Processing math: 100%

Citation: Yang Yulu, Wu Mingguang, Zhu Xingwang, Xu Hui, Ma Si, Zhi Yongfeng, Xia Hong, Liu Xiaoming, Pan Jun, Tang Jie-Yinn, Chai Siang-Piao, Palmisano Leonardo, Parrino Francesco, Liu Junli, Ma Jianzhong, Wang Ze-Lin, Tan Ling, Zhao Yu-Fei, Song Yu-Fei, Singh Pardeep, Raizada Pankaj, Jiang Deli, Li Di, Geioushy R.A., Ma Jizhen, Zhang Jintao, Hu Song, Feng Rongjuan, Liu Gang, Liu Minghua, Li Zhenhua, Shao Mingfei, Li Neng, Peng Jiahe, Ong Wee-Jun, Kornienko Nikolay, Xing Zhenyu, Fan Xiujun, Ma Jianmin. 2020 Roadmap on two-dimensional nanomaterials for environmental catalysis[J]. Chinese Chemical Letters, ;2019, 30(12): 2065-2088. doi: 10.1016/j.cclet.2019.11.001 shu

2020 Roadmap on two-dimensional nanomaterials for environmental catalysis

Figures(21)

  • Environmental catalysis hasdrawna great deal ofattention due to its cleanwaysto produce usefulchemicals or carry out some chemical processes. Photocatalysis and electrocatalysis play important roles in these fields. They can decompose and remove organic pollutants from the aqueous environment, and prepare some fine chemicals. Moreover, they also can carry out some important reactions, such as O2 reduction reaction (ORR), O2 evolution reaction (OER), H2 evolution reaction (HER), CO2 reduction reaction (CO2RR), and N2 fixation (NRR). For catalytic reactions, it is the key to develop high-performance catalysts to meet the demand for targeted reactions. In recentyears, two-dimensional(2D) materials have attracted great interest in environmental catalysis due to their unique layered structures, which offer us to make use of their electronic and structural characteristics. Great progress has been made so far, including graphene, black phosphorus, oxides, layered double hydroxides (LDHs), chalcogenides, bismuth-based layered compounds, MXenes, metal organic frameworks (MOFs), covalent organic frameworks (COFs), and others. This content drives us to invite many famous groups in these fields to write the roadmap on two-dimensional nanomaterials for environmental catalysis. We hope that this roadmap can give the useful guidance to researchers in future researches, and provide the research directions.
  • Recently, the design and assembly of Zn(Ⅱ) coordination polymers (CPs) have received remarkable attention because of their intriguing topological structures and potential applications in many fields[1-4]. In order to generate novel CPs, the important step is to choose suitable organic ligands. As we know, bidentate μ2-N, N΄ ligands bearing an appropriate auxiliary group, such as 4, 4΄-bipyridine, 1, 2-bis(4-pyridyl)-ethylene, 1, 3-bis(4-pyridyl)propane, 4-bis(2-methylimidazolyl)butane and related species, have been widely used as bridging ligands with carboxylic acids in crystal engineering[5-9]. However, the presently known cases of CPs with carboxylic acids and bis(imidazol-1-yl)methane (bimm) or N-(4-pyridylmethyl)imidazole (pyim) organic ligand are still very rare[10-13]. In the crystal self-assembly of CPs, these μ2-bridging bridging ligands are expected to construct multi-dimensional compounds. Among them, the flexible bimm ligand with an alkyl spacer between two imidazole unities may coordinate with central metal ions via two imidazole-type nitrogen atoms (Scheme 1). Compared with bimm ligand, the rigid pyim ligand may coordinate with central metal ions using pyridine-type and imidazole-type nitrogen atoms, yielding intriguing structures.

    Scheme1

    Scheme1.  Schematic drawing of the ligands used in this work

    On the other hand, 5-nitro-1, 2, 3-benzenetricarboxylic acid (H3nbta) containing rich coordination sites has been proved to be an excellent organic ligand, which can exhibit versatile coordination modes in the assembly of CPs[14-16]. In this study, we have successfully prepared two auxiliary N-donor ligand-mediated Zn(Ⅱ)-containing CPs incorporating H3nbta, {[Zn(Hnbta)(bimm)](3H2O)}n (1) with a 1D chain structure and {[Zn1.5(nbta)(pyim)(H2O)](2H2O)}n (2) with a 2D layer structure. Their single-crystal structures, spectral properties and thermal stabilities were investigated. Moreover, luminescence properties of compounds 1 and 2 have been studied and discussed.

    All analytical grade chemicals and solvents were purchased and used as received without further purification. The IR spectra were recorded as KBr pellets on a Nicolet Avatar-360 spectrometer in the range of 4000~400 cm−1. Elemental analyses for C, H and N were carried out on a Flash 2000 elemental analyzer. Thermogravimetric analyses (TGA) were carried out on a SDTQ600 thermogravimetric analyzer. A platinum pan was used for heating the sample at a heating rate of 10 ℃/min under air atmosphere. Fluorescence measurements were recorded with a Hitachi F4500 fluorescence spectrophotometer.

    A mixture of H3nbta (25.5 mg, 0.1 mmol), Zn(OAc)2·2H2O (22.0 mg, 0.1 mmol), bimm (0.029 g, 0.2 mmol), and 6 mL deionized water was sealed in a 25 mL Teflon-lined autoclave and was kept under autogenous pressure at 140 ℃ for 4 days, followed by cooling to room temperature at a rate of 5 ℃·h-1. Block colourless crystals were collected (yield: 35% based on Zn). Elemental analysis calculated for C16H17N5O11Zn (%): C, 36.90; H, 3.29; N, 13.45. Found (%): C, 36.97; H, 3.25; N, 13.31. Selected IR peaks (cm-1): 3106 (m), 1597 (m), 1560 (s), 1523 (s), 1445 (s), 1340 (s), 1276 (s), 1229 (s), 1085 (m), 1023 (m), 945 (m), 828 (m), 764 (m), 739 (m), 705 (m), 649 (m).

    An identical procedure with 2 was followed to prepare 1 except that bis(imidazol-1-yl)methane was replaced by N-(4-pyridylmethyl)imidazole (14.61 mg, 0.1 mmol). Block yellow crystals were collected (yield: 56% based on Zn). Elemental analysis calculated for C17H15N4O11Zn1.5 (%): C, 37.13; H, 2.73; N, 10.19. Found (%): C, 37.16; H, 2.76; N, 10.21. Selected IR peaks (cm−1): 3135 (w), 1635 (m), 1612 (m), 1568 (s), 1553 (w), 1514 (s), 1428 (s), 1347 (s), 1316 (s), 1232 (m), 1124 (m), 1062 (s), 1022 (m), 974 (m), 949 (m), 922 (m), 837 (m), 750 (m), 729 (m), 709 (m), 705 (m).

    The structures of 1 and 2 were determined by single-crystal X-ray diffraction technique. Diffraction data were collected on an Oxford Diffraction Gemini with Mo radiation (λ = 0.71073 Å) at 293 K. The structures were solved by direct methods using the Olex2 program as an interface together with the SHELXT and SHELXL programs, in order to solve and refine the structure respectively[17-19]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms on water molecules were located from difference Fourier maps and were refined using a riding model. Other hydrogen atoms were placed at the calculation positions. In compounds 1 and 2, the diffused electron densities resulting from highly disordered water molecules were removed using the SQUEEZE option in PLATON. The final chemical formulas of compounds 1 and 2 were estimated from the SQUEEZE result combined with the TGA result. For compound 1: triclinic system, space group P¯1 with a = 9.3712(9), b = 9.4045(9), c = 12.9642(13) Å, α = 69.757(9)°, β = 72.145(9)°, γ = 86.916(8)º, V = 1018.60(2) Å3, Dc = 1.580 g/cm3, Mr = 520.68, F(000) = 492, μ = 1.026 mm-1, the final R = 0.0469 and wR = 0.0961, S = 1.026; for 2: monoclinic system, space group P2/n, with a = 10.2183(3), b = 13.2364(5), c = 15.0772(5) Å, β = 90.649(3)°, V = 2039.11(1) Å3, Dc = 1.672 g/m3, Mr = 513.35, F(000) = 1032, μ = 1.837 mm-1, the final R = 0.0302 and wR = 0.0820, S = 1.092. Selected bond lengths and bond angles are listed in Tables 1 and 2, respectively.

    Table 1

    Table 1.  Selected Bond Lengths (Å) and Bond Angles (°) for 1
    DownLoad: CSV
    Bond Dist. Bond Dist. Bond Dist.
    Zn(1)–O(2) 1.953(2) Zn(1)–O(4)#1 1.979(2) Zn(1)–N(2) 2.000(3)
    Zn(1)–N(5)#2 2.008(3)
    Angle (°) Angle (°) Angle (°)
    O(2)−Zn(1)−O(4)#1 105.19(9) N(2)−Zn(1)−O(2) 120.04(1) O(2)−Zn(1)−N(5)#2 113.42(1)
    N(2)−Zn(1)−O(4)#1 96.43(1) N(5)#2−Zn(1)−O(4)#1 115.33(1) N(2)−Zn(1)−N(5)#2 105.64(1)
    Symmetry transformation: #1: 2 − x, 1 − y, –z; #2: 1 − x, 2 − y, –z

    Table 2

    Table 2.  Selected Bond Lengths (Å) and Bond Angles (°) for 2
    DownLoad: CSV
    Bond Dist. Bond Dist. Bond Dist.
    Zn(1)−N(1) 1.991(2) Zn(1)−O(1) 1.9415(2) Zn(1)−O(6)#1 1.9899(2)
    Zn(1)−O(9) 2.025(2) Zn(2)−O(3) 2.0770(2) Zn(2)−O(5) 2.1222(2)
    Zn(2)−N(3)#3 2.156(2)
    Angle (°) Angle (°) Angle (°)
    O(1)−Zn(1)−O(6)#1 105.51(8) O(1)−Zn(1)−O(9) 100.49(9) O(1)−Zn(1)−N(1) 123.78(9)
    O(6)#1−Zn(1)−O(9) 117.89(8) O(6)#1−Zn(1)−N(1) 104.47(9) N(1)−Zn(1)−O(9) 105.74(1)
    O(3)−Zn(2)−O(3)#2 168.91 O(3)−Zn(2)−O(5) 86.07(7) O(3)−Zn(2)−O(5)#2 86.96(7)
    O(3)−Zn(2)−N(3)#3 88.23(8) O(3)#2−Zn(2)−N(3)#3 100.02(8) O(3)−Zn(2)−N(3)#4 100.03(8)
    O(5)#2−Zn(2)−O(5) 102.01(1) O(5)−Zn(2)−N(3)#3 168.84(8) O(5)−Zn(2)−N(3)#4 87.24(8)
    N(3)#3−Zn(2)−N(3)#4 84.31(1)
    Symmetry transformation: #1: x −1, y, z; #2: 1.5 − x, y, 1.5 −z; #3: x − 1, 2 − y, 1 − z; #4: x + 0.5, 2 − y, 0.5 + z

    Compounds 1 and 2 were obtained as block colourless crystalline materials via the reaction of H3nbta and zinc acetate with auxiliary N-donor ligand in aqueous medium at 140 ℃ for 4 days, respectively. Compound 1 crystallizes in the triclinic P¯1 space group and exhibits a 1D chain. In the asymmetric unit, there are one independent Zn2+ ion, one protonated Hnbta2− anion, one neutral bimm ligand and one free water molecule (Fig. 1a). The Zn(1) atom is located in a distorted tetrahedral geometry, completed by two O atoms from two different Hnbta2− anions and two N atoms from two different bimm ligands. The maximum and minimum bond angles for Zn2+ ion are 120.04(1) and 96.43(1)°, respectively, with an average value of 109.34(2)°, which slightly deviates from the angle of 109.34° in a perfect tetrahedron. The bond lengths vary from 1.953(2) to 2.008(3) Å, which are well-matched to those observed in similar compounds[4, 16]. In compound 1, a pair of oppositely arranged Hnbta2− anions bind two central Zn2+ ions to generate a [Zn2(Hnbta)2] ring subunit, in which Hnbta2− anion exhibits the μ2-(μ11: η0/μ11: η0/μ00: η0) coordination mode. These subunits are connected by μ2-bimm ligands to form a resultant 1D chain structure (Fig. 1b). Noted, the flexible μ2-bimm ligand shows a relative rotation, in which the dihedral angle between two imidazole rings is 89.054° (Fig. 1c).

    Figure 1

    Figure 1.  (a) Coordination environment of the Zn(Ⅱ) left. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Symmetry codes: (#1): 2 − x, 1 − y, –z; (#2): 1 − x, 2 − y, –z. (b) A [Zn2(Hnbta)2] ring subunit. (c) 1D chain structure of compound 1

    Compound 2 crystallizes in a monoclinic space group P2/n and features a 2D layered structure. There exist one and a half crystallographically independent Zn2+ ions, one nbta3− anion, one pyim ligand, one coordinated water molecule and two lattice water molecules in the asymmetric unit. As shown in Fig. 2a, the two Zn2+ ions exhibit two different coordination manners. The Zn(1) atom is also located in a distorted tetrahedral geometry, completed by two O atoms from two different nbta3− anions and one imidazole N atom from one pyim ligand. The maximum and minimum bond angles for Zn2+ ion are 123.78(9)° and 104.47(9)°, respectively, with an average value of 109.65 °, which also slightly deviates from the angle of 109.47° in a perfect tetrahedron. The central Zn(2) atom resides at a crystallographic inversion left and assumes an octahedral coordination environment with four carboxyl atoms from three nbta3- anions, two pyridine nitrogen atoms of two pyim ligands and one coordinated water molecule. The bond lengths of Zn–N are 1.991(2) and 2.156(2) Å, while the Zn–O bond lengths range from 1.9415(19) to 2.1221(18) Å, which fall in the normal range[4, 16]. In compound 2, the nbta3− anion adopts the μ3-(μ11: η0/μ11: η0/μ21: η1) coordination mode and acts as a tridentate bridging ligand, extending the structure into an infinite 1D structure. Moreover, the 1D structure is further linked by μ2-pyim ligand into a 2D architecture, in which the rigid μ2-pyim ligand shows a slight rotation, and the dihedral angle between the imidazole and pyridine rings is 23.609°. Topologically, if the nbta3− anion and Zn(1) atoms are simplified as three-connected nodes, the Zn(2) atoms could be considered as four-connected nodes, with the pyim ligand serving as the linear linkers. As a result, the structure of compound 2 represents an unprecedented (3, 4)-connected network with the {62.84}{62.8}4 topology (Fig. 2d).

    Figure 2

    Figure 2.  (a) Coordination environment of the Zn(Ⅱ) lefts. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Symmetry codes: #1: x − 1, y, z; #2: 1.5 − x, y, 1.5 – z; #3: 0.5 + x, 2 – y, 0.5 + z; #4: 1 – x, 2 – y, 1 – z. (b) 1D double structure chain constructed from nbta3− anions. (c) 2D architecture of compound 2. (d) Schematic representation of the 2D (3, 4)-connected network

    To confirm the phase purity of bulk samples, the X-ray powder diffraction pattern was recorded. As seen in Fig. 3, the peak positions of experimental and simulated patterns are in good agreement with each other, demonstrating the phase purity of 1 and 2. The dissimilarities in intensity may be owing to the preferred orientation of the samples. In addition, thermal behaviors of 1 and 2 were examined by thermal gravimetric analysis (TGA) in a dry air atmosphere from 30 to 700 ℃. As shown in Fig. 4, compound 1 undergoes two steps of weight loss, with the first one of 9.66% corresponding to the removal of water molecules in the temperature range of 97~107 ℃ (calcd. 9.59%). From then on, almost no weight loss is observed until 253 ℃, beyond which the intense weight loss is attributed to the decomposition and collapse of the structure. Compound 2 also undergoes two steps of weight loss. The weight loss of 9.79% from 97 to 116 ℃ corresponds to the release of water molecules (calcd. 9.83%) and that from 273 ºC results from the decomposition and collapse of the structure.

    Figure 3

    Figure 3.  TGA curves for 1 and 2

    Figure 4

    Figure 4.  PXRD patterns of 1 and 2 simulated from X-ray single-crystal diffraction data and experimental data

    CPs with Zn lefts usually present photoluminescent properties with potential applications such as chemical sensors and photochemistry fields[20, 21]. Here, the solid-state emission spectra of 1, 2 and free ligands were explored at room temperature. As shown in Fig. 5, compound 1 shows a main peak at 471 nm with two shoulders at 453, 440 nm upon excitation at 290 nm and compound 2 shows a main peak at 420 nm with two shoulders at 452 and 469 nm under 374 nm excitation. The free H3nbta shows a main peak at 469 nm with a shoulder at 453 nm upon excitation at 250 nm and the free bimm and pyim ligands were observed with wavelengths at 344 and 350 nm, respectively. Considering the Zn2+ ion is difficultly oxidized or reduced, the peaks of compounds 1 and 2 should be attributed to the transitions of Hnbta2−/nbta3− anions because similar peaks also appear for the free H3nbta ligand. The peaks for 1 and 2 exhibit a blue-shift with respect to the free H3nbta, which may be tentatively assigned to the intraligand charge transfer of Hnbta2−/nbta3− anions and/or metal-ligand coordination interactions.

    Figure 5

    Figure 5.  Solid-state emission spectra of 1 and 2

    In summary, we have successfully synthesized and characterized two new CPs based on 5-nitro-1, 2, 3-benzenetricarboxylic acid and bimm/pyim N-donor auxiliary ligands. Compound 1 is a 1D chain structure and compound 2 features a 2D network with a 4-connected sql topology. The results indicate the bimm and pyim ligands may act as additional metal linkers to mediate the structures of CPs with 5-nitro-1, 2, 3-benzenetricarboxylic acid in crystal engineering. What is more, both compounds show photoluminescence and could be good candidates for potential luminescence materials.


    1. [1]

      W. Lei, G. Liu, J. Zhang, M. Liu, Chem. Soc. Rev. 46 (2017) 3492-3509.  doi: 10.1039/C7CS00021A

    2. [2]

      H. Liu, A.T. Neal, Z. Zhu, et al., ACS Nano 8 (2014) 4033-4041.  doi: 10.1021/nn501226z

    3. [3]

      A.H. Woomer, T.W. Farnsworth, J. Hu, et al., ACS Nano 9 (2015) 8869-8884.  doi: 10.1021/acsnano.5b02599

    4. [4]

      D. Hanlon, C. Backes, E. Doherty, et al., Nat. Commun. 6 (2015) 8563.  doi: 10.1038/ncomms9563

    5. [5]

      Y. Zhao, H. Wang, H. Huang, et al., Angew. Chem. Int. Ed. 55 (2016) 5003-5007.  doi: 10.1002/anie.201512038

    6. [6]

      L. Bai, X. Wang, S. Tang, et al., Adv. Mater. 30 (2018) 1803641.  doi: 10.1002/adma.201803641

    7. [7]

      M.S. Zhu, S. Kim, L. Mao, et al., J. Am. Chem. Soc. 139 (2017) 13234-13242.  doi: 10.1021/jacs.7b08416

    8. [8]

      X. Zhu, J. Yang, X. She, et al., J. Mater. Chem. A 7 (2019) 5209-5213.  doi: 10.1039/C8TA11497H

    9. [9]

      A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166-1170.  doi: 10.1126/science.1120411

    10. [10]

      N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 1 (2016) 16068.  doi: 10.1038/natrevmats.2016.68

    11. [11]

      X. Wang, L. Chen, S.Y. Chong, et al., Nat. Chem. 10 (2018) 1180-1189.  doi: 10.1038/s41557-018-0141-5

    12. [12]

      J. Pan, L. Guo, S. Zhang, et al., Chem. Asian J. 13 (2018) 1674-1677.  doi: 10.1002/asia.201800506

    13. [13]

      W. Chen, Z. Yang, Z. Xie, et al., J. Mater. Chem. A 7 (2019) 998-1004.  doi: 10.1039/C8TA10046B

    14. [14]

      Y. Zhi, Z. Li, X. Feng, et al., J. Mater. Chem. A 5 (2017) 22933-22938.  doi: 10.1039/C7TA07691F

    15. [15]

      V.S. Vyas, F. Haase, L. Stegbauer, et al., Nat. Commun. 6 (2015) 8508.  doi: 10.1038/ncomms9508

    16. [16]

      S. Yang, W. Hu, X. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14614-14618.  doi: 10.1021/jacs.8b09705

    17. [17]

      Y. Fu, X. Zhu, L. Huang, et al., Appl. Catal. B:Environ. 239 (2018) 46-51.  doi: 10.1016/j.apcatb.2018.08.004

    18. [18]

      Z. Li, Y. Zhi, P. Shao, et al., Appl. Catal. B:Environ. 245 (2019) 334-342.  doi: 10.1016/j.apcatb.2018.12.065

    19. [19]

      J. Qi, W. Zhang, R. Cao, Adv. Energy Mater. 8 (2018) 16.

    20. [20]

      A. Fujishima, K. Honda, Nature 238 (1972) 37.

    21. [21]

      L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci.11 (2018) 1362-1391.  doi: 10.1039/C7EE03640J

    22. [22]

      Z.R. Tang, B. Han, C. Han, Y.J. Xu, J. Mater. Chem. A 5 (2017) 2387-2410.  doi: 10.1039/C6TA06373J

    23. [23]

      J. Zhang, Z. Yu, Z. Gao, et al., Angew. Chem. Int. Ed. 56 (2017) 816-820.  doi: 10.1002/anie.201611137

    24. [24]

      H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 3 (2016) 1500389.  doi: 10.1002/advs.201500389

    25. [25]

      W. Jiang, X. Zong, L. An, et al., ACS Catal. 8 (2018) 2209-2217.  doi: 10.1021/acscatal.7b04323

    26. [26]

      P. Tan, A. Zhu, L. Qiao, et al., Inorg. Chem. Front. 6 (2019) 929-939.  doi: 10.1039/C8QI01359D

    27. [27]

      P. Xia, B. Cheng, J. Jiang, H. Tang, Appl. Surf. Sci. 487 (2019) 335-342.  doi: 10.1016/j.apsusc.2019.05.064

    28. [28]

      X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76.  doi: 10.1038/nmat2317

    29. [29]

      Y. Li, P. Li, J. Wang, et al., Appl. Catal. B:Environ. 225 (2018) 519-529.  doi: 10.1016/j.apcatb.2017.12.017

    30. [30]

      N. Tian, H. Huang, X. Du, F. Dong, Y. Zhang, J. Mater. Chem. A 7 (2019) 11584-11612.  doi: 10.1039/C9TA01819K

    31. [31]

      J.Y. Tang, X.Y. Kong, B.J. Ng, et al., Catal. Sci. Technol. 9 (2019) 2335-2343.  doi: 10.1039/C9CY00449A

    32. [32]

      B.J. Ng, L.K. Putri, X.Y. Kong, et al., Appl. Catal. B:Environ. 224 (2018) 360-367.  doi: 10.1016/j.apcatb.2017.10.005

    33. [33]

      M. Shalom, M. Guttentag, C. Fettkenhauer, et al., Chem. Mater. 26 (2014) 5812-5818.  doi: 10.1021/cm503258z

    34. [34]

      J.W. Zhang, S. Gong, N. Mahmood, et al., Appl. Catal. B:Environ. 221 (2018) 9-16.  doi: 10.1016/j.apcatb.2017.09.003

    35. [35]

      B. Antil, L. Kumar, K.P. Reddy, C.S. Gopinath, S. Deka, ACS Sustain. Chem. Eng. 7 (2019) 9428-9438.  doi: 10.1021/acssuschemeng.9b00626

    36. [36]

      A. Alkauskas, M.D. McCluskey, C.G. Van de Walle, J. Appl. Phys. 119 (2016) 181101.  doi: 10.1063/1.4948245

    37. [37]

      H. Kisch, Semiconductor Photocatalysis: Principles and Applications, John Wiley & Sons, 2015.

    38. [38]

      V. Augugliaro, V. Loddo, M. Pagliaro, G. Palmisano, L. Palmisano, Clean by Light Irradiation: Practical Applications of Supported TiO2, Royal Society of Chemistry, 2010.

    39. [39]

      M. Lu, Photocatalysis and Water Purification: From Fundamentals to Recent Applications, John Wiley & Sons, 2013.

    40. [40]

      R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, Mat. Sci. Semicon. Proc. 42 (2016) 2-14.  doi: 10.1016/j.mssp.2015.07.052

    41. [41]

      F. Parrino, M. Bellardita, E.I. García-López, et al., ACS Catal. 8 (2018) 11191-11225.  doi: 10.1021/acscatal.8b03093

    42. [42]

      D. Friedmann, A. Hakki, H. Kim, W. Choi, D. Bahnemann, Green Chem. 18 (2016) 5391-5411.  doi: 10.1039/C6GC01582D

    43. [43]

      X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43 (2014) 473-486.  doi: 10.1039/C3CS60188A

    44. [44]

      D. Heggo, S. Ookawara, Chem. Eng. Sci. 169 (2017) 67-77.  doi: 10.1016/j.ces.2017.01.019

    45. [45]

      R. Molinari, C. Lavorato, P. Argurio, et al., Catalysts 9 (2019) 239.  doi: 10.3390/catal9030239

    46. [46]

      V. Vaiano, M. Matarangolo, J.J. Murcia, et al., Appl. Catal. B:Environ. 225 (2018) 197-206.  doi: 10.1016/j.apcatb.2017.11.075

    47. [47]

      B. Yang, Y. Chen, J. Shi, Chem. Rev. 119 (2019) 4881-4985.  doi: 10.1021/acs.chemrev.8b00626

    48. [48]

      R. Ahmad, S.M. Majhi, X. Zhang, T.M. Swager, K.N. Salama, Adv. Colloid Interface Sci. 270 (2019) 1-27.  doi: 10.1016/j.cis.2019.05.006

    49. [49]

      K. Wenderich, G. Mul, Chem. Rev. 116 (2016) 14587-14619.  doi: 10.1021/acs.chemrev.6b00327

    50. [50]

      W. Yu, J. Zhang, T. Peng, Appl. Catal. B:Environ. 181 (2016) 220-227.  doi: 10.1016/j.apcatb.2015.07.031

    51. [51]

      K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys. Compd. 727 (2017) 792-820.  doi: 10.1016/j.jallcom.2017.08.142

    52. [52]

      J. Liu, Y. Wang, J. Ma, Y. Peng, A. Wang, J. Alloys. Compd. 783 (2019) 898-918.  doi: 10.1016/j.jallcom.2018.12.330

    53. [53]

      J. Liu, M.D. Rojas-Andrade, G. Chata, et al., Nanoscale 10 (2017) 158-166.

    54. [54]

      A. Hui, J. Ma, J. Liu, Y. Bao, J. Zhang, J. Alloys. Compd. 696 (2017) 639-647.  doi: 10.1016/j.jallcom.2016.10.319

    55. [55]

      M. Jianzhong, J. Liu, Y. Bao, Z. Zhu, H. Liu, Cryst. Res. Technol. 48 (2013) 251-260.  doi: 10.1002/crat.201300026

    56. [56]

      C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225-6331.  doi: 10.1021/acs.chemrev.6b00558

    57. [57]

      J. Yu, Q. Wang, D. O'Hare, L. Sun, Chem. Soc. Rev. 46 (2017) 5950-5974.  doi: 10.1039/C7CS00318H

    58. [58]

      G. Fan, F. Li, D.G. Evans, X. Duan, Chem. Soc. Rev. 43 (2014) 7040-7066.  doi: 10.1039/C4CS00160E

    59. [59]

      Y. Xu, Z. Wang, L. Tan, et al., Ind. Eng. Chem. Res. 57 (2018) 5259-5267.  doi: 10.1021/acs.iecr.8b00170

    60. [60]

      Y. Zhao, X. Jia, G.I.N. Waterhouse, et al., Adv. Energy Mater. 6 (2016)1501974.

    61. [61]

      Y.F. Song, L. Tan, S.M. Xu, et al., Angew. Chem. Int. Ed.131 (2019) 11986-11993.  doi: 10.1002/ange.201904246

    62. [62]

      H. Yin, Z. Tang, Chem. Soc. Rev. 45 (2016) 4873-4891.  doi: 10.1039/C6CS00343E

    63. [63]

      Z. Wang, S.M. Xu, Y. Xu, et al., Chem. Sci. 10 (2019) 378-384.  doi: 10.1039/C8SC04480E

    64. [64]

      M. Xu, M. Wei, Adv. Fun. Mater. 28 (2018) 1802943.

    65. [65]

      Y. Zhao, G.I.N. Waterhouse, G. Chen, et al., Chem. Soc. Rev. 48 (2019) 1972-2010.  doi: 10.1039/C8CS00607E

    66. [66]

      J. Di, J. Xia, H. Li, S. Guo, S.J.N.E. Dai, Nano Energy 41 (2017) 172-192.  doi: 10.1016/j.nanoen.2017.09.008

    67. [67]

      K. Sharma, V. Dutta, S. Sharma, et al., J. Ind. Eng. Chem. 78 (2019) 1-20.  doi: 10.1016/j.jiec.2019.06.022

    68. [68]

      J. Li, Y. Yu, L. Zhang, Nanoscale 6 (2014) 8473-8488.  doi: 10.1039/C4NR02553A

    69. [69]

      L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Environ. Sci-Nano 1 (2014) 90-112.  doi: 10.1039/c3en00098b

    70. [70]

      X. Meng, Z. Zhang, J. Mol. Catal. A:Chem. 423 (2016) 533-549.  doi: 10.1016/j.molcata.2016.07.030

    71. [71]

      P. Raizada, P. Singh, A. Kumar, B. Pare, S.B. Jonnalagadda, Sep. Purif. Technol. 133 (2014) 429-437.  doi: 10.1016/j.seppur.2014.07.012

    72. [72]

      Y. Yang, C. Zhang, C. Lai, et al., Adv. Colloid Interface Sci. 254 (2018) 76-93.  doi: 10.1016/j.cis.2018.03.004

    73. [73]

      H. Cheng, B. Huang, P. Wang, et al., Chem. Commun. (Camb.) 47 (2011) 7054-7056.  doi: 10.1039/c1cc11525a

    74. [74]

      J. Di, J. Xia, Y. Ge, et al., J. Mater. Chem. A 2 (2014) 15864-15874.  doi: 10.1039/C4TA02400A

    75. [75]

      H. Wang, X. Zhang, Y. Xie, Mat. Sci. Eng. R. 130 (2018) 1-39.  doi: 10.1016/j.mser.2018.04.002

    76. [76]

      Z. Chen, K. Mou, X. Wang, L. Liu, Angew. Chem. Int. Ed. 57 (2018) 12790-12794.  doi: 10.1002/anie.201807643

    77. [77]

      C. Dong, S. Lu, S. Yao, et al., ACS Catal. 8 (2018) 8649-8658.  doi: 10.1021/acscatal.8b01645

    78. [78]

      D. Jiang, W. Ma, P. Xiao, et al., J. Colloid Interf. Sci. 512 (2018) 693-700.  doi: 10.1016/j.jcis.2017.10.074

    79. [79]

      J. Di, J. Xia, H. Li, Z. Liu, Nano Energy 35 (2017) 79-91.  doi: 10.1016/j.nanoen.2017.03.030

    80. [80]

      S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296-336.  doi: 10.1016/j.nanoen.2018.08.058

    81. [81]

      Y. Zhou, Y. Zhang, M. Lin, et al., Nat. Commun. 6 (2015) 8340.  doi: 10.1038/ncomms9340

    82. [82]

      S. Gao, B. Gu, X. Jiao, et al., J. Am. Chem. Soc. 139 (2017) 3438-3445.  doi: 10.1021/jacs.6b11263

    83. [83]

      J. Hu, D. Chen, Z. Mo, et al., Angew. Chem. 131 (2019) 2095-2099.  doi: 10.1002/ange.201813417

    84. [84]

      L. Yuan, B. Weng, J.C. Colmenares, Y. Sun, Y.J. Xu, Small 13 (2017) 1702253.  doi: 10.1002/smll.201702253

    85. [85]

      X. Li, H. Zhu, J. Mater. 1 (2015) 33-44.

    86. [86]

      M. Javaid, D.W. Drumm, S.P. Russo, A.D. Greentree, Sci. Rep. 7 (2017) 9775.  doi: 10.1038/s41598-017-09305-y

    87. [87]

      A.M. Appel, D.L. DuBois, M. Rakowski DuBois, J. Am. Chem. Soc. 127 (2005) 12717-12726.  doi: 10.1021/ja054034o

    88. [88]

      J. Yang, H.S. Shin, J. Mater. Chem. A 2 (2014) 5979-5985.  doi: 10.1039/C3TA14151A

    89. [89]

      J. Shi, P. Yu, F. Liu, et al., Adv. Mater. 29 (2017) 1701486.  doi: 10.1002/adma.201701486

    90. [90]

      Y. Liu, Y. Cao, H. Lv, S. Li, H. Zhang, Mater. Lett. 188 (2017) 99-102.  doi: 10.1016/j.matlet.2016.11.060

    91. [91]

      E. Benavente, F. Durán, C. Sotomayor-Torres, G. González, J. Phys. Chem. Solids 113 (2018) 119-124.  doi: 10.1016/j.jpcs.2017.10.027

    92. [92]

      P.Y. Jia, R.T. Guo, W.G. Pan, et al., Colloid. Surface. A 570 (2019) 306-316.  doi: 10.1016/j.colsurfa.2019.03.045

    93. [93]

      C. Liu, L. Wang, Y. Tang, et al., Appl. Catal. B:Environ. 164 (2015) 1-9.  doi: 10.1016/j.apcatb.2014.08.046

    94. [94]

      R.A. Geioushy, S.M. El-Sheikh, I.M. Hegazy, et al., Mater. Res. Bull. 118 (2019) 100499.

    95. [95]

      F. Xu, B. Zhu, B. Cheng, J. Yu, J. Xu, Adv. Opt. Mater. 6 (2018) 1800911.

    96. [96]

      H. Qin, R.T. Guo, X.Y. Liu, et al., Dalton Trans. 47 (2018) 15155-15163.  doi: 10.1039/C8DT02901F

    97. [97]

      S. Kamila, B. Mohanty, A.K. Samantara, et al., Sci. Rep. 7 (2017) 8378.  doi: 10.1038/s41598-017-08677-5

    98. [98]

      J. Zhang, Z. Xia, L. Dai, Sci. Adv. 1 (2015) e1500564.  doi: 10.1126/sciadv.1500564

    99. [99]

      K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760-764.  doi: 10.1126/science.1168049

    100. [100]

      J. Zhang, L. Dai, ACS Catal. 5 (2015) 7244-7253.  doi: 10.1021/acscatal.5b01563

    101. [101]

      J. Zhang, H. Li, P. Guo, H. Ma, X.S. Zhao, J. Mater. Chem. A 4 (2016) 8497-8511.  doi: 10.1039/C6TA01657J

    102. [102]

      L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Chem. Rev. 118 (2018) 9281-9343.  doi: 10.1021/acs.chemrev.8b00325

    103. [103]

      L. Ma, W. Ren, Z. Dong, L. Liu, H. Cheng, Chin. Sci. Bull. 57 (2012) 2995-2999.  doi: 10.1007/s11434-012-5335-4

    104. [104]

      B. Deng, Z. Liu, H. Peng, Adv. Mater. 31 (2019) 1800996.

    105. [105]

      Z. Lei, J. Zhang, L.L. Zhang, N.A. Kumar, X. Zhao, Energy Environ. Sci. 9 (2016) 1891-1930.  doi: 10.1039/C6EE00158K

    106. [106]

      K. Zhang, Chemically Derived Graphene: Functionalization, Properties and Applications, Royal Society of Chemistry, 2018.

    107. [107]

      D. Guo, R. Shibuya, C. Akiba, et al., Science 351 (2016) 361-365.  doi: 10.1126/science.aad0832

    108. [108]

      Y. Jia, L. Zhang, L. Zhuang, et al., Nature Catal. 2 (2019) 688-695.  doi: 10.1038/s41929-019-0297-4

    109. [109]

      J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10 (2015) 444-452.  doi: 10.1038/nnano.2015.48

    110. [110]

      J. Zhou, X. Gao, R. Liu, et al., J. Am. Chem. Soc. 137 (2015) 7596-7599.  doi: 10.1021/jacs.5b04057

    111. [111]

      Z. Zuo, D. Wang, J. Zhang, F. Lu, Y. Li, Adv. Mater. 31 (2019)1803762.

    112. [112]

      Y. Zhao, J. Wan, H. Yao, et al., Nat. Chem. 10 (2018) 924-931.  doi: 10.1038/s41557-018-0100-1

    113. [113]

      R. Feng, W. Lei, G. Liu, M. Liu, Adv. Mater. 30 (2018) 1804770.  doi: 10.1002/adma.201804770

    114. [114]

      H. Liu, K. Hu, D. Yan, et al., Adv. Mater. 30 (2018) 1800295.  doi: 10.1002/adma.201800295

    115. [115]

      Z. Sofer, D. Sedmidubský, Š. Huber, et al., Angew. Chem. Int. Ed. 55 (2016) 3382-3386.  doi: 10.1002/anie.201511309

    116. [116]

      X. Ren, J. Zhou, X. Qi, et al., Adv. Energy Mater. 7 (2017) 1700396.

    117. [117]

      Q. Jiang, L. Xu, N. Chen, et al., Angew. Chem. Int. Ed. 55 (2016) 13849-13853.  doi: 10.1002/anie.201607393

    118. [118]

      J. Wang, D. Liu, H. Huang, et al., Angew. Chem. Int. Ed. 57 (2018) 2600-2604.  doi: 10.1002/anie.201710859

    119. [119]

      Z. Zhang, M. Khurram, Z. Sun, Q. Yan, Inorg. Chem. 57 (2018) 4098-4103.  doi: 10.1021/acs.inorgchem.8b00278

    120. [120]

      R. Prasannachandran, T.V. Vineesh, A. Anil, B.M. Krishna, M.M. Shaijumon, ACS Nano 12 (2018) 11511-11519.  doi: 10.1021/acsnano.8b06671

    121. [121]

      L. Shao, H. Sun, L. Miao, et al., J. Mater. Chem. A 6 (2018) 2494-2499.  doi: 10.1039/C7TA10884B

    122. [122]

      M.F. Shao, R.K. Zhang, Z.H. Li, et al., Chem. Commun. (Camb.) 51 (2015) 15880-15893.  doi: 10.1039/C5CC07296D

    123. [123]

      H. Yang, Z. Li, B. Lu, et al., ACS Nano 12 (2018) 11407-11416.  doi: 10.1021/acsnano.8b06380

    124. [124]

      F.Y. Ning, M.F. Shao, S.M. Xu, et al., Energy Environ. Sci. 9 (2016) 2633-2643.  doi: 10.1039/C6EE01092J

    125. [125]

      Z.H. Li, M.F. Shao, L. Zhou, et al., Adv. Mater. 28 (2016) 2337-2344.  doi: 10.1002/adma.201505086

    126. [126]

      Z.H. Li, M.F. Shao, H.L. An, et al., Chem. Sci. 6 (2015) 6624-6631.  doi: 10.1039/C5SC02417J

    127. [127]

      P.S. Li, X.X. Duan, Y. Kuang, et al., Adv. Energy Mater. 8 (2018) 8.

    128. [128]

      L. Zhou, M. Shao, M. Wei, X. Duan, J. Energ. Chem. 26 (2017) 1094-1106.  doi: 10.1016/j.jechem.2017.09.015

    129. [129]

      C. Tang, H.S. Wang, H.F. Wang, et al., Adv. Mater. 27 (2015) 4516-4522.  doi: 10.1002/adma.201501901

    130. [130]

      Z. Li, X. Zhang, H. Cheng, et al., Adv. Energy Mater. (2019) 1900486.  doi: 10.1002/aenm.201900486

    131. [131]

      N. Hussain, W. Yang, J. Dou, et al., J. Mater. Chem. A 7 (2019) 9656-9664.  doi: 10.1039/C9TA01017C

    132. [132]

      M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248-4253.  doi: 10.1002/adma.201102306

    133. [133]

      M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78.  doi: 10.1038/nature13970

    134. [134]

      J. Ran, G. Gao, F.T. Li, et al., Nat. Commun. 8 (2017) 13907.  doi: 10.1038/ncomms13907

    135. [135]

      J. Peng, X. Chen, W.J. Ong, X. Zhao, N. Li, Chem. 5 (2019) 18-50.  doi: 10.1016/j.chempr.2018.08.037

    136. [136]

      L.M. Azofra, N. Li, D.R. MacFarlane, C. Sun, Energy Environ. Sci. 9 (2016) 2545-2549.  doi: 10.1039/C6EE01800A

    137. [137]

      N. Li, X. Chen, W.J. Ong, et al., ACS Nano 11 (2017) 10825-10833.  doi: 10.1021/acsnano.7b03738

    138. [138]

      S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28 (2018) 1800136.  doi: 10.1002/adfm.201800136

    139. [139]

      Y. Luo, G.F. Chen, L. Ding, et al., Joule 3 (2019) 279-289.  doi: 10.1016/j.joule.2018.09.011

    140. [140]

      T. Hu, M. Hu, B. Gao, W. Li, X. Wang, J. Phys. Chem. C 122 (2018) 18501-18509.  doi: 10.1021/acs.jpcc.8b04427

    141. [141]

      D. Magne, V. Mauchamp, S. Célérier, P. Chartier, T. Cabioc'h, Phys. Chem. Chem. Phys. 18 (2016) 30946-30953.  doi: 10.1039/C6CP05985F

    142. [142]

      Y. Xie, M. Naguib, V.N. Mochalin, et al., J. Am. Chem. Soc. 136 (2014) 6385-6394.  doi: 10.1021/ja501520b

    143. [143]

      C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Adv. Sci. 3 (2016) 1600180.  doi: 10.1002/advs.201600180

    144. [144]

      J. Yan, C.E. Ren, K. Maleski, et al., Adv. Funct. Mater. 27 (2017) 1701264.  doi: 10.1002/adfm.201701264

    145. [145]

      C. Xu, L. Wang, Z. Liu, et al., Nat. Mater. 14 (2015) 1135.  doi: 10.1038/nmat4374

    146. [146]

      L. Verger, C. Xu, V. Natu, et al., Curr. Opin. Solid State Mater. Sci. 23 (2019) 149-163.  doi: 10.1016/j.cossms.2019.02.001

    147. [147]

      X. Xie, S. Chen, W. Ding, Y. Nie, Z. Wei, Chem. Commun. (Camb.) 49 (2013) 10112-10114.  doi: 10.1039/c3cc44428g

    148. [148]

      O. Mashtalir, K.M. Cook, V.N. Mochalin, et al., J. Mater. Chem. A 2 (2014) 14334-14338.  doi: 10.1039/C4TA02638A

    149. [149]

      T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 55 (2016) 1138-1142.  doi: 10.1002/anie.201509758

    150. [150]

      Z.W. Seh, K.D. Fredrickson, B. Anasori, et al., ACS Energy Lett. 1 (2016) 589-594.  doi: 10.1021/acsenergylett.6b00247

    151. [151]

      P. Li, J. Zhu, A.D. Handoko, et al., J. Mater. Chem. A 6 (2018) 4271-4278.  doi: 10.1039/C8TA00173A

    152. [152]

      A. Schoedel, Z. Ji, O.M. Yaghi, Nat. Energy 1 (2016) 16034.  doi: 10.1038/nenergy.2016.34

    153. [153]

      M. Zhao, Y. Huang, Y. Peng, et al., Chem. Soc. Rev. 47 (2018) 6267-6295.  doi: 10.1039/C8CS00268A

    154. [154]

      N. Heidary, T.G.A.A. Harris, K.H. Ly, N. Kornienko, Phys. Plant.166 (2019) 460-471.  doi: 10.1111/ppl.12935

    155. [155]

      A.J. Clough, J.W. Yoo, M.H. Mecklenburg, S.C. Marinescu, J. Am. Chem. Soc.137 (2015) 118-121.  doi: 10.1021/ja5116937

    156. [156]

      N. Kornienko, Y. Zhao, C.S. Kley, et al., J. Am. Chem. Soc. 137 (2015) 14129-14135.  doi: 10.1021/jacs.5b08212

    157. [157]

      J. Duan, S. Chen, C. Zhao, Nat. Commun. 8 (2017) 15341.

    158. [158]

      E.M. Miner, S. Gul, N.D. Ricke, et al., ACS Catal. 7 (2017) 7726-7731.  doi: 10.1021/acscatal.7b02647

    159. [159]

      E.M. Miner, L. Wang, M. Dinca, Chem. Sci. 9 (2018) 6286-6291.  doi: 10.1039/C8SC02049C

    160. [160]

      W. Cheng, X. Zhao, H. Su, et al., Nat. Energy 4 (2019) 115-122.  doi: 10.1038/s41560-018-0308-8

    161. [161]

      N. Heidary, K.H. Ly, N. Kornienko, Nano Lett. 19 (2019) 4817-4826.  doi: 10.1021/acs.nanolett.9b01582

    162. [162]

      D. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 28 (2016) 6197-6206.  doi: 10.1002/adma.201505597

    163. [163]

      X. Ding, F. Peng, J. Zhou, et al., Nat. Commun. 10 (2019) 41.  doi: 10.1038/s41467-018-07835-1

    164. [164]

      Z. Gholamvand, D. McAteer, C. Backes, et al., Nanoscale 8 (2016) 5737-5749.  doi: 10.1039/C5NR08553E

    165. [165]

      A.Y. Lu, H. Zhu, J. Xiao, et al., Nat. Nanotechnol. 12 (2017) 744.  doi: 10.1038/nnano.2017.100

    166. [166]

      G. Singh, K. Ramadass, J.M. Lee, et al., Microporous Mesoporous Mater. 287 (2019) 1-8.  doi: 10.1016/j.micromeso.2019.05.042

    167. [167]

      C. Tan, Z. Luo, A. Chaturvedi, et al., Adv. Mater. 30 (2018) 1705509.  doi: 10.1002/adma.201705509

    168. [168]

      L. Zhang, X. Ji, X. Ren, et al., Adv. Mater. 30 (2018) 1800191.  doi: 10.1002/adma.201800191

    169. [169]

      G. Babu, N. Masurkar, H. Al Salem, L.M. Arava, J. Am. Chem. Soc. 139 (2017) 171-178.  doi: 10.1021/jacs.6b08681

    1. [1]

      W. Lei, G. Liu, J. Zhang, M. Liu, Chem. Soc. Rev. 46 (2017) 3492-3509.  doi: 10.1039/C7CS00021A

    2. [2]

      H. Liu, A.T. Neal, Z. Zhu, et al., ACS Nano 8 (2014) 4033-4041.  doi: 10.1021/nn501226z

    3. [3]

      A.H. Woomer, T.W. Farnsworth, J. Hu, et al., ACS Nano 9 (2015) 8869-8884.  doi: 10.1021/acsnano.5b02599

    4. [4]

      D. Hanlon, C. Backes, E. Doherty, et al., Nat. Commun. 6 (2015) 8563.  doi: 10.1038/ncomms9563

    5. [5]

      Y. Zhao, H. Wang, H. Huang, et al., Angew. Chem. Int. Ed. 55 (2016) 5003-5007.  doi: 10.1002/anie.201512038

    6. [6]

      L. Bai, X. Wang, S. Tang, et al., Adv. Mater. 30 (2018) 1803641.  doi: 10.1002/adma.201803641

    7. [7]

      M.S. Zhu, S. Kim, L. Mao, et al., J. Am. Chem. Soc. 139 (2017) 13234-13242.  doi: 10.1021/jacs.7b08416

    8. [8]

      X. Zhu, J. Yang, X. She, et al., J. Mater. Chem. A 7 (2019) 5209-5213.  doi: 10.1039/C8TA11497H

    9. [9]

      A.P. Cote, A.I. Benin, N.W. Ockwig, et al., Science 310 (2005) 1166-1170.  doi: 10.1126/science.1120411

    10. [10]

      N. Huang, P. Wang, D. Jiang, Nat. Rev. Mater. 1 (2016) 16068.  doi: 10.1038/natrevmats.2016.68

    11. [11]

      X. Wang, L. Chen, S.Y. Chong, et al., Nat. Chem. 10 (2018) 1180-1189.  doi: 10.1038/s41557-018-0141-5

    12. [12]

      J. Pan, L. Guo, S. Zhang, et al., Chem. Asian J. 13 (2018) 1674-1677.  doi: 10.1002/asia.201800506

    13. [13]

      W. Chen, Z. Yang, Z. Xie, et al., J. Mater. Chem. A 7 (2019) 998-1004.  doi: 10.1039/C8TA10046B

    14. [14]

      Y. Zhi, Z. Li, X. Feng, et al., J. Mater. Chem. A 5 (2017) 22933-22938.  doi: 10.1039/C7TA07691F

    15. [15]

      V.S. Vyas, F. Haase, L. Stegbauer, et al., Nat. Commun. 6 (2015) 8508.  doi: 10.1038/ncomms9508

    16. [16]

      S. Yang, W. Hu, X. Zhang, et al., J. Am. Chem. Soc. 140 (2018) 14614-14618.  doi: 10.1021/jacs.8b09705

    17. [17]

      Y. Fu, X. Zhu, L. Huang, et al., Appl. Catal. B:Environ. 239 (2018) 46-51.  doi: 10.1016/j.apcatb.2018.08.004

    18. [18]

      Z. Li, Y. Zhi, P. Shao, et al., Appl. Catal. B:Environ. 245 (2019) 334-342.  doi: 10.1016/j.apcatb.2018.12.065

    19. [19]

      J. Qi, W. Zhang, R. Cao, Adv. Energy Mater. 8 (2018) 16.

    20. [20]

      A. Fujishima, K. Honda, Nature 238 (1972) 37.

    21. [21]

      L. Cheng, Q. Xiang, Y. Liao, H. Zhang, Energy Environ. Sci.11 (2018) 1362-1391.  doi: 10.1039/C7EE03640J

    22. [22]

      Z.R. Tang, B. Han, C. Han, Y.J. Xu, J. Mater. Chem. A 5 (2017) 2387-2410.  doi: 10.1039/C6TA06373J

    23. [23]

      J. Zhang, Z. Yu, Z. Gao, et al., Angew. Chem. Int. Ed. 56 (2017) 816-820.  doi: 10.1002/anie.201611137

    24. [24]

      H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 3 (2016) 1500389.  doi: 10.1002/advs.201500389

    25. [25]

      W. Jiang, X. Zong, L. An, et al., ACS Catal. 8 (2018) 2209-2217.  doi: 10.1021/acscatal.7b04323

    26. [26]

      P. Tan, A. Zhu, L. Qiao, et al., Inorg. Chem. Front. 6 (2019) 929-939.  doi: 10.1039/C8QI01359D

    27. [27]

      P. Xia, B. Cheng, J. Jiang, H. Tang, Appl. Surf. Sci. 487 (2019) 335-342.  doi: 10.1016/j.apsusc.2019.05.064

    28. [28]

      X. Wang, K. Maeda, A. Thomas, et al., Nat. Mater. 8 (2009) 76.  doi: 10.1038/nmat2317

    29. [29]

      Y. Li, P. Li, J. Wang, et al., Appl. Catal. B:Environ. 225 (2018) 519-529.  doi: 10.1016/j.apcatb.2017.12.017

    30. [30]

      N. Tian, H. Huang, X. Du, F. Dong, Y. Zhang, J. Mater. Chem. A 7 (2019) 11584-11612.  doi: 10.1039/C9TA01819K

    31. [31]

      J.Y. Tang, X.Y. Kong, B.J. Ng, et al., Catal. Sci. Technol. 9 (2019) 2335-2343.  doi: 10.1039/C9CY00449A

    32. [32]

      B.J. Ng, L.K. Putri, X.Y. Kong, et al., Appl. Catal. B:Environ. 224 (2018) 360-367.  doi: 10.1016/j.apcatb.2017.10.005

    33. [33]

      M. Shalom, M. Guttentag, C. Fettkenhauer, et al., Chem. Mater. 26 (2014) 5812-5818.  doi: 10.1021/cm503258z

    34. [34]

      J.W. Zhang, S. Gong, N. Mahmood, et al., Appl. Catal. B:Environ. 221 (2018) 9-16.  doi: 10.1016/j.apcatb.2017.09.003

    35. [35]

      B. Antil, L. Kumar, K.P. Reddy, C.S. Gopinath, S. Deka, ACS Sustain. Chem. Eng. 7 (2019) 9428-9438.  doi: 10.1021/acssuschemeng.9b00626

    36. [36]

      A. Alkauskas, M.D. McCluskey, C.G. Van de Walle, J. Appl. Phys. 119 (2016) 181101.  doi: 10.1063/1.4948245

    37. [37]

      H. Kisch, Semiconductor Photocatalysis: Principles and Applications, John Wiley & Sons, 2015.

    38. [38]

      V. Augugliaro, V. Loddo, M. Pagliaro, G. Palmisano, L. Palmisano, Clean by Light Irradiation: Practical Applications of Supported TiO2, Royal Society of Chemistry, 2010.

    39. [39]

      M. Lu, Photocatalysis and Water Purification: From Fundamentals to Recent Applications, John Wiley & Sons, 2013.

    40. [40]

      R. Fagan, D.E. McCormack, D.D. Dionysiou, S.C. Pillai, Mat. Sci. Semicon. Proc. 42 (2016) 2-14.  doi: 10.1016/j.mssp.2015.07.052

    41. [41]

      F. Parrino, M. Bellardita, E.I. García-López, et al., ACS Catal. 8 (2018) 11191-11225.  doi: 10.1021/acscatal.8b03093

    42. [42]

      D. Friedmann, A. Hakki, H. Kim, W. Choi, D. Bahnemann, Green Chem. 18 (2016) 5391-5411.  doi: 10.1039/C6GC01582D

    43. [43]

      X. Lang, X. Chen, J. Zhao, Chem. Soc. Rev. 43 (2014) 473-486.  doi: 10.1039/C3CS60188A

    44. [44]

      D. Heggo, S. Ookawara, Chem. Eng. Sci. 169 (2017) 67-77.  doi: 10.1016/j.ces.2017.01.019

    45. [45]

      R. Molinari, C. Lavorato, P. Argurio, et al., Catalysts 9 (2019) 239.  doi: 10.3390/catal9030239

    46. [46]

      V. Vaiano, M. Matarangolo, J.J. Murcia, et al., Appl. Catal. B:Environ. 225 (2018) 197-206.  doi: 10.1016/j.apcatb.2017.11.075

    47. [47]

      B. Yang, Y. Chen, J. Shi, Chem. Rev. 119 (2019) 4881-4985.  doi: 10.1021/acs.chemrev.8b00626

    48. [48]

      R. Ahmad, S.M. Majhi, X. Zhang, T.M. Swager, K.N. Salama, Adv. Colloid Interface Sci. 270 (2019) 1-27.  doi: 10.1016/j.cis.2019.05.006

    49. [49]

      K. Wenderich, G. Mul, Chem. Rev. 116 (2016) 14587-14619.  doi: 10.1021/acs.chemrev.6b00327

    50. [50]

      W. Yu, J. Zhang, T. Peng, Appl. Catal. B:Environ. 181 (2016) 220-227.  doi: 10.1016/j.apcatb.2015.07.031

    51. [51]

      K. Qi, B. Cheng, J. Yu, W. Ho, J. Alloys. Compd. 727 (2017) 792-820.  doi: 10.1016/j.jallcom.2017.08.142

    52. [52]

      J. Liu, Y. Wang, J. Ma, Y. Peng, A. Wang, J. Alloys. Compd. 783 (2019) 898-918.  doi: 10.1016/j.jallcom.2018.12.330

    53. [53]

      J. Liu, M.D. Rojas-Andrade, G. Chata, et al., Nanoscale 10 (2017) 158-166.

    54. [54]

      A. Hui, J. Ma, J. Liu, Y. Bao, J. Zhang, J. Alloys. Compd. 696 (2017) 639-647.  doi: 10.1016/j.jallcom.2016.10.319

    55. [55]

      M. Jianzhong, J. Liu, Y. Bao, Z. Zhu, H. Liu, Cryst. Res. Technol. 48 (2013) 251-260.  doi: 10.1002/crat.201300026

    56. [56]

      C. Tan, X. Cao, X.J. Wu, et al., Chem. Rev. 117 (2017) 6225-6331.  doi: 10.1021/acs.chemrev.6b00558

    57. [57]

      J. Yu, Q. Wang, D. O'Hare, L. Sun, Chem. Soc. Rev. 46 (2017) 5950-5974.  doi: 10.1039/C7CS00318H

    58. [58]

      G. Fan, F. Li, D.G. Evans, X. Duan, Chem. Soc. Rev. 43 (2014) 7040-7066.  doi: 10.1039/C4CS00160E

    59. [59]

      Y. Xu, Z. Wang, L. Tan, et al., Ind. Eng. Chem. Res. 57 (2018) 5259-5267.  doi: 10.1021/acs.iecr.8b00170

    60. [60]

      Y. Zhao, X. Jia, G.I.N. Waterhouse, et al., Adv. Energy Mater. 6 (2016)1501974.

    61. [61]

      Y.F. Song, L. Tan, S.M. Xu, et al., Angew. Chem. Int. Ed.131 (2019) 11986-11993.  doi: 10.1002/ange.201904246

    62. [62]

      H. Yin, Z. Tang, Chem. Soc. Rev. 45 (2016) 4873-4891.  doi: 10.1039/C6CS00343E

    63. [63]

      Z. Wang, S.M. Xu, Y. Xu, et al., Chem. Sci. 10 (2019) 378-384.  doi: 10.1039/C8SC04480E

    64. [64]

      M. Xu, M. Wei, Adv. Fun. Mater. 28 (2018) 1802943.

    65. [65]

      Y. Zhao, G.I.N. Waterhouse, G. Chen, et al., Chem. Soc. Rev. 48 (2019) 1972-2010.  doi: 10.1039/C8CS00607E

    66. [66]

      J. Di, J. Xia, H. Li, S. Guo, S.J.N.E. Dai, Nano Energy 41 (2017) 172-192.  doi: 10.1016/j.nanoen.2017.09.008

    67. [67]

      K. Sharma, V. Dutta, S. Sharma, et al., J. Ind. Eng. Chem. 78 (2019) 1-20.  doi: 10.1016/j.jiec.2019.06.022

    68. [68]

      J. Li, Y. Yu, L. Zhang, Nanoscale 6 (2014) 8473-8488.  doi: 10.1039/C4NR02553A

    69. [69]

      L. Ye, Y. Su, X. Jin, H. Xie, C. Zhang, Environ. Sci-Nano 1 (2014) 90-112.  doi: 10.1039/c3en00098b

    70. [70]

      X. Meng, Z. Zhang, J. Mol. Catal. A:Chem. 423 (2016) 533-549.  doi: 10.1016/j.molcata.2016.07.030

    71. [71]

      P. Raizada, P. Singh, A. Kumar, B. Pare, S.B. Jonnalagadda, Sep. Purif. Technol. 133 (2014) 429-437.  doi: 10.1016/j.seppur.2014.07.012

    72. [72]

      Y. Yang, C. Zhang, C. Lai, et al., Adv. Colloid Interface Sci. 254 (2018) 76-93.  doi: 10.1016/j.cis.2018.03.004

    73. [73]

      H. Cheng, B. Huang, P. Wang, et al., Chem. Commun. (Camb.) 47 (2011) 7054-7056.  doi: 10.1039/c1cc11525a

    74. [74]

      J. Di, J. Xia, Y. Ge, et al., J. Mater. Chem. A 2 (2014) 15864-15874.  doi: 10.1039/C4TA02400A

    75. [75]

      H. Wang, X. Zhang, Y. Xie, Mat. Sci. Eng. R. 130 (2018) 1-39.  doi: 10.1016/j.mser.2018.04.002

    76. [76]

      Z. Chen, K. Mou, X. Wang, L. Liu, Angew. Chem. Int. Ed. 57 (2018) 12790-12794.  doi: 10.1002/anie.201807643

    77. [77]

      C. Dong, S. Lu, S. Yao, et al., ACS Catal. 8 (2018) 8649-8658.  doi: 10.1021/acscatal.8b01645

    78. [78]

      D. Jiang, W. Ma, P. Xiao, et al., J. Colloid Interf. Sci. 512 (2018) 693-700.  doi: 10.1016/j.jcis.2017.10.074

    79. [79]

      J. Di, J. Xia, H. Li, Z. Liu, Nano Energy 35 (2017) 79-91.  doi: 10.1016/j.nanoen.2017.03.030

    80. [80]

      S. Bai, N. Zhang, C. Gao, Y. Xiong, Nano Energy 53 (2018) 296-336.  doi: 10.1016/j.nanoen.2018.08.058

    81. [81]

      Y. Zhou, Y. Zhang, M. Lin, et al., Nat. Commun. 6 (2015) 8340.  doi: 10.1038/ncomms9340

    82. [82]

      S. Gao, B. Gu, X. Jiao, et al., J. Am. Chem. Soc. 139 (2017) 3438-3445.  doi: 10.1021/jacs.6b11263

    83. [83]

      J. Hu, D. Chen, Z. Mo, et al., Angew. Chem. 131 (2019) 2095-2099.  doi: 10.1002/ange.201813417

    84. [84]

      L. Yuan, B. Weng, J.C. Colmenares, Y. Sun, Y.J. Xu, Small 13 (2017) 1702253.  doi: 10.1002/smll.201702253

    85. [85]

      X. Li, H. Zhu, J. Mater. 1 (2015) 33-44.

    86. [86]

      M. Javaid, D.W. Drumm, S.P. Russo, A.D. Greentree, Sci. Rep. 7 (2017) 9775.  doi: 10.1038/s41598-017-09305-y

    87. [87]

      A.M. Appel, D.L. DuBois, M. Rakowski DuBois, J. Am. Chem. Soc. 127 (2005) 12717-12726.  doi: 10.1021/ja054034o

    88. [88]

      J. Yang, H.S. Shin, J. Mater. Chem. A 2 (2014) 5979-5985.  doi: 10.1039/C3TA14151A

    89. [89]

      J. Shi, P. Yu, F. Liu, et al., Adv. Mater. 29 (2017) 1701486.  doi: 10.1002/adma.201701486

    90. [90]

      Y. Liu, Y. Cao, H. Lv, S. Li, H. Zhang, Mater. Lett. 188 (2017) 99-102.  doi: 10.1016/j.matlet.2016.11.060

    91. [91]

      E. Benavente, F. Durán, C. Sotomayor-Torres, G. González, J. Phys. Chem. Solids 113 (2018) 119-124.  doi: 10.1016/j.jpcs.2017.10.027

    92. [92]

      P.Y. Jia, R.T. Guo, W.G. Pan, et al., Colloid. Surface. A 570 (2019) 306-316.  doi: 10.1016/j.colsurfa.2019.03.045

    93. [93]

      C. Liu, L. Wang, Y. Tang, et al., Appl. Catal. B:Environ. 164 (2015) 1-9.  doi: 10.1016/j.apcatb.2014.08.046

    94. [94]

      R.A. Geioushy, S.M. El-Sheikh, I.M. Hegazy, et al., Mater. Res. Bull. 118 (2019) 100499.

    95. [95]

      F. Xu, B. Zhu, B. Cheng, J. Yu, J. Xu, Adv. Opt. Mater. 6 (2018) 1800911.

    96. [96]

      H. Qin, R.T. Guo, X.Y. Liu, et al., Dalton Trans. 47 (2018) 15155-15163.  doi: 10.1039/C8DT02901F

    97. [97]

      S. Kamila, B. Mohanty, A.K. Samantara, et al., Sci. Rep. 7 (2017) 8378.  doi: 10.1038/s41598-017-08677-5

    98. [98]

      J. Zhang, Z. Xia, L. Dai, Sci. Adv. 1 (2015) e1500564.  doi: 10.1126/sciadv.1500564

    99. [99]

      K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Science 323 (2009) 760-764.  doi: 10.1126/science.1168049

    100. [100]

      J. Zhang, L. Dai, ACS Catal. 5 (2015) 7244-7253.  doi: 10.1021/acscatal.5b01563

    101. [101]

      J. Zhang, H. Li, P. Guo, H. Ma, X.S. Zhao, J. Mater. Chem. A 4 (2016) 8497-8511.  doi: 10.1039/C6TA01657J

    102. [102]

      L. Lin, B. Deng, J. Sun, H. Peng, Z. Liu, Chem. Rev. 118 (2018) 9281-9343.  doi: 10.1021/acs.chemrev.8b00325

    103. [103]

      L. Ma, W. Ren, Z. Dong, L. Liu, H. Cheng, Chin. Sci. Bull. 57 (2012) 2995-2999.  doi: 10.1007/s11434-012-5335-4

    104. [104]

      B. Deng, Z. Liu, H. Peng, Adv. Mater. 31 (2019) 1800996.

    105. [105]

      Z. Lei, J. Zhang, L.L. Zhang, N.A. Kumar, X. Zhao, Energy Environ. Sci. 9 (2016) 1891-1930.  doi: 10.1039/C6EE00158K

    106. [106]

      K. Zhang, Chemically Derived Graphene: Functionalization, Properties and Applications, Royal Society of Chemistry, 2018.

    107. [107]

      D. Guo, R. Shibuya, C. Akiba, et al., Science 351 (2016) 361-365.  doi: 10.1126/science.aad0832

    108. [108]

      Y. Jia, L. Zhang, L. Zhuang, et al., Nature Catal. 2 (2019) 688-695.  doi: 10.1038/s41929-019-0297-4

    109. [109]

      J. Zhang, Z. Zhao, Z. Xia, L. Dai, Nat. Nanotechnol. 10 (2015) 444-452.  doi: 10.1038/nnano.2015.48

    110. [110]

      J. Zhou, X. Gao, R. Liu, et al., J. Am. Chem. Soc. 137 (2015) 7596-7599.  doi: 10.1021/jacs.5b04057

    111. [111]

      Z. Zuo, D. Wang, J. Zhang, F. Lu, Y. Li, Adv. Mater. 31 (2019)1803762.

    112. [112]

      Y. Zhao, J. Wan, H. Yao, et al., Nat. Chem. 10 (2018) 924-931.  doi: 10.1038/s41557-018-0100-1

    113. [113]

      R. Feng, W. Lei, G. Liu, M. Liu, Adv. Mater. 30 (2018) 1804770.  doi: 10.1002/adma.201804770

    114. [114]

      H. Liu, K. Hu, D. Yan, et al., Adv. Mater. 30 (2018) 1800295.  doi: 10.1002/adma.201800295

    115. [115]

      Z. Sofer, D. Sedmidubský, Š. Huber, et al., Angew. Chem. Int. Ed. 55 (2016) 3382-3386.  doi: 10.1002/anie.201511309

    116. [116]

      X. Ren, J. Zhou, X. Qi, et al., Adv. Energy Mater. 7 (2017) 1700396.

    117. [117]

      Q. Jiang, L. Xu, N. Chen, et al., Angew. Chem. Int. Ed. 55 (2016) 13849-13853.  doi: 10.1002/anie.201607393

    118. [118]

      J. Wang, D. Liu, H. Huang, et al., Angew. Chem. Int. Ed. 57 (2018) 2600-2604.  doi: 10.1002/anie.201710859

    119. [119]

      Z. Zhang, M. Khurram, Z. Sun, Q. Yan, Inorg. Chem. 57 (2018) 4098-4103.  doi: 10.1021/acs.inorgchem.8b00278

    120. [120]

      R. Prasannachandran, T.V. Vineesh, A. Anil, B.M. Krishna, M.M. Shaijumon, ACS Nano 12 (2018) 11511-11519.  doi: 10.1021/acsnano.8b06671

    121. [121]

      L. Shao, H. Sun, L. Miao, et al., J. Mater. Chem. A 6 (2018) 2494-2499.  doi: 10.1039/C7TA10884B

    122. [122]

      M.F. Shao, R.K. Zhang, Z.H. Li, et al., Chem. Commun. (Camb.) 51 (2015) 15880-15893.  doi: 10.1039/C5CC07296D

    123. [123]

      H. Yang, Z. Li, B. Lu, et al., ACS Nano 12 (2018) 11407-11416.  doi: 10.1021/acsnano.8b06380

    124. [124]

      F.Y. Ning, M.F. Shao, S.M. Xu, et al., Energy Environ. Sci. 9 (2016) 2633-2643.  doi: 10.1039/C6EE01092J

    125. [125]

      Z.H. Li, M.F. Shao, L. Zhou, et al., Adv. Mater. 28 (2016) 2337-2344.  doi: 10.1002/adma.201505086

    126. [126]

      Z.H. Li, M.F. Shao, H.L. An, et al., Chem. Sci. 6 (2015) 6624-6631.  doi: 10.1039/C5SC02417J

    127. [127]

      P.S. Li, X.X. Duan, Y. Kuang, et al., Adv. Energy Mater. 8 (2018) 8.

    128. [128]

      L. Zhou, M. Shao, M. Wei, X. Duan, J. Energ. Chem. 26 (2017) 1094-1106.  doi: 10.1016/j.jechem.2017.09.015

    129. [129]

      C. Tang, H.S. Wang, H.F. Wang, et al., Adv. Mater. 27 (2015) 4516-4522.  doi: 10.1002/adma.201501901

    130. [130]

      Z. Li, X. Zhang, H. Cheng, et al., Adv. Energy Mater. (2019) 1900486.  doi: 10.1002/aenm.201900486

    131. [131]

      N. Hussain, W. Yang, J. Dou, et al., J. Mater. Chem. A 7 (2019) 9656-9664.  doi: 10.1039/C9TA01017C

    132. [132]

      M. Naguib, M. Kurtoglu, V. Presser, et al., Adv. Mater. 23 (2011) 4248-4253.  doi: 10.1002/adma.201102306

    133. [133]

      M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao, Y. Gogotsi, M.W. Barsoum, Nature 516 (2014) 78.  doi: 10.1038/nature13970

    134. [134]

      J. Ran, G. Gao, F.T. Li, et al., Nat. Commun. 8 (2017) 13907.  doi: 10.1038/ncomms13907

    135. [135]

      J. Peng, X. Chen, W.J. Ong, X. Zhao, N. Li, Chem. 5 (2019) 18-50.  doi: 10.1016/j.chempr.2018.08.037

    136. [136]

      L.M. Azofra, N. Li, D.R. MacFarlane, C. Sun, Energy Environ. Sci. 9 (2016) 2545-2549.  doi: 10.1039/C6EE01800A

    137. [137]

      N. Li, X. Chen, W.J. Ong, et al., ACS Nano 11 (2017) 10825-10833.  doi: 10.1021/acsnano.7b03738

    138. [138]

      S. Cao, B. Shen, T. Tong, J. Fu, J. Yu, Adv. Funct. Mater. 28 (2018) 1800136.  doi: 10.1002/adfm.201800136

    139. [139]

      Y. Luo, G.F. Chen, L. Ding, et al., Joule 3 (2019) 279-289.  doi: 10.1016/j.joule.2018.09.011

    140. [140]

      T. Hu, M. Hu, B. Gao, W. Li, X. Wang, J. Phys. Chem. C 122 (2018) 18501-18509.  doi: 10.1021/acs.jpcc.8b04427

    141. [141]

      D. Magne, V. Mauchamp, S. Célérier, P. Chartier, T. Cabioc'h, Phys. Chem. Chem. Phys. 18 (2016) 30946-30953.  doi: 10.1039/C6CP05985F

    142. [142]

      Y. Xie, M. Naguib, V.N. Mochalin, et al., J. Am. Chem. Soc. 136 (2014) 6385-6394.  doi: 10.1021/ja501520b

    143. [143]

      C. Ling, L. Shi, Y. Ouyang, Q. Chen, J. Wang, Adv. Sci. 3 (2016) 1600180.  doi: 10.1002/advs.201600180

    144. [144]

      J. Yan, C.E. Ren, K. Maleski, et al., Adv. Funct. Mater. 27 (2017) 1701264.  doi: 10.1002/adfm.201701264

    145. [145]

      C. Xu, L. Wang, Z. Liu, et al., Nat. Mater. 14 (2015) 1135.  doi: 10.1038/nmat4374

    146. [146]

      L. Verger, C. Xu, V. Natu, et al., Curr. Opin. Solid State Mater. Sci. 23 (2019) 149-163.  doi: 10.1016/j.cossms.2019.02.001

    147. [147]

      X. Xie, S. Chen, W. Ding, Y. Nie, Z. Wei, Chem. Commun. (Camb.) 49 (2013) 10112-10114.  doi: 10.1039/c3cc44428g

    148. [148]

      O. Mashtalir, K.M. Cook, V.N. Mochalin, et al., J. Mater. Chem. A 2 (2014) 14334-14338.  doi: 10.1039/C4TA02638A

    149. [149]

      T.Y. Ma, J.L. Cao, M. Jaroniec, S.Z. Qiao, Angew. Chem. Int. Ed. 55 (2016) 1138-1142.  doi: 10.1002/anie.201509758

    150. [150]

      Z.W. Seh, K.D. Fredrickson, B. Anasori, et al., ACS Energy Lett. 1 (2016) 589-594.  doi: 10.1021/acsenergylett.6b00247

    151. [151]

      P. Li, J. Zhu, A.D. Handoko, et al., J. Mater. Chem. A 6 (2018) 4271-4278.  doi: 10.1039/C8TA00173A

    152. [152]

      A. Schoedel, Z. Ji, O.M. Yaghi, Nat. Energy 1 (2016) 16034.  doi: 10.1038/nenergy.2016.34

    153. [153]

      M. Zhao, Y. Huang, Y. Peng, et al., Chem. Soc. Rev. 47 (2018) 6267-6295.  doi: 10.1039/C8CS00268A

    154. [154]

      N. Heidary, T.G.A.A. Harris, K.H. Ly, N. Kornienko, Phys. Plant.166 (2019) 460-471.  doi: 10.1111/ppl.12935

    155. [155]

      A.J. Clough, J.W. Yoo, M.H. Mecklenburg, S.C. Marinescu, J. Am. Chem. Soc.137 (2015) 118-121.  doi: 10.1021/ja5116937

    156. [156]

      N. Kornienko, Y. Zhao, C.S. Kley, et al., J. Am. Chem. Soc. 137 (2015) 14129-14135.  doi: 10.1021/jacs.5b08212

    157. [157]

      J. Duan, S. Chen, C. Zhao, Nat. Commun. 8 (2017) 15341.

    158. [158]

      E.M. Miner, S. Gul, N.D. Ricke, et al., ACS Catal. 7 (2017) 7726-7731.  doi: 10.1021/acscatal.7b02647

    159. [159]

      E.M. Miner, L. Wang, M. Dinca, Chem. Sci. 9 (2018) 6286-6291.  doi: 10.1039/C8SC02049C

    160. [160]

      W. Cheng, X. Zhao, H. Su, et al., Nat. Energy 4 (2019) 115-122.  doi: 10.1038/s41560-018-0308-8

    161. [161]

      N. Heidary, K.H. Ly, N. Kornienko, Nano Lett. 19 (2019) 4817-4826.  doi: 10.1021/acs.nanolett.9b01582

    162. [162]

      D. Voiry, J. Yang, M. Chhowalla, Adv. Mater. 28 (2016) 6197-6206.  doi: 10.1002/adma.201505597

    163. [163]

      X. Ding, F. Peng, J. Zhou, et al., Nat. Commun. 10 (2019) 41.  doi: 10.1038/s41467-018-07835-1

    164. [164]

      Z. Gholamvand, D. McAteer, C. Backes, et al., Nanoscale 8 (2016) 5737-5749.  doi: 10.1039/C5NR08553E

    165. [165]

      A.Y. Lu, H. Zhu, J. Xiao, et al., Nat. Nanotechnol. 12 (2017) 744.  doi: 10.1038/nnano.2017.100

    166. [166]

      G. Singh, K. Ramadass, J.M. Lee, et al., Microporous Mesoporous Mater. 287 (2019) 1-8.  doi: 10.1016/j.micromeso.2019.05.042

    167. [167]

      C. Tan, Z. Luo, A. Chaturvedi, et al., Adv. Mater. 30 (2018) 1705509.  doi: 10.1002/adma.201705509

    168. [168]

      L. Zhang, X. Ji, X. Ren, et al., Adv. Mater. 30 (2018) 1800191.  doi: 10.1002/adma.201800191

    169. [169]

      G. Babu, N. Masurkar, H. Al Salem, L.M. Arava, J. Am. Chem. Soc. 139 (2017) 171-178.  doi: 10.1021/jacs.6b08681

  • 加载中
    1. [1]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    2. [2]

      Huining ZhangBaixiang WangJianping HanShaofeng WangXingmao LiuWenhui NiuZhongyu ShiZhiqiang WeiZhiguo WuYing ZhuQi Guo . Nature’s revelation: Preparation of Graphene-based Biomimetic materials and its application prospects for water purification. Chinese Chemical Letters, 2025, 36(6): 110319-. doi: 10.1016/j.cclet.2024.110319

    3. [3]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    4. [4]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    5. [5]

      Yu-Hui ZhangYe TianXianliang ShengChen-Shuang LiuLu-Qiang WeiJie WangYong Chen . Construction of a black phosphorous-based noncovalent multiple nanosupramolecular assembly for synergistic targeted photothermal and chemodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110193-. doi: 10.1016/j.cclet.2024.110193

    6. [6]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    7. [7]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    8. [8]

      Wenjing XiongYulin XuFangzhou ZhaoBaokai XiaHongqiang WangWei LiuSheng ChenYongzhi Zhang . Graphene architecture interpenetrated with mesoporous carbon nanosheets promotes fast and stable potassium storage. Chinese Chemical Letters, 2025, 36(4): 109738-. doi: 10.1016/j.cclet.2024.109738

    9. [9]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    12. [12]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    13. [13]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    14. [14]

      Jiahao LiGuinan ChenChunhong ChenYuanyuan LouZhihao XingTao ZhangChengtao GongYongwu Peng . Modulated synthesis of stoichiometric and sub-stoichiometric two-dimensional covalent organic frameworks for enhanced ethylene purification. Chinese Chemical Letters, 2025, 36(1): 109760-. doi: 10.1016/j.cclet.2024.109760

    15. [15]

      Xi Zhou Shengyao Wang . Dynamic two-dimensional covalent organic frameworks via ‘wine rack' design. Chinese Journal of Structural Chemistry, 2025, 44(4): 100464-100464. doi: 10.1016/j.cjsc.2024.100464

    16. [16]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    17. [17]

      Genlin SunYachun LuoZhihong YanHongdeng QiuWeiyang Tang . Chiral metal-organic frameworks-based materials for chromatographic enantioseparation. Chinese Chemical Letters, 2024, 35(12): 109787-. doi: 10.1016/j.cclet.2024.109787

    18. [18]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    19. [19]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    20. [20]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

Metrics
  • PDF Downloads(3)
  • Abstract views(882)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return