Citation: Xu Qing-Song, Li Chen, Xu Yong, Xu Defeng, Shen Mei-Hua, Xu Hua-Dong. Ruthenium catalyzed amination cyclization of 1, 2, 4-butanetriol with primary amines: A borrowing hydrogen strategy for 3-pyrrolidinol synthesis[J]. Chinese Chemical Letters, ;2020, 31(1): 103-106. doi: 10.1016/j.cclet.2019.05.027 shu

Ruthenium catalyzed amination cyclization of 1, 2, 4-butanetriol with primary amines: A borrowing hydrogen strategy for 3-pyrrolidinol synthesis

    * Corresponding authors.
    E-mail addresses: shenmh@cczu.edu.cn (M.-H. Shen), hdxu@cczu.edu.cn (H.-D. Xu).
  • Received Date: 6 March 2019
    Revised Date: 30 April 2019
    Accepted Date: 15 May 2019
    Available Online: 15 January 2019

Figures(4)

  • A ruthenium based catalytic system ([Ru(p-cymene)Cl2]2/XantPhos with substoichiometric Cs2CO3) has been established to effectively achieve the first direct amination cyclization of 1, 2, 4-butanetriol with primary aromatic amines. The product of this sustainable hydrogen autotransfer process is valuable Naryl-3-pyrrolidinol.
  • 加载中
    1. [1]

      (a) T. Irrgang, R. Kempe, Chem. Rev. 119 (2019) 2524-2549;
      (b) A. Corma, J. Navas, M.J. Sabater, Chem. Rev. 118 (2018) 1410-1459;
      (c) X. Ma, C. Su, Q. Xu, Top. Curr. Chem. 374 (2016) 1-74;
      (d) Q. Yang, Q. Wang, Z. Yu, Chem. Soc. Rev. 44 (2015) 2305-2329.

    2. [2]

      (a) S. Whitney, R. Grigg, A. Derrick, A. Keep, Org. Lett. 9 (2007) 3299-3302;
      (b) C. Loefberg, R. Grigg, M.A. Whittaker, A. Keep, A. Derrick, J. Org. Chem. 71 (2006) 8023-8027;
      (c) R. Grigg, T.R.B. Mitchell, S. Sutthivaiyakit, N. Tongpenyai, Chem. Commun. (1981) 611-612.

    3. [3]

      Y. Watanabe, Y. Tsuji, Y. Ohsugi, Tetrahedron Lett. 22 (1981) 2667-2670.  doi: 10.1016/S0040-4039(01)92965-X

    4. [4]

      (a) S. Elangovan, J. Neumann, J.B. Sortais, et al., Nat. Commun. 7 (2016) 12641;
      (b) S. Baehn, S. Imm, K. Mevius, et al., Chem. Eur. J. 16 (2010) 3590-3593;
      (c) S. Imm, S. Baehn, L. Neubert, H. Neumann, M. Beller, Angew. Chem. Int. Ed. 49 (2010) 8126-8129.

    5. [5]

      (a) R. Kawahara, K.I. Fujita, R. Yamaguchi, Adv. Synth. Catal. 353 (2011) 1161-1168;
      (b) R. Kawahara, K.I. Fujita, R. Yamaguchi, J. Am. Chem. Soc. 132 (2010) 15108-15111.

    6. [6]

      (a) O. Saidi, A.J. Blacker, M.M. Farah, S.P. Marsden, J.M.J. Williams, Chem. Commun. 46 (2010) 1541-1543;
      (b) O. Saidi, A.J. Blacker, G.W. Lamb, et al., Org. Process Res. Dev. 14 (2010) 1046-1049.

    7. [7]

      (a) R. Martinez, D.J. Ramon, M. Yus, Org. Biomol. Chem. 7 (2009) 2176-2181;
      (b) R. Martinez, G.J. Brand, D.J. Ramon, M. Yus, Tetrahedron Lett. 46 (2005) 3683-3686.

    8. [8]

      (a) S. Michlik, R. Kempe, Chem. Eur. J. 16 (2010) 13193-13198;
      (b) B. Blank, R. Kempe, J. Am. Chem. Soc. 132 (2010) 924-925.

    9. [9]

      C. Gunanathan, D. Milstein, Angew. Chem. Int. Ed. 47 (2008) 8661-8664.  doi: 10.1002/anie.200803229

    10. [10]

      (a) S. Liu, R. Chen, G.J. Deng, Chem. Lett. 40 (2011) 489-491;
      (b) Y. Liu, W. Chen, C. Feng, G. Deng, Chem. Asian J. 6 (2011) 1142-1146.

    11. [11]

      S.L. Feng, C.Z. Liu, Q. Li, X.C. Yu, Q. Xu, Chin. Chem. Lett. 22 (2011) 1021-1024.  doi: 10.1016/j.cclet.2011.03.014

    12. [12]

      (a) X. Cui, F. Shi, Y. Zhang, Y. Deng, Tetrahedron Lett. 51 (2010) 2048-2051;
      (b) X. Cui, F. Shi, M.K. Tse, et al., Adv. Synth. Catal. 351 (2009) 2949-2958.

    13. [13]

      (a) B. Emayavaramban, P. Chakraborty, E. Manoury, R. Poli, B. Sundararaju, Org. Chem. Front. 6 (2019) 852-857;
      (b) C.M. Hsiao, Y.F. Chen, C.H. Lin, et al., J. Organomet. Chem. 861 (2018) 10-16;
      (c) G. Zhang, Z. Yin, S. Zheng, Org. Lett. 18 (2016) 300-303;
      (d) T. Yan, B.L. Feringa, K. Barta, ACS Catal. 6 (2016) 381-388;
      (e) Q. Zou, C. Wang, J. Smith, D. Xue, J. Xiao, Chem. Eur. J. 21 (2015) 9656-9661;
      (f) Y. Zhang, X. Qi, X. Cui, F. Shi, Y. Deng, Tetrahedron Lett. 52 (2011) 1334-1338;
      (g) J.Y. Zhang, X. Huang, Q.Y. Shen, J.Y. Wang, G.H. Song, Chin. Chem. Lett. 29 (2018) 197-200;
      (h) T.T. Zhang, J.Y. Jiang, Y.H. Wang, Chin. Chem. Lett. 28 (2017) 307-311.

    14. [14]

      C. Gunanathan, D. Milstein, Science 341 (2013) 249.

    15. [15]

      (a) J. Leonard, A.J. Blacker, S.P. Marsden, et al., Org. Process Res. Dev. 19 (2015) 1400-1410;
      (b) M.A. Berliner, S.P.A. Dubant, T. Makowski, et al., Org. Process Res. Dev. 15 (2011) 1052-1062.

    16. [16]

      (a) T. Yan, B.L. Feringa, K. Barta, Nat. Commun. 5 (2014) 5602;
      (b) A.B. Enyong, B. Moasser, J. Org. Chem. 79 (2014) 7553-7563;
      (c) G. Cami-Kobeci, J.M.J. Williams, Chem. Commun. (2004) 1072-1073;
      (d) X. Cui, X. Dai, Y. Deng, F. Shi, Chem. Eur. J. 19 (2013) 3665-3675;
      (e) A. Wetzel, S. Woeckel, M. Schelwies, et al., Org. Lett. 15 (2013) 266-269;
      (f) M.H.S.A. Hamid, C.L. Allen, G.W. Lamb, et al., J. Am. Chem. Soc. 131 (2009) 1766-1774;
      (g) I. Yamaguchi, T. Sakano, H. Ishii, K. Osakada, T. Yamamoto, J. Organomet. Chem. 584 (1999) 213-216;
      (h) D. Seyferth, R.C. Hui, J. Org. Chem. 50 (1985) 1985-1987;
      (i) L.Y. Xie, S. Peng, L.L. Jiang, et al., Org. Chem. Front. 6 (2019) 167-171.

    17. [17]

      (a) A.J.A. Watson, A.C. Maxwell, J.M.J. Williams, J. Org. Chem. 76 (2011) 2328-2331;
      (b) R.A.T.M. Abbenhuis, J. Boersma, G. van Koten, J. Org. Chem. 63 (1998) 4282-4290.

    18. [18]

      (a) K.O. Marichev, J.M. Takacs, ACS Catal. 6 (2016) 2205-2210;
      (b) K.I. Fujita, T. Fujii, R. Yamaguchi, Org. Lett. 6 (2004) 3525-3528.

    19. [19]

      (a) J. Katz, J. Jewell, J. Jung, et al., PT: WO2010017047A1, 2010;
      (b) G.M. Bright, PT: WO9952907A1, 1999;
      (c) A. Naylor, D.B. Judd, D.I.C. Scopes, A.G. Hayes, P.J. Birch, J. Med. Chem. 37 (1994) 2138-2144;
      (d) L. Li, Q. Chen, X. Xiong, et al., Chin. Chem. Lett. 29 (2018) 1893-1896.

    20. [20]

      (a) K. Zong, Bull. Korean Chem. Soc. 26 (2005) 717-718;
      (b) E.J. Trybulski, R.H. Kramss, R.M. Mangano, H.J. Brabander, G. Francisco, Bioorg. Med. Chem. Lett. 2 (1992) 827-832;
      (c) A. Dicko, M. Montury, M. Baboulene, Tetrahedron Lett. 28 (1987) 6041-6044;
      (d) M.M. Bowers Nemia, J. Lee, M.M. Joullie, Synth. Commun. 13 (1983) 1117-1123.

    21. [21]

      A.J. Rawlings, L.J. Diorazio, M. Wills, Org. Lett. 17 (2015) 1086-1089.  doi: 10.1021/ol503587n

  • 加载中
    1. [1]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    2. [2]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    3. [3]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    4. [4]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    5. [5]

      Xinlong ZhengZhongyun ShaoJiaxin LinQizhi GaoZongxian MaYiming SongZhen ChenXiaodong ShiJing LiWeifeng LiuXinlong TianYuhao Liu . Recent advances of CuSbS2 and CuPbSbS3 as photocatalyst in the application of photocatalytic hydrogen evolution and degradation. Chinese Chemical Letters, 2025, 36(3): 110533-. doi: 10.1016/j.cclet.2024.110533

    6. [6]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    7. [7]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    8. [8]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    9. [9]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    10. [10]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    11. [11]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    12. [12]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    13. [13]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    14. [14]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    15. [15]

      Linfang ZHANGWenzhu YINGui YIN . A 2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran-based near-infrared fluorescence probe for the detection of hydrogen sulfide and imaging of living cells. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 540-548. doi: 10.11862/CJIC.20240405

    16. [16]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    17. [17]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    18. [18]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

Metrics
  • PDF Downloads(12)
  • Abstract views(1033)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return