Citation: Xu Xin-Ming, Chen De-Mao, Wang Zu-Li. Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions[J]. Chinese Chemical Letters, ;2020, 31(1): 49-57. doi: 10.1016/j.cclet.2019.05.048 shu

Recent advances in sulfenylation of C(sp3)-H bond under transition metal-free conditions

  • Received Date: 18 April 2019
    Revised Date: 14 May 2019
    Accepted Date: 23 May 2019
    Available Online: 25 January 2019

Figures(27)

  • In recent years, the transition metal-free sulfenylation of C-H bond for C-S formation has been rapidly advanced and has become an eco-friendly synthetic tool for pharmacists and organic chemists. Various natural or bioactive molecules such as (hetero)arenes, olefins, carbonyl compounds, alkanes, have been employed for sulfenylating reactions. This review will focus on the recent five-year advances in C-S bond formation via direct sulfenylation of C(sp3)-H bonds under metal-free conditions and elaborate their mechanisms from a new perspective.
  • 加载中
    1. [1]

      (a) R.J. Cremlyn, An Introduction to Organosulfur Chemistry, Wiley, New York, 1996;
      (b) D. Meng, W. Chen, W. Zhao, J. Nat. Prod. 70 (2007) 824-829;
      (c) M. Kvasnika, M. Urban, N.J. Dickinson, J. Sarek, Nat. Prod. Rep. 32 (2015) 1303-1330.

    2. [2]

      M.H. Feng, B.Q. Tang, H.L. Steven, X.F. Jiang, Curr. Top. Med. Chem. 16(2016) 1200-1216.  doi: 10.2174/1568026615666150915111741

    3. [3]

      (a) D.A. Boyd, Angew. Chem. Int. Ed. 55 (2016) 15486-15502;
      (b) D. Wu, W. Pisula, M.C. Haberecht, X. Feng, K. Müllen, Org. Lett. 11 (2009) 5686-5689;
      (c) S.M. Yang, J.J. Shie, J.M. Fang, S.K. Nandy, Y.Y. Chang, J. Org. Chem. 67 (2002) 52085215.

    4. [4]

      (a) J.C. Carretero, Chem. Commun. 47(2011) 2207-2211;
      (b) H. Pellisier, Chiral Sulfur Ligands in Asymmetric Catalysis, RSC Catalysis Series 2, Cambridge, 2009.

    5. [5]

      (a) A. Kausar, S. Zulfiqar, M.I. Sarwar, Pol. Rev. 54 (2014) 185-267;
      (b) A.S. Rahate, K.R. Nemade, S.A. Waghuley, Rev. Chem. Eng. 29 (2013) 471-489;
      (c) N. Spassky, Phosphorus Sulfur Silicon Relat. Elem. 74 (1993) 71-92.

    6. [6]

      (a) J.F. Hartwig, Nature 455 (2008) 314-322;
      (b) Q. Lu, J. Zhang, F.L. Wei, et al., Angew. Chem. Int. Ed. 52 (2013) 7156-7159;
      (c) Q.Q. Lu, J. Zhang, G.L. Zhao, et al., J. Am. Chem. Soc.135 (2013) 11481-11484;
      (d) S.H. Hao, L.X. Li, D.Q. Dong, Z.L. Wang, Chin. J. Catal. 38 (2017) 1664-1667;
      (e) L.H. Lu, S.J. Zhou, W.B. He, et al., Org. Biomol. Chem. 16 (2018) 9064-9068;
      (f) L.Y. Xie, Y.J. Li, J. Qu, et al., Green Chem. 19 (2017) 5642-5646;
      (g) F.L. Zeng, X.L. Chen, S.Q. He, et al., Org. Chem. Front. 6 (2019) 1476-1480;
      (h) D. Yang, P. Sun, W. Wei, et al., Chem. -Eur. J. 24 (2018) 4423-4427;
      (i) L. Penga, Z. Hua, Z. Tang, Y. Jiao, X. Xu, Chin. Chem. Lett. 30 (2019) 1481-1487.

    7. [7]

      (a) M. Martinek, M. Korf, J. Srogl, Chem. Commun. 46 (2010) 4387-4389;
      (b) S.K. Sahoo, A. Banerjee, S. Chakraborty, B.K. Patel, ACS Catal. 2 (2012) 544-551;
      (c) O. Saidi, J. Marafie, A.E. Ledger, et al., J. Am. Chem. Soc. 133 (2011) 19298-19301;
      (d) N. Umierski, G. Manolikakes, Org. Lett. 15 (2013) 4972-4975;
      (e) Z. Wu, H. Song, X. Cui, et al., Org. Lett. 15 (2013) 1270-1273;
      (f) B. Niu, L. Xu, P. Xie, et al., ACS Comb. Sci. 16 (2014) 454-458.

    8. [8]

      (a) S.N. Zhang, S.H. Yang, L.H. Huang, et al., Chin. J. Org. Chem. 35 (2015) 2259-2274;
      (b) R. Chitrakar, A. Subbarayappa, Chem. Rec. 17 (2017) 1;
      (c) Y.Y. Liu, J. Xiong, L. Wei, Chin. J. Org. Chem. 37 (2017) 1667-1680;
      (d) D.Q. Dong, S.H. Hao, D.S. Yang, L.X. Li, Z.L. Wang, Eur. J. Org. Chem. 2017 (2017) 6576-6592;
      (e) L. Li, Y.Q. Ding, Mini-Rev. Org. Chem. 14 (2017) 407-418;
      (f) R. Dalpozzo, Org. Chem. Front. 4 (2017) 2063-2078;
      (g) M. Freckleton, A. Baeza, L. Benavent, R. Chinchilla, Asian. J. Org. Chem. 7 (2018) 1006-1014;
      (h) C.A. Jin, Q. Xu, G.F. Feng, Y. Jin, L.Y. Zahng, Chin. J. Org. Chem. 38 (2018) 775-790.

    9. [9]

      (a) A. Ghaderi, Tetrahedron 72 (2016) 4758-4782;
      (b) K.L. Dunbar, D.H. Scharf, A. Litomska, C. Hertweck, Chem. Rev. 117 (2017) 5521-5577;
      (c) J. Zhu, W.C. Yang, X.D. Wang, L. Wu, Adv. Synth. Catal. 360 (2018) 386-400;
      (d) Y. Luo, Y. Ma, Z. Hou, J. Am. Chem. Soc. 140 (2018) 114-117.

    10. [10]

      B.V. Varun, K. Gadde, K.R. Prabhu, Org. Lett. 17(2015) 2944-2947.  doi: 10.1021/acs.orglett.5b01221

    11. [11]

      H. Cao, J. Yuan, C. Liu, X.Q. Hu, A.W. Lei, RSC Adv. 5(2015) 41493-41496.  doi: 10.1039/C5RA04906G

    12. [12]

      Y. Jiang, J.X. Zou, L.T. Huang, et al., Org. Biomol. Chem. 16(2018) 1641-1645.  doi: 10.1039/C8OB00080H

    13. [13]

      Q. Chen, X. Wang, C. Wen, et al., RSC Adv. 7(2017) 39758-39761.  doi: 10.1039/C7RA06904A

    14. [14]

      Y. Liu, S.S. Badsara, Y. Liu, C. Lee, RSC Adv. 5(2015) 44299-44305.  doi: 10.1039/C5RA07204B

    15. [15]

      R. Rahaman, N. Devi, P. Barman, Tetrahedron Lett. 56(2015) 4224-4227.  doi: 10.1016/j.tetlet.2015.05.062

    16. [16]

      N. Devi, R. Rahaman, K. Sarma, P. Barman, Eur. J. Org. Chem. 2016(2016) 384-388.  doi: 10.1002/ejoc.201501148

    17. [17]

      B.M. Trost, Chem. Rev. 78(1978) 363-382.  doi: 10.1021/cr60314a002

    18. [18]

      B. Hu, Q. Zhang, S. Zhao, et al., Adv. Synth. Catal. 361(2019) 49-54.  doi: 10.1002/adsc.201801138

    19. [19]

      Y. Siddaraju, K.R. Prabhu, Org. Lett. 18(2016) 6090-6093.  doi: 10.1021/acs.orglett.6b03084

    20. [20]

      Y. Siddaraju, K.R. Prabhu, J. Org. Chem. 83(2018) 2986-2992.  doi: 10.1021/acs.joc.7b03290

    21. [21]

      Y. Siddaraju, K.R. Prabhu, Org. Biomol. Chem. 15(2017) 5191-5196.  doi: 10.1039/C7OB00561J

    22. [22]

      N. Devi, R. Rahaman, K. Sarma, T. Khan, P. Barman, Eur. J. Org. Chem. 2017(2017) 1520-1525.

    23. [23]

      (a) P.N. Kalaria, S.P. Satasia, J.R. Avalani, D.K. Raval, Eur. J. Med. Chem. 83 (2014) 655-664;
      (b) S.C. Karad, V.B. Purohit, D.K. Raval, Eur. J. Med. Chem. 84 (2014) 51-58.

    24. [24]

      R.D. Kamani, V.B. Purohit, R.P. Thummar, et al., ChemistrySelect 2(2017) 9670-9673.  doi: 10.1002/slct.201701924

    25. [25]

      (a) H. Jin, W. Wang, Z. Yang, et al., Heterocycles 96 (2018) 1786-1794;
      (b) X. Zhao, X. Lu, A. Wei, et al., Tetrahedron Lett. 57 (2016) 5330-5333;
      (c) X. Zhao, A. Wei, X. Lu, K. Lu, Molecules 22 (2017) 1208-1219.

    26. [26]

      X. Liu, H. Cui, D. Yang, et al., RSC Adv. 6(2016) 51830-51833.  doi: 10.1039/C6RA09739A

    27. [27]

      Q. Chen, Y. Huang, X. Wang, et al., Tetrahedron Lett. 58(2017) 3928-3931.  doi: 10.1016/j.tetlet.2017.08.067

    28. [28]

      (a) A.F. Vaquer, A. Frongia, F. Secci, E. Tuveri, RSC Adv. 5 (2015) 96695-96704;
      (b) H.W. Noh, C. Lee, H.Y. Jang, Bull. Korean Chem. Soc. 38 (2017) 389-391;
      (c) J.Q. Zhao, S.W. Luo, X.M. Zhang, et al., Tetrahedron 73 (2017) 5444-5450.

    29. [29]

      Y. Li, F. Zhu, Z. Wang, X.F. Wu, Chem. -Asian J. 11(2016) 3503-3507.  doi: 10.1002/asia.201601376

    30. [30]

      D. Wang, Z. Liu, Z. Wang, X. Ma, P. Yu, Green Chem. 21(2019) 157-163.  doi: 10.1039/C8GC03072C

    31. [31]

      Y. Liu, X. Yuan, K. Su, Y. Tian, B. Chen, Eur. J. Org. Chem. 2019(2019) 1649-1652.  doi: 10.1002/ejoc.201801806

    32. [32]

      Q. Chen, G. Yu, X. Wang, Y. Ou, Y. Huo, Green Chem. 21(2019) 798-802.  doi: 10.1039/C8GC03898H

    33. [33]

      S.K. Ayer, J.L. Roizen, J. Org. Chem. 84(2019) 3508-3523.  doi: 10.1021/acs.joc.9b00105

    34. [34]

      K. Liao, F. Zhou, J. Yu, W. Gao, J. Zhou, Chem. Commun. 51(2015) 16255-16258.  doi: 10.1039/C5CC07010D

    35. [35]

      L. Huang, J. Li, Y. Zhao, et al., J. Org. Chem. 80(2015) 8933-8941.  doi: 10.1021/acs.joc.5b01606

    36. [36]

      Y. You, Z. Wu, Z. Wang, et al., J. Org. Chem. 80(2015) 8470-8477.  doi: 10.1021/acs.joc.5b01491

    37. [37]

      X. Gao, J. Han, L. Wang, Synthesis 48(2016) 2603-2611.  doi: 10.1055/s-0035-1560435

    38. [38]

      Y. E, T. Yuan, L. Yin, Y. Xu, Tetrahedron Lett. 58(2017) 2521-2524.  doi: 10.1016/j.tetlet.2017.05.015

    39. [39]

      S.J. Singha Roy, S. Mukherjee, Org. Biomol. Chem. 15(2017) 6921-6925.  doi: 10.1039/C7OB01714F

    40. [40]

      J. Han, Y. Zhang, X.Y. Wu, H.N.C. Wong, Chem. Commun. 55(2019) 397-400.  doi: 10.1039/C8CC09049A

    41. [41]

      L. Cui, Y. You, X. Mi, S. Luo, Org. Chem. Front. 5(2018) 2313-2316.  doi: 10.1039/C8QO00496J

    42. [42]

      K. Nagata, D. Sano, O. Aoyama, et al., Heterocycles 92(2016) 631-635.  doi: 10.3987/COM-16-13414

    43. [43]

      F. Rota, L. Benhamou, T.D. Sheppard, Synlett 27(2016) 33-36.  doi: 10.1055/s-0035-1560769

  • 加载中
    1. [1]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    2. [2]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    3. [3]

      Ao SunZipeng LiShuchun LiXiangbao MengZhongtang LiZhongjun Li . Stereoselective synthesis of α-3-deoxy-D-manno-oct-2-ulosonic acid (α-Kdo) derivatives using a C3-p-tolylthio-substituted Kdo fluoride donor. Chinese Chemical Letters, 2025, 36(3): 109972-. doi: 10.1016/j.cclet.2024.109972

    4. [4]

      Chunhua MaMengjiao LiuSiyu OuyangZhenwei CuiJingjing BiYuqin JiangZhiguo Zhang . Metal-free construction of diverse 1,2,4-triazolo[1,5-a]pyridines on water. Chinese Chemical Letters, 2025, 36(1): 109755-. doi: 10.1016/j.cclet.2024.109755

    5. [5]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    6. [6]

      Zhigang ZengChangzhou LiaoLei Yu . Molecules for COVID-19 treatment. Chinese Chemical Letters, 2024, 35(7): 109349-. doi: 10.1016/j.cclet.2023.109349

    7. [7]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    8. [8]

      Chunrui ZhaoTianren LiJiage LiYansong LiuZian FangXinyu WangMingxin HuoShuangshi DongMingyu Li . Doped cobalt for simultaneously promoting active (001) facet exposure of MIL-68(In) and acting as reactive sites in peroxymonosulfate-mediated photocatalytic decontamination. Chinese Chemical Letters, 2025, 36(5): 110201-. doi: 10.1016/j.cclet.2024.110201

    9. [9]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    10. [10]

      Guoju GuoXufeng LiJie MaYongjia ShiJian LvDaoshan Yang . Photocatalyst/metal-free sequential C–N/C–S bond formation: Synthesis of S-arylisothioureas via photoinduced EDA complex activation. Chinese Chemical Letters, 2024, 35(11): 110024-. doi: 10.1016/j.cclet.2024.110024

    11. [11]

      Tao ZhouJing ZhouYunyun LiuJie-Ping WanFen-Er Chen . Transition metal-free tunable synthesis of 3-(trifluoromethylthio) and 3-trifluoromethylsulfinyl chromones via domino C–H functionalization and chromone annulation of enaminones. Chinese Chemical Letters, 2024, 35(11): 109683-. doi: 10.1016/j.cclet.2024.109683

    12. [12]

      Jianhui YinWenjing HuangChangyong GuoChao LiuFei GaoHonggang Hu . Tryptophan-specific peptide modification through metal-free photoinduced N-H alkylation employing N-aryl glycines. Chinese Chemical Letters, 2024, 35(6): 109244-. doi: 10.1016/j.cclet.2023.109244

    13. [13]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    14. [14]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    15. [15]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    16. [16]

      Jie Li Huida Qian Deyang Pan Wenjing Wang Daliang Zhu Zhongxue Fang . Efficient Synthesis of Anethaldehyde Induced by Visible Light. University Chemistry, 2024, 39(4): 343-350. doi: 10.3866/PKU.DXHX202310076

    17. [17]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    18. [18]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    19. [19]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    20. [20]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

Metrics
  • PDF Downloads(27)
  • Abstract views(1286)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return