Citation:
Ding Meng, Zhou Juanjuan, Yang Hongcen, Cao Ruya, Zhang Shouwei, Shao Minghui, Xu Xijin. Synthesis of Z-scheme g-C3N4 nanosheets/Ag3PO4 photocatalysts with enhanced visible-light photocatalytic performance for the degradation of tetracycline and dye[J]. Chinese Chemical Letters,
;2020, 31(1): 71-76.
doi:
10.1016/j.cclet.2019.05.029
-
Graphene-like C3N4/Ag3PO4 photocatalysts are synthesized by calcination and solutions precipitating method. The obtained g-C3N4/Ag3PO4 composites display excellent photocatalytic activity for the degradation of methylene orange (MO), rhodamine B (RhB) and tetracycline (TC) under visible light irradiation. The solutions containing RhB (10 mg/L) and MO (10 mg/L) can be efficiently degraded within 15 min and 30 min. Especially, nearly 80% of TC (50 mg/L) is degraded within 20 min, which are much better than those of pure g-C3N4 nanosheets and Ag3PO4, implying that strong interaction and reasonable energy band alignment in the contact interface can effectively transfer the carries. Furthermore, the g-C3N4/Ag3PO4 composites exhibit the improved stability, and only a slight decrease is observed after three recycling runs. Moreover, the impact of inorganic ions and PH values on the degradation performance is rather small. The Z-scheme photocatalytic mechanism of the g-C3N4/Ag3PO4 composites based on the active species trapping experimental is proposed. This work demonstrates the promising applications of the g-C3N4/Ag3PO4 composites in environmental issues.
-
Keywords:
- g-C3N4/Ag3PO4,
- Tetracycline,
- Photocatalytic activity,
- Photocurrent,
- Impedance
-
-
-
[1]
Z.B. Yu, Y.P. Xie, G. Liu, et al., J. Mater. Chem. A 1(2013) 2773-2776. doi: 10.1039/c3ta01476b
-
[2]
L. Zhang, L. Du, X. Yu, et al., ACS Appl. Mater. Interface 6(2014) 3623-3629. doi: 10.1021/am405872r
-
[3]
S. Zhang, M. Zeng, W. Xu, et al., Dalton Trans. 42(2013) 7854-7858. doi: 10.1039/c3dt50149c
-
[4]
W. He, G. Zhao, P. Sun, et al., Nano Energy 56(2019) 207-215.
-
[5]
C. Wang, P. Sun, G. Qu, J. Yin, X.J. Xu, Chin. Chem. Lett. 29(2018) 1731-1740. doi: 10.1016/j.cclet.2018.12.005
-
[6]
R. Wang, G. Jiang, Y. Ding, et al., ACS Appl. Mater. Interface 3(2011) 4154-4158. doi: 10.1021/am201020q
-
[7]
S. Rhatigan, M. Nolan, Chin. Chem. Lett. 29(2018) 757-764. doi: 10.1016/j.cclet.2017.11.036
-
[8]
S. Martha, K.H. Reddy, K.M. Parida, J. Mater. Chem. A 2(2014) 3621-3631. doi: 10.1039/c3ta14285j
-
[9]
P. Huo, J. Li, Z. Ye, et al., Chin. Chem. Lett. 28(2017) 2259-2262. doi: 10.1016/j.cclet.2017.09.067
-
[10]
Y. Zhang, D.F. Zhang, X.Y. Xu, B.S. Zhang, Chin. Chem. Lett. 29(2019) 1350-1354.
-
[11]
F.X. Xiao, J. Miao, B. Liu, J. Am. Chem. Soc. 136(2014) 1559-1569. doi: 10.1021/ja411651e
-
[12]
M. Ding, N. Yao, C. Wang, et al., Nanoscale Res. Lett. 11(2016) 205. doi: 10.1186/s11671-016-1432-7
-
[13]
X. Fu, X. Wang, Z. Chen, et al., Appl. Catal. B: Environ. 95(2010) 393-399. doi: 10.1016/j.apcatb.2010.01.018
-
[14]
W. Qiu, M. Xu, X. Yang, et al., J. Mater. Chem. 21(2011) 13327-13333. doi: 10.1039/c1jm11616a
-
[15]
J. Tian, T. Yan, Z. Qiao, et al., Appl. Catal. B: Environ. 209(2017) 566-578. doi: 10.1016/j.apcatb.2017.03.022
-
[16]
W. Shi, F. Guo, S. Yuan, Appl. Catal. B: Environ. 209(2017) 720-728. doi: 10.1016/j.apcatb.2017.03.048
-
[17]
T. Yan, J. Tian, W. Guan, et al., Appl. Catal. B: Environ. 202(2017) 84-94. doi: 10.1016/j.apcatb.2016.09.017
-
[18]
L. Liu, L. Ding, Y. Liu, et al., Appl. Catal. B: Environ. 201(2017) 92-104. doi: 10.1016/j.apcatb.2016.08.005
-
[19]
X. Miao, X. Yue, Z. Ji, et al., Appl. Catal. B: Environ. 227(2018) 459-469. doi: 10.1016/j.apcatb.2018.01.057
-
[20]
X. Bai, L. Wang, R. Zong, Y. Zhu, J. Phys. Chem. C 117(2013) 9952-9961. doi: 10.1021/jp402062d
-
[21]
L. Sun, Y. Qi, C.J. Jia, Z. Jin, W. Fan, Nanoscale 6(2014) 2649-2659. doi: 10.1039/c3nr06104c
-
[22]
D. Xia, W. Xu, L. Hu, et al., J. Hazard. Mater. 349(2018) 91-100. doi: 10.1016/j.jhazmat.2018.01.048
-
[23]
R. Wang, T. Yan, L. Han, et al., J. Mater. Chem. A 6(2018) 5752-5761. doi: 10.1039/C8TA00439K
-
[24]
D. Chen, K. Wang, D. Xiang, et al., Appl. Catal. B: Environ. 147(2014) 554-561. doi: 10.1016/j.apcatb.2013.09.039
-
[25]
S. Kumar, T. Surendar, A. Baruah, V. Shanker, J. Mater. Chem. A 1(2013) 5333-5340. doi: 10.1039/c3ta00186e
-
[26]
F.J. Zhang, F.Z. Xie, S.F. Zhu, et al., Chem. Eng. J. 228(2013) 435-441. doi: 10.1016/j.cej.2013.05.027
-
[27]
H. Katsumata, T. Sakai, T. Suzuki, S. Kaneco, Ind. Eng. Chem. Res. 53(2014) 8018-8025. doi: 10.1021/ie5012036
-
[28]
X.X. Chen, X.T. Huang, Z.G. Yi, Chem. Eur. J. 20(2014) 17590-17596. doi: 10.1002/chem.201404284
-
[29]
L. Liu, Y. Qi, J. Lu, et al., Appl. Catal. B: Environ. 183(2016) 133-141. doi: 10.1016/j.apcatb.2015.10.035
-
[30]
J. Ma, D. Huang, W. Zhang, et al., Chemosphere 162(2016) 269-276. doi: 10.1016/j.chemosphere.2016.07.089
-
[31]
S. Zhang, H. Gao, Y. Huang, et al., Environ. Sci. Nano 5(2018) 1179-1190. doi: 10.1039/C8EN00124C
-
[32]
J. Li, M. Zhou, Z. Ye, et al., RSC Adv. 5(2015) 91177-91189. doi: 10.1039/C5RA17360D
-
[33]
H. Yang, S. Zhang, R. Cao, et al., Sci. Rep. 7(2017) 8686. doi: 10.1038/s41598-017-09283-1
-
[34]
S. Zhang, Q. Fan, H. Gao, et al., J. Mater. Chem. A 4(2016) 1414-1422. doi: 10.1039/C5TA08400H
-
[35]
Y. Lin, S. Wu, C. Yang, M. Chen, X. Li, Appl. Catal. B: Environ. 245(2019) 71-86. doi: 10.1016/j.apcatb.2018.12.048
-
[36]
T. Cai, Y. Liu, L. Wang, et al., Appl. Catal. B: Environ. 208(2017) 1-13. doi: 10.1016/j.apcatb.2017.02.065
-
[37]
L. Zhou, W. Zhang, L. Chen, H. Deng, J. Colloid Interface Sci. 487(2017) 410-417. doi: 10.1016/j.jcis.2016.10.068
-
[38]
X. Li, T. Wan, J. Qiu, et al., Appl. Catal. B: Environ. 217(2017) 591-602. doi: 10.1016/j.apcatb.2017.05.086
-
[39]
T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 102(1998) 5845-5851. doi: 10.1021/jp980922c
-
[40]
J. Hu, W. Fan, W. Ye, C. Huang, X. Qiu, Appl. Catal. B: Environ. 158-159(2014) 182-189. doi: 10.1016/j.apcatb.2014.04.019
-
[41]
C. Michelin, N. Hoffmann, ACS Catal. 8(2018) 12046-12055. doi: 10.1021/acscatal.8b03050
-
[1]
-
-
-
[1]
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
-
[2]
Fengrui Yang , Debing Wang , Xinying Zhang , Jie Zhang , Zhichao Wu , Qiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599
-
[3]
Dan-Ying Xing , Xiao-Dan Zhao , Chuan-Shu He , Bo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436
-
[4]
Xin Li , Wanting Fu , Ruiqing Guan , Yue Yuan , Qinmei Zhong , Gang Yao , Sheng-Tao Yang , Liandong Jing , Song Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625
-
[5]
Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148
-
[6]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[7]
Zhi Zhu , Xiaohan Xing , Qi Qi , Wenjing Shen , Hongyue Wu , Dongyi Li , Binrong Li , Jialin Liang , Xu Tang , Jun Zhao , Hongping Li , Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194
-
[8]
Guixu Pan , Zhiling Xia , Ning Wang , Hejia Sun , Zhaoqi Guo , Yunfeng Li , Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463
-
[9]
Hui Wang , Haodong Ji , Dandan Zhang , Xudong Yang , Hanchun Chen , Chunqian Jiang , Weiliang Sun , Jun Duan , Wen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200
-
[10]
Yanghanbin Zhang , Dongxiao Wen , Wei Sun , Jiahe Peng , Dezhong Yu , Xin Li , Yang Qu , Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469
-
[11]
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
-
[12]
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
-
[13]
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
-
[14]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[15]
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
-
[16]
Ke Zhang , Yajing Wei , Linhua Xie , Sha Kang , Fei Li , Chuanyi Wang . Amorphous titanium carbide on N-defective g-C3N5 for high-efficiency photocatalytic NO removal. Chinese Chemical Letters, 2025, 36(3): 110086-. doi: 10.1016/j.cclet.2024.110086
-
[17]
Entian Cui , Yulian Lu , Zhaoxia Li , Zhilei Chen , Chengyan Ge , Jizhou Jiang . Interfacial B-O bonding modulated S-scheme B-doped N-deficient C3N4/O-doped-C3N5 for efficient photocatalytic overall water splitting. Chinese Chemical Letters, 2025, 36(1): 110288-. doi: 10.1016/j.cclet.2024.110288
-
[18]
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
-
[19]
Yueying Wang , Jianming Xiong , Linwei Xin , Yuanyuan Li , He Huang , Wenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003
-
[20]
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
-
[1]
Metrics
- PDF Downloads(18)
- Abstract views(1399)
- HTML views(99)