Citation: Wang Fang, Feng Huangdi, Li Huiqiong, Miao Teng, Cao Tiantian, Zhang Min. 1D Fe3O4@CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis[J]. Chinese Chemical Letters, ;2020, 31(6): 1558-1563. doi: 10.1016/j.cclet.2019.11.004 shu

1D Fe3O4@CuSiO3 composites catalyzed decarboxylative A3-coupling for propargylamine synthesis

    * Corresponding authors.
    E-mail addresses: hdfeng@sues.edu.cn (H. Feng), zhangmin@sues.edu.cn (M. Zhang).
  • Received Date: 17 September 2019
    Revised Date: 3 November 2019
    Accepted Date: 5 November 2019
    Available Online: 6 November 2019

Figures(6)

  • Highly active and stable magnetic copper catalysts were successfully achieved by magnetic induced Stöber method and subsequent hydrothermal reaction with copper ions in alkaline condition. The high content of Cu2+ as well as the unique structures of hierarchical copper silicate in the as-prepared catalysts endowed their outstanding catalytic performance. Efficient decarboxylative A3-coupling of α-keto acid, amine and alkyne was realized with the low Fe3O4@CuSiO3 loading. A range of propargylamines were produced in good to excellent yields under solvent-free condition. Moreover, the catalyst can be easily separated from the final organic product with an external magnet. Also, this kind of catalyst could be recycled up to six times while maintaining its activity.
  • 加载中
    1. [1]

      (a) J.J. Chen, D.M. Swope, J. Clin. Pharmacol. 45 (2005) 878-894;
      (b) M. Baranyi, P.F. Porceddu, F. Gölöncse'r, et al., Mol. Neurodegener.11 (2016) 1-21;
      (c) I. Bolea, A. Gella, M. Unzeta, J. Neural Transm. 120 (2013) 893-902;
      (d) F.T. Zindo, J. Joubert, S.F. Malan, Future Med. Chem. 7 (2015) 609-629;
      (e) K. Lauder, A. Toscani, N. Scalacci, D. Castagnolo, Chem. Rev. 117 (2017) 14091-14200;
      (f) V.A. Peshkov, O.P. Pereshivko, A.A. Nechaev, A.A. Peshkov, E.V. Vander Eycken, Chem. Soc. Rev. 47 (2018) 3861-3898.

    2. [2]

      (a) X.X. Sun, C. Li, Y.Y. He, et al., Adv. Synth. Catal. 359 (2017) 2660-2670;
      (b) Y.M. Wang, H.H. Zhang, C. Li, T. Fan, F. Shi, Chem. Commun. 52 (2016) 1804-1807;
      (c) X.X.Sun, H.H.Zhang, G.H.Li, Y.Y.He, F.Shi, Chem.Eur.J.22 (2016)17526-17532.

    3. [3]

      (a) C. Wei, Z. Li, C.J. Li, Synlett (2004) 1472-1483;
      (b) L. Zani, C. Bolm, Chem. Commun. 38 (2006) 4263-4275;
      (c) V.A. Peshkov, O.P. Pereshivko, E. Van der Eycken, Chem. Soc. Rev. 41 (2012) 3790-3807;
      (d) D. Seidel, Org. Chem. Front. 1 (2014) 426-429.

    4. [4]

      (a) R. Shang, L. Liu, Sci. China Chem. 54 (2011) 1670-1687;
      (b) N. Rodríguez, L.J. Goossen, Chem. Soc. Rev. 40 (2011) 5030-5048;
      (c) J.D.Weaver, A.Recio, A.J.Grenning, J.A.Tunge, Chem.Rev.111(2011)1846-1913;
      (d) J. Schwarz, B. König, Green Chem. 20 (2018) 323-361;
      (e) H.D. Feng, H.H. Jia, Z.H. Sun, Adv. Synth. Catal. 357(2015) 2447-2452;
      (f) H.D. Feng, H.H. Jia, Z.H. Sun, J. Org. Chem. 79 (2014) 11812-17181.

    5. [5]

      (a) F.L. Vaillant, T.J. Courant, Angew. Chem. Int. Ed. 54 (2015) 11200-11204;
      (b) H.Zhang, P.X. Zhang, M.Jiang, H.J.Yang, H.Fu, Org. Lett.19 (2017)1016-1019;
      (c)H.D.Feng, D.S.Ermolat'ev, G.H.Song, E.VanderEycken, J.Org.Chem.76 (2011) 7608-7613;
      (d) P.F. Zhao, H.D. Feng, H.R. Pan, Z.H. Sun, M.C. Tong, Org. Chem. Front. 4 (2017) 37-41.

    6. [6]

      (a) H.P. Bi, L. Zhao, Y.M. Liang, C.J. Li, Angew. Chem. Int. Ed. 48 (2009) 792-795;
      (b) H.P. Bi, Q. Teng, M. Guan, et al., J. Org. Chem. 75 (2010) 783-788;
      (c) D. Chen, P. Huang, Y. Yu, et al., Chem. Commun. 47 (2011) 5801-5803;
      (d) H.D. Feng, D.S. Ermolat'ev, G.H. Song, E. Van der Eycken, J. Org. Chem. 77 (2012) 5149-5154;
      (e) H.D. Feng, D.S. Ermolat'ev, G.H. Song, E. Van der Eycken, Org. Lett.14 (2012) 1942-1945.

    7. [7]

      (a) I. Luz, F.X.L. Xamena, A. Corma, J. Catal. 285 (2012) 285-291;
      (b) G. Bosica, R. Abdilla, J. Mol. Catal. A: Chem. 426 (2017) 542-549;
      (c) A.V. Nakhat, G.D. Yada, Mol. Catal. 451(2018) 209-219.

    8. [8]

      (a) M.J. Aliaga, D.J. Ramón, M. Yus, Org. Biomol. Chem. 8 (2010) 43-46;
      (b) J.Y. Zhang, X. Huang, Q.Y. Shen, J.Y. Wang, G.H. Song, Chin. Chem. Lett. 29 (2018) 197-200.

    9. [9]

      (a) U.C. Rajesh, U. Gulati, D.S. Rawat, ACS Sustainable Chem. Eng. 4 (2016) 3409-3419;
      (b) P. Kaur, B. Kumar, V. Kumar, R. Kumar, Tetrahedron Lett. 59 (2018) 1986-1991;
      (c) U. Gulati, U.C. Rajesh, N. Bunekar, D.S. Rawat, ACS Sustainable Chem. Eng. 5 (2017) 4672-4682;
      (d) U. Gulati, U.C. Rajesh, D.S. Rawat, ACS Sustainable Chem. Eng. 6 (2018) 10039-10051.

    10. [10]

      (a) Y. Li, Y. Lu, C. Zhao, et al., Energy Storage Mater. 7 (2017) 130-151;
      (b) K.M. Kwok, S.W.D. Ong, L. Chen, H.C. Zeng, ACS Appl. Mater. Interface 9 (2017) 37210-37222.

    11. [11]

      M. Srinivas, P. Srinivasu, S.K. Bhargava, M.L. Kantam, Catal. Today 208 (2013) 66-71.  doi: 10.1016/j.cattod.2013.02.006

    12. [12]

      (a) M. Zhang, Y.T. Wang, Y.W. Zhang, et al., Appl. Surf. Sci. 375 (2016) 154-161;
      (b) Y. Zhang, M. Zhang, J. Yang, L.J. Zheng, J.L. Xu, J. Alloys Compd. 695 (2017) 3256-3266;
      (c) M. Zhang, B.Y. Wang, W.Z. Li, W.J. Gan, Dalton Trans. 45 (2016) 922-927;
      (d) M. Zhang, T. Miao, J. Zheng, et al., Microporous Mesoporous Mater. 286 (2019) 207-213.

    13. [13]

      J.W. Liu, J. Cheng, R.C. Che, et al., ACS Appl. Mater. Inter. 5 (2013) 2503-2509.  doi: 10.1021/am3030432

    14. [14]

      J. Choi, J. Lim, F.M. Irudayanathan, et al., Asian J. Org. Chem. 5 (2016) 770-777.  doi: 10.1002/ajoc.201600109

  • 加载中
    1. [1]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    2. [2]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    3. [3]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    4. [4]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    5. [5]

      Heng YangZhijie ZhouConghui TangFeng Chen . Recent advances in heterogeneous hydrosilylation of unsaturated carbon-carbon bonds. Chinese Chemical Letters, 2024, 35(6): 109257-. doi: 10.1016/j.cclet.2023.109257

    6. [6]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    7. [7]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    8. [8]

      Fengshun WangHuachao JiZefei WuKang ChenWenqi GaoChen WangLonglu WangJianmei ChenDafeng Yan . The advanced development of one-dimensional transition metal dichalcogenide nanotubes: From preparation to application. Chinese Chemical Letters, 2025, 36(5): 109898-. doi: 10.1016/j.cclet.2024.109898

    9. [9]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    10. [10]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    11. [11]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    12. [12]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    13. [13]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    14. [14]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    15. [15]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

    16. [16]

      Xiangyang JiYishuang ChenPeng ZhangShaojia SongJian LiuWeiyu Song . Boosting the first C–H bond activation of propane on rod-like V/CeO2 catalyst by photo-assisted thermal catalysis. Chinese Chemical Letters, 2025, 36(5): 110719-. doi: 10.1016/j.cclet.2024.110719

    17. [17]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    18. [18]

      Zhao-Bo HuLing-Ao GuiLong-He LiTong-Tong XiaoAdam T. HandPagnareach TinMykhaylo OzerovYan PengZhongwen OuyangZhenxing WangZi-Ling XueYou Song . Co single-ion magnet and its multi-dimensional aggregations: Influence of the structural rigidity on magnetic relaxation process. Chinese Chemical Letters, 2025, 36(2): 109600-. doi: 10.1016/j.cclet.2024.109600

    19. [19]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    20. [20]

      Yiwen XuChaozheng HeChenxu ZhaoLing Fu . Single-atom Ti doping on S-vacancy two-dimensional CrS2 as a catalyst for ammonia synthesis: A DFT study. Chinese Chemical Letters, 2025, 36(4): 109797-. doi: 10.1016/j.cclet.2024.109797

Metrics
  • PDF Downloads(18)
  • Abstract views(1366)
  • HTML views(95)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return