holmberg, R. Kronberg, et al., ACS Catal. 7 (2017) 3121-3130.  doi: 10.1021/acscatal.7b00199

    23. [23]

      R. O'Hayre, S.J. Lee, S.W. Cha, et al., J. Power Sources 109 (2002) 483-493.  doi: 10.1016/S0378-7753(02)00238-0

    24. [24]

      N. Ramaswamy, T.M. Arruda, W. Wen, et al., Electrochim. Acta 54 (2009) 6756-6766.  doi: 10.1016/j.electacta.2009.06.040

    25. [25]

      A.D. Taylor, E.Y. Kim, V.P. Humes, et al., J. Power Sources 171 (2007) 101-106.  doi: 10.1016/j.jpowsour.2007.01.024

    26. [26]

      C. Hsu, C.C. Wan, J. Power Sources 115 (2003) 268-273.  doi: 10.1016/S0378-7753(03)00005-3

    27. [27]

      B. Martinez-Vazquez, D.G. Sanchez, J.L. Castillo, et al., Int. J. Hydrogen Energy 40 (2015) 5384-5389.  doi: 10.1016/j.ijhydene.2015.01.111

    28. [28]

      T.H. Huang, H.L. Shen, T.C. Jao, et al., Int. J. Hydrogen Energy 37 (2012) 13872-13879.  doi: 10.1016/j.ijhydene.2012.04.108

    29. [29]

      J. Dendooven, R.K. Ramachandran, E. Solano, et al., Nat. Commun. 8 (2017) 1074.  doi: 10.1038/s41467-017-01140-z

    30. [30]

      S. Anantharaj, P.E. Karthik, B. Subramanian, et al., ACS Catal. 6 (2016) 4660-4672.  doi: 10.1021/acscatal.6b00965

    31. [31]

      Z. Zhao, H. Liu, W. Gao, et al., J. Am. Chem. Soc. 140 (2018) 9046-9050.  doi: 10.1021/jacs.8b04770

    32. [32]

      A. Guha, T. Veettil Vineesh, A. Sekar, et al., ACS Catal. 8 (2018) 6636-6644.

    33. [33]

      V.T. Nguyen, N.A. Nguyen, Y. Ali, et al., Carbon 146 (2019) 116-124.  doi: 10.1016/j.carbon.2019.01.087

    34. [34]

      Y.P. Zhu, Y.P. Liu, T.Z. Ren, et al., Adv. Funct. Mater. 25 (2015) 7337-7347.  doi: 10.1002/adfm.201503666

    35. [35]

      A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191.  doi: 10.1038/nmat1849

    36. [36]

      L. Yang, M. Zou, S. Wu, et al., ACS Nano 11 (2017) 2944-2951.  doi: 10.1021/acsnano.6b08323

    37. [37]

      H. Fei, J. Dong, C. Wan, et al., Adv. Mater. 30 (2018) 1802146.  doi: 10.1002/adma.201802146

    38. [38]

      D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., ACS Nano 4 (2018) 4806-4814.

    39. [39]

      G. Li, G. Hong, D. Dong, et al., Adv. Mater. (2018) e1801754.

    40. [40]

      X. Fan, W. Peng, Y. Li, et al., Adv. Mater. 20 (2008) 4490-4493.  doi: 10.1002/adma.200801306

    41. [41]

      Y. Shao, J. Wang, M. Engelhard, et al., J. Mater. Chem. 20 (2010) 743-748.  doi: 10.1039/B917975E

    42. [42]

      Y. Xu, K. Sheng, C. Li, et al., ACS Nano 4 (2010) 4324-4330.  doi: 10.1021/nn101187z

    43. [43]

      C. Mattevi, G. Eda, S. Agnoli, et al., Adv. Funct. Mater. 19 (2009) 2577-2583.  doi: 10.1002/adfm.200900166

    44. [44]

      D. Yang, A. Velamakanni, G. Bozoklu, et al., Carbon 47 (2009) 145-152.  doi: 10.1016/j.carbon.2008.09.045

    45. [45]

      S. Kundu, H. Liang, Langmuir 26 (2010) 6720-6727.  doi: 10.1021/la904070n

    46. [46]

      Z. Wang, X. Ren, Y. Luo, et al., Nanoscale 10 (2018) 12302-12307.  doi: 10.1039/C8NR02071J

    47. [47]

      M.S. Ahmed, H.S. Han, S. Jeon, Carbon 61 (2013) 164-172.  doi: 10.1016/j.carbon.2013.04.080

    48. [48]

      D. Chen, L. Li, L. Guo, Nanotechnology 22 (2011) 325601.  doi: 10.1088/0957-4484/22/32/325601

    49. [49]

      T. Kuila, S. Bose, P. Khanra, et al., Carbon 50 (2012) 914-921.  doi: 10.1016/j.carbon.2011.09.053

    50. [50]

      A.V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21 (2009) 5004-5006.  doi: 10.1021/cm902413c

    51. [51]

      L. Shi, X. Liu, Y. Tuo, et al., Int. J. Hydrogen Energy 42 (2017) 17403-17413.  doi: 10.1016/j.ijhydene.2017.02.161

    52. [52]

      J. Zhang, H. Yang, G. Shen, et al., Chem. Commun. 46 (2010) 1112-1114.  doi: 10.1039/B917705A

    53. [53]

      Z. Xing, Q. Liu, A.M. Asiri, et al., Adv. Mater. 26 (2014) 5702-5707.  doi: 10.1002/adma.201401692

    54. [54]

      T. Wang, J. Zhuo, K. Du, et al., Adv. Mater. 26 (2014) 3761-3766.  doi: 10.1002/adma.201400265

    55. [55]

      J. Wang, F. Xu, H. Jin, et al., Adv. Mater. 29 (2017) e1605838.  doi: 10.1002/adma.201605838

    56. [56]

      P. Jiang, Q. Liu, Y. Liang, et al., Angew. Chem. Int. Ed. 126 (2014) 13069-13073.  doi: 10.1002/ange.201406848

    57. [57]

      C.C. McCrory, S. Jung, J.C. Peters, et al., J. Am. Chem. Soc. 135 (2013) 16977-16987.  doi: 10.1021/ja407115p

    1. [1]

      A.J. Bard, M.A. Fox, Acc. Chem. Res. 28 (1995) 141-145.  doi: 10.1021/ar00051a007

    2. [2]

      J. Chow, R.J. Kopp, P.R. Portney, Science 302 (2003) 1528-1531.  doi: 10.1126/science.1091939

    3. [3]

      G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today 57(2004) 39-44.  doi: 10.1063/1.1878333

    4. [4]

      D.G. Nocera, Acc. Chem. Res. 45 (2012) 767-776.  doi: 10.1021/ar2003013

    5. [5]

      X. Zou, Y. Zhang, Chem. Soc. Rev. 44 (2015) 5148-5180.  doi: 10.1039/C4CS00448E

    6. [6]

      M.G. Walter, E.L. Warren, J.R. McKone, et al., Chem. Rev. 110 (2010) 6446-6473.  doi: 10.1021/cr1002326

    7. [7]

      A.L. Goff, V. Artero, B. Jousselme, et al., Science 326 (2009) 1384-1387.  doi: 10.1126/science.1179773

    8. [8]

      T. Guo, L. Wang, S. Sun, et al., Chin. Chem. Lett. 30 (2019) 1253-1260.  doi: 10.1016/j.cclet.2019.02.009

    9. [9]

      D. Zhou, L. He, W. Zhu, et al., J. Mater. Chem. A 4 (2016) 10114-10117.  doi: 10.1039/C6TA03628G

    10. [10]

      Y. Jia, J. Xie, Y. Yang, et al., Chin. Chem. Lett. 31 (2020) 855-858.  doi: 10.1016/j.cclet.2019.06.021

    11. [11]

      M. Streckova, E. Mudra, R. Orinakova, et al., Chem. Eng. J. 303 (2016) 167-181.  doi: 10.1016/j.cej.2016.05.147

    12. [12]

      X. Chen, X. Zhen, H. Gong, et al., Chin. Chem. Lett. 30 (2019) 681-685.  doi: 10.1016/j.cclet.2018.09.017

    13. [13]

      H.J. Yan, C.G. Tian, L. Wang, et al., Angew. Chem. Int. Ed. 54 (2015) 6325-6329.  doi: 10.1002/anie.201501419

    14. [14]

      V. Vij, S. Sultan, A.M. Harzandi, et al., ACS Catal. 7 (2017) 7196-7225.  doi: 10.1021/acscatal.7b01800

    15. [15]

      X. Liu, J.Z. Zhang, K.J. Huang, et al., Chem. Eng. J. 302 (2016) 437-445.  doi: 10.1016/j.cej.2016.05.074

    16. [16]

      W.Tang, J.Wang, L.Guo, etal., ACSAppl.Mater.Interfacses 9 (2017) 41347-41353.  doi: 10.1021/acsami.7b14466

    17. [17]

      C. Cui, R. Cheng, C. Zhang, et al., Chin. Chem. Lett. 31 (2020) 988-991.  doi: 10.1016/j.cclet.2019.08.026

    18. [18]

      X. Gan, R. Lv, X. Wang, et al., Carbon 132 (2018) 512-519.  doi: 10.1016/j.carbon.2018.02.025

    19. [19]

      P. Wang, X. Zhang, J. Zhang, et al., Nat. Commun. 8 (2017) 14580.  doi: 10.1038/ncomms14580

    20. [20]

      Z. Cao, Q. Chen, J. Zhang, et al., Nat. Commun. 8 (2017) 15131.  doi: 10.1038/ncomms15131

    21. [21]

      R. Wang, C. Wang, W.B. Cai, et al., Adv. Mater. 22 (2010) 1845-1848.  doi: 10.1002/adma.200903548

    22. [22]

      M. Tavakkoli, N. Holmberg, R. Kronberg, et al., ACS Catal. 7 (2017) 3121-3130.  doi: 10.1021/acscatal.7b00199

    23. [23]

      R. O'Hayre, S.J. Lee, S.W. Cha, et al., J. Power Sources 109 (2002) 483-493.  doi: 10.1016/S0378-7753(02)00238-0

    24. [24]

      N. Ramaswamy, T.M. Arruda, W. Wen, et al., Electrochim. Acta 54 (2009) 6756-6766.  doi: 10.1016/j.electacta.2009.06.040

    25. [25]

      A.D. Taylor, E.Y. Kim, V.P. Humes, et al., J. Power Sources 171 (2007) 101-106.  doi: 10.1016/j.jpowsour.2007.01.024

    26. [26]

      C. Hsu, C.C. Wan, J. Power Sources 115 (2003) 268-273.  doi: 10.1016/S0378-7753(03)00005-3

    27. [27]

      B. Martinez-Vazquez, D.G. Sanchez, J.L. Castillo, et al., Int. J. Hydrogen Energy 40 (2015) 5384-5389.  doi: 10.1016/j.ijhydene.2015.01.111

    28. [28]

      T.H. Huang, H.L. Shen, T.C. Jao, et al., Int. J. Hydrogen Energy 37 (2012) 13872-13879.  doi: 10.1016/j.ijhydene.2012.04.108

    29. [29]

      J. Dendooven, R.K. Ramachandran, E. Solano, et al., Nat. Commun. 8 (2017) 1074.  doi: 10.1038/s41467-017-01140-z

    30. [30]

      S. Anantharaj, P.E. Karthik, B. Subramanian, et al., ACS Catal. 6 (2016) 4660-4672.  doi: 10.1021/acscatal.6b00965

    31. [31]

      Z. Zhao, H. Liu, W. Gao, et al., J. Am. Chem. Soc. 140 (2018) 9046-9050.  doi: 10.1021/jacs.8b04770

    32. [32]

      A. Guha, T. Veettil Vineesh, A. Sekar, et al., ACS Catal. 8 (2018) 6636-6644.

    33. [33]

      V.T. Nguyen, N.A. Nguyen, Y. Ali, et al., Carbon 146 (2019) 116-124.  doi: 10.1016/j.carbon.2019.01.087

    34. [34]

      Y.P. Zhu, Y.P. Liu, T.Z. Ren, et al., Adv. Funct. Mater. 25 (2015) 7337-7347.  doi: 10.1002/adfm.201503666

    35. [35]

      A.K. Geim, K.S. Novoselov, Nat. Mater. 6 (2007) 183-191.  doi: 10.1038/nmat1849

    36. [36]

      L. Yang, M. Zou, S. Wu, et al., ACS Nano 11 (2017) 2944-2951.  doi: 10.1021/acsnano.6b08323

    37. [37]

      H. Fei, J. Dong, C. Wan, et al., Adv. Mater. 30 (2018) 1802146.  doi: 10.1002/adma.201802146

    38. [38]

      D.C. Marcano, D.V. Kosynkin, J.M. Berlin, et al., ACS Nano 4 (2018) 4806-4814.

    39. [39]

      G. Li, G. Hong, D. Dong, et al., Adv. Mater. (2018) e1801754.

    40. [40]

      X. Fan, W. Peng, Y. Li, et al., Adv. Mater. 20 (2008) 4490-4493.  doi: 10.1002/adma.200801306

    41. [41]

      Y. Shao, J. Wang, M. Engelhard, et al., J. Mater. Chem. 20 (2010) 743-748.  doi: 10.1039/B917975E

    42. [42]

      Y. Xu, K. Sheng, C. Li, et al., ACS Nano 4 (2010) 4324-4330.  doi: 10.1021/nn101187z

    43. [43]

      C. Mattevi, G. Eda, S. Agnoli, et al., Adv. Funct. Mater. 19 (2009) 2577-2583.  doi: 10.1002/adfm.200900166

    44. [44]

      D. Yang, A. Velamakanni, G. Bozoklu, et al., Carbon 47 (2009) 145-152.  doi: 10.1016/j.carbon.2008.09.045

    45. [45]

      S. Kundu, H. Liang, Langmuir 26 (2010) 6720-6727.  doi: 10.1021/la904070n

    46. [46]

      Z. Wang, X. Ren, Y. Luo, et al., Nanoscale 10 (2018) 12302-12307.  doi: 10.1039/C8NR02071J

    47. [47]

      M.S. Ahmed, H.S. Han, S. Jeon, Carbon 61 (2013) 164-172.  doi: 10.1016/j.carbon.2013.04.080

    48. [48]

      D. Chen, L. Li, L. Guo, Nanotechnology 22 (2011) 325601.  doi: 10.1088/0957-4484/22/32/325601

    49. [49]

      T. Kuila, S. Bose, P. Khanra, et al., Carbon 50 (2012) 914-921.  doi: 10.1016/j.carbon.2011.09.053

    50. [50]

      A.V. Murugan, T. Muraliganth, A. Manthiram, Chem. Mater. 21 (2009) 5004-5006.  doi: 10.1021/cm902413c

    51. [51]

      L. Shi, X. Liu, Y. Tuo, et al., Int. J. Hydrogen Energy 42 (2017) 17403-17413.  doi: 10.1016/j.ijhydene.2017.02.161

    52. [52]

      J. Zhang, H. Yang, G. Shen, et al., Chem. Commun. 46 (2010) 1112-1114.  doi: 10.1039/B917705A

    53. [53]

      Z. Xing, Q. Liu, A.M. Asiri, et al., Adv. Mater. 26 (2014) 5702-5707.  doi: 10.1002/adma.201401692

    54. [54]

      T. Wang, J. Zhuo, K. Du, et al., Adv. Mater. 26 (2014) 3761-3766.  doi: 10.1002/adma.201400265

    55. [55]

      J. Wang, F. Xu, H. Jin, et al., Adv. Mater. 29 (2017) e1605838.  doi: 10.1002/adma.201605838

    56. [56]

      P. Jiang, Q. Liu, Y. Liang, et al., Angew. Chem. Int. Ed. 126 (2014) 13069-13073.  doi: 10.1002/ange.201406848

    57. [57]

      C.C. McCrory, S. Jung, J.C. Peters, et al., J. Am. Chem. Soc. 135 (2013) 16977-16987.  doi: 10.1021/ja407115p

  • 加载中
    1. [1]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    2. [2]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    3. [3]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    4. [4]

      Fengjun DengTingyu ZhaoXiaochen ZhangKaiyong FengZe LiuYoulin XiangYingjian Yu . Reduced graphene oxide assembled on the Si nanowire anode enabling low passivation and hydrogen evolution for long-life aqueous Si-air batteries. Chinese Chemical Letters, 2025, 36(6): 109897-. doi: 10.1016/j.cclet.2024.109897

    5. [5]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    6. [6]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    7. [7]

      Yan-Jiang LiShu-Lei ChouYao Xiao . Detecting dynamic structural evolution based on in-situ high-energy X-ray diffraction technology for sodium layered oxide cathodes. Chinese Chemical Letters, 2025, 36(2): 110389-. doi: 10.1016/j.cclet.2024.110389

    8. [8]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    9. [9]

      Xiaoming Fu Haibo Huang Guogang Tang Jingmin Zhang Junyue Sheng Hua Tang . Recent advances in g-C3N4-based direct Z-scheme photocatalysts for environmental and energy applications. Chinese Journal of Structural Chemistry, 2024, 43(2): 100214-100214. doi: 10.1016/j.cjsc.2024.100214

    10. [10]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    11. [11]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    14. [14]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    15. [15]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    16. [16]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    17. [17]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    18. [18]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    19. [19]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    20. [20]

      Xiaxi YaoXiuli HuFangcheng HuangXuhong WangXuekun HongDawei Wang . Improved hydrogen and oxygen evolution rates in Pt@TiO2@RuO2 hollow nanoshells through dielectric Mie resonance and spatial cocatalyst separation. Chinese Chemical Letters, 2025, 36(5): 110192-. doi: 10.1016/j.cclet.2024.110192

Metrics
  • PDF Downloads(7)
  • Abstract views(1501)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return