Citation: Peng Lifen, Hu Zhifang, Tang Zilong, Jiao Yinchun, Xu Xinhua. Recent progress in transition metal catalyzed cross coupling of nitroarenes[J]. Chinese Chemical Letters, ;2019, 30(8): 1481-1487. doi: 10.1016/j.cclet.2019.04.008 shu

Recent progress in transition metal catalyzed cross coupling of nitroarenes

    * Corresponding authors.
    E-mail addresses: 1060137@hnust.edu.cn (L. Peng), zltang@hnust.edu.cn (Z. Tang)
  • Received Date: 27 January 2019
    Revised Date: 22 March 2019
    Accepted Date: 1 April 2019
    Available Online: 3 August 2019

Figures(14)

  • In this review, the recent development in transition metal catalyzed cross coupling of nitroarenes was highlighted. Firstly, development of transition metal catalyzed cross coupling was simply introduced. After presenting the advantages of nitroarenes, transition metal catalyzed cross coupling using nitroarenes as electrophilic coupling partners was classified and introduced in detail. Based on different chemical bonds such as C–O, C–S, C–C and C–N bonds constructed, different kinds cross coupling of nitroarenes would be highlighted and the plausible reaction mechanism would be presented if available.
  • 加载中
    1. [1]

      (a) N. Miyaura, A. Suzuki, Chem. Rev. 95 (1995) 2457-2483;
      (b) B. Zhang, R. Breslow, J. Am. Chem. Soc. 119 (1997) 1676-1681;
      (c) Ei. Negishi, Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, Weinheim, 1998;
      (d) A. Minato, K. Suzuki, K. Tamao, M. Kumada, J. Chem. Soc. Chem. Commun. 8 (1984) 511-513;
      (e) A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 4176-4211;
      (f) A.R. Chinchilla, C. Nájera, Chem. Rev. 107 (2007) 874-922;
      (g) L.F. Peng, S.W. Zhang, B.H. Wang, et al., Chin. J. Org. Chem. 38 (2018) 519-525.

    2. [2]

      (a) X. Li, J.W. Han, H.N.C. Wong, Asian J. Org. Chem. 5 (2016) 74-81;
      (b) K.C. Nicolaou, P.G. Bulger, D. Sarlah, Angew. Chem. Int. Ed. 44 (2005) 4442-4489;
      (c) L.F. Peng, B.H. Wang, M. Wang, et al., J. Chem. Res. 42 (2018) 235-238;
      (d) L.F. Peng, J.Y. Lei, L. Wu, et al., J. Chem. Res. 42 (2018) 271-273;
      (e) L.F. Peng, C. Peng, M. Wang, et al., Chin. J. Org. Chem. 38 (2018) 3048-3055;
      (f) R. Jana, T.P. Pathak, M.S. Sigman, Chem. Rev. 111 (2011) 1417-1492.

    3. [3]

      (a) J. Magano, J.R. Dunetz, Chem. Rev. 111 (2011) 2177-2250;
      (b) T.E. Barder, S.D. Walker, J.R. Martinelli, S.L. Buchwald, J. Am. Chem. Soc. 127 (2005) 4685-4696;
      (c) S. Abbas, L. Ferris, A.K. Norton, Org. Process Res. Dev. 12 (2008) 202-212;
      (d) S. Yu, A. Haight, B. Kotecki, et al., J. Org. Chem. 74 (2009) 9539-9542;
      (e) J.Q. Wan, Y. Xia, Y. Liu, et al., J. Med. Chem. 52 (2009) 1144-1155.

    4. [4]

      (a) M.S. Karatholuvhu, A. Sinclair, A.F. Newton, et al., J. Am. Chem. Soc. 128 (2006) 12656-12657;
      (b) Q. Su, L.A. Dakin, J.S. Panek, J. Org. Chem. 72 (2007) 2-24;
      (c) V.V. Vintonyak, B. Kunze, F. Sasse, M.E. Maier, Chem.-Eur. J.14 (2008) 11132-11140;
      (d) G. Dyker, D. Hildebrandt, J. Org. Chem. 70 (2005) 6093-6096.

    5. [5]

      (a) C.K. Hau, S.S.Y. Chui, W. Lu, Chem. Sci. 2 (2011) 1068-1075;
      (b) C.L. Deng, X.D. Xiong, D.T.W. Chik, Chem.-Asian J. 10 (2015) 2342-234;
      (c) Y. Yamaguchi, T. Ochi, T. Wakamiya, Y. Matsubara, Z. Yoshida, Org. Lett. 8 (2006) 717-720;
      (d) J.N. Wilson, M. Josowicz, Y. Wang, U.H.F. Bunz, Chem. Commun. (2003) 2982-2983;
      (e) H. Sugiura, Y. Nigorikawa, Y. Saiki, K. Nakamura, M. Yamaguchi, J. Am. Chem. Soc. 126 (2004) 14858-14864;
      (f) T.L. Wu, H.H. Chou, P.Y. Huang, C.H. Cheng, R.S. Liu, J. Org. Chem. 79 (2014) 267-274;
      (g) J. Kim, A.R. Han, J. Hong, et al., Chem. Mater. 26 (2014) 4933-4942;
      (h) P. Deria, C.D. Von Bargen, J.H. Olivier, et al., J. Am. Chem. Soc. 135 (2013) 16220-16234;
      (i) Z.Y. Yao, M. Zhang, H. Wu, et al., J. Am. Chem. Soc. 137 (2015) 3799-3802.

    6. [6]

      (a) A.F. Littke, G.C. Fu, Angew. Chem. Int. Ed. 41 (2002) 4176-4211;
      (b) P. Fitton, E.A. Rick, J. Organomet. Chem. 28 (1971) 287-291;
      (c) R. Stürmer, Angew. Chem. 111 (1999) 3509-3510.

    7. [7]

      (a) V.V. Grushin, H. Alper, Chem. Rev. 94 (1994) 1047-1062;
      (b) R. Stürmer, Angew. Chem. Int. Ed. 38 (1999) 3307-3308;
      (c) H.U. Blaser, E. Schmidt, Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2004;
      (d) S.L. Buchwald, C. Mauger, G. Mignani, U. Scholz, Adv. Synth. Catal. 348 (2006) 23-39;
      (e) B. Schlummer, U. Scholz, Adv. Synth. Catal. 346 (2004) 1599-1626;
      (f) H.U. Blaser, A. Indolese, F. Naud, U. Nettekoven, A. Schnyder, Adv. Synth. Catal. 346 (2004) 1583-1598;
      (g) C. Torborg, M. Beller, Adv. Synth. Catal. 351 (2009) 3027-3043;
      (h) F. Naso, F. Babudri, G.M. Farinola, Pure Appl. Chem. 71 (1999) 1485-1492;
      (i) R.N. Yi, Z.J. Wang, Z.W. Liang, et al., Appl. Organomet. Chem. 33 (2019) e4917-e4923.

    8. [8]

      (a) C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. Int. Ed. 51 (2012) 5062-5085;
      (b) C.C.C. Johansson Seechurn, M.O. Kitching, T.J. Colacot, V. Snieckus, Angew. Chem. 124 (2012) 5150-5174.

    9. [9]

      (a) Z.H. Jia, Liu Q, X.S. Peng, H.N.C. Wong, Nat. Commun. 7 (2016) 10614-10620;
      (b) C. Han, S.L. Buchwald, J. Am. Chem. Soc. 131 (2009) 7532-7533;
      (c) B.D. Sherry, A. Fürstner, Acc. Chem. Res. 41 (2008) 1500-1511;
      (d) S.M. Neumann, J.K. Kochi, J. Org. Chem. 40 (1975) 599-606;
      (e) A. Fürstner, A. Leitner, Angew. Chem. Int. Ed. 41 (2002) 609-612;
      (f) B.J. Li, L. Xu, Z.H. Wu, et al., J. Am. Chem. Soc. 131 (2009) 14656-14657;
      (g) C.S. Yeung, V.M. Dong, J. Am. Chem. Soc. 130 (2008) 7826-7827;
      (h) J. Zhou, G.C. Fu, J. Am. Chem. Soc. 125 (2003) 14726-14727;
      (i) K. Tamao, Y. Kiso, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 94 (1972) 9268-9269.

    10. [10]

      (a) D.W. Old, J.P. Wolfe, S.L. Buchwald, J. Am. Chem. Soc.120 (1998) 9722-9723;
      (b) J.P. Wolfe, R.A. Singer, B.H. Yang, S.L. Buchwald, J. Am. Chem. Soc.121 (1999) 9550-9561;
      (c) M. Schomaker, T.J. Delia, J. Org. Chem. 66 (2001) 7125-7128;
      (d) A.J. Cocuzza, D.R. Chidester, S. Culp, L. Fitzgerald, P. Gilligan, Bioorg. Med. Chem. Lett. 9 (1999) 1063-1066;
      (e) J.P. Wolfe, S.L. Buchwald, Angew. Chem. 111 (1999) 2570-2573.

    11. [11]

      (a) J.M. Lovell, J.A. Joule, Synth. Commun. 27 (1997) 1209-1215;
      (b) A. Suzuki, J. Organomet. Chem. 576 (1999) 147-168;
      (c) G.B. Smith, G.C. Dezeny, D.L. Hughes, A.O. King, T.R. Verhoeven, J. Org. Chem. 59 (1994) 8151-8156.

    12. [12]

      J. Zhang, J. Chen, M. Liu, X. Zheng, J. Ding, H. Wu, Green Chem. 14 (2012) 912-916.  doi: 10.1039/c2gc16539b

    13. [13]

      (a) K. Itami, M. Mineno, N. Muraoka, J.I. Yoshida, J. Am. Chem. Soc. 126 (2004) 11778-11779;
      (b) L.W. Qian, M. Sun, J. Dong, Q. Xu, Y. Zhou, S.F. Yin, J. Org. Chem. 82 (2017) 6764-6769;
      (c) K. Itami, D. Yamazaki, J.I. Yoshida, J. Am. Chem. Soc.126 (2004) 5396-15397;
      (d) S.R. Dubbaka, P. Vogel, Angew. Chem. Int. Ed. 44 (2005) 7674-7684;
      (e) S.R. Dubbaka, P. Vogel, Tetrahedron Lett. 47 (2006) 3345-3348;
      (f) P. Leowanawat, N. Zhang, A.M. Resmerita, B.M. Rosen, V. Percec, J. Org. Chem. 76 (2011) 9946-9955.

    14. [14]

      (a) D. Gärtner, A.L. Stein, S. Grupe, J. Arp, A.J. Wangelin, Angew. Chem. Int. Ed. 54 (2015) 10545-10549;
      (b) M.R. Harris, L.E. Hanna, M.A. Greene, C.E. Moore, E.R. Jarvo, J. Am. Chem. Soc. 135 (2013) 3303-3306;
      (c) K.W. Quasdorf, X. Tian, N.K. Garg, J. Am. Chem. Soc. 130 (2008) 14422-14423.

    15. [15]

      (a) G.G. Meng, S.C. Shi, M. Szostak, ACS Catal. 6 (2016) 7335-7339;
      (b) K.R. Buszek, N. Brown, Org. Lett. 9 (2007) 707-710;
      (c) M. Barbero, S. Dughera, Tetrahedron 74 (2018) 5758-5769;
      (d) Y. Bourne-Branchu, C. Gosmini, G. Danoun, Chem.-Eur. J. 25 (2019) 2663-2674.

    16. [16]

      (a) H. Li, J. Liu, C.L. Sun, B.J. Li, Z.J. Shi, Org. Lett. 13 (2011) 276-279;
      (b) S. Tang, L. Zeng, A.W. Lei, J. Am. Chem. Soc. 140 (2018) 13128-13135;
      (c) Q. Zhang, Y. Liu, T. Wang, et al., J. Am. Chem. Soc. 140 (2018) 5579-5587;
      (d) M. Shang, H.L. Wang, S.Z. Sun, H.X. Dai, J.Q. Yu, J. Am. Chem. Soc. 136 (2014) 11590-11593.

    17. [17]

      G. Booth, Nitro Compounds, Aromatic; Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, New York, 2012.

    18. [18]

      Y. Yang, Angew. Chem. Int. Ed. 56 (2017) 15802-15804.  doi: 10.1002/anie.201708940

    19. [19]

      X.W. Zheng, J.C. Ding, J.X. Chen, et al., Org. Lett. 13 (2011) 1726-1729.  doi: 10.1021/ol200251x

    20. [20]

      J.L. Zhang, J.X. Chen, M.C. Liu, et al., Green Chem. 14 (2012) 912-916.  doi: 10.1039/c2gc16539b

    21. [21]

      D.P. Peng, A.J. Yu, H.L. Wang, Y.J. Wu, J.B. Chang, Tetrahedron 69 (2013) 6884-6889.  doi: 10.1016/j.tet.2013.05.112

    22. [22]

      H.L. Wang, A.J. Yu, A.J. Cao, J.B. Chang, Y.J. Wu, Appl. Organomet. Chem. 27 (2013) 611-614.

    23. [23]

      T. Begum, M. Mondal, M.P. Borpuzari, et al., Eur. J. Org. Chem. (2017) 3244-3248.

    24. [24]

      S.S. Bahekar, A.P. Sarkate, V.M. Wadhai, P.S. Wakte, D.B. Shinde, Catal. Commun. 41 (2013) 123-125.  doi: 10.1016/j.catcom.2013.07.019

    25. [25]

      H. Tian, A.J. Cao, L.J. Qiao, et al., Tetrahedron 70 (2014) 9107-9112.  doi: 10.1016/j.tet.2014.09.087

    26. [26]

      A. Rostami, A. Rostami, A. Ghaderi, J. Org. Chem. 80 (2015) 8694-8704.  doi: 10.1021/acs.joc.5b01248

    27. [27]

      B.P. Fors, S.L. Buchwald, J. Am. Chem. Soc. 131 (2009) 12898-12899.  doi: 10.1021/ja905768k

    28. [28]

      M.R. Yadav, M. Nagaoka, M. Kashihara, et al., J. Am. Chem. Soc.139 (2017) 9423-9426.  doi: 10.1021/jacs.7b03159

    29. [29]

      F. Inoue, M. Kashihara, M.R. Yadav, Y. Nakao, Angew. Chem. Int. Ed. 56 (2017) 13307-13309.  doi: 10.1002/anie.201706982

  • 加载中
    1. [1]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    2. [2]

      Qingxuan KongChangwei JiangBin LyuZhaoting LiNing JiaoSong Song . Denitrative iodination of nitroarenes with hydroiodic acid. Chinese Chemical Letters, 2025, 36(10): 111444-. doi: 10.1016/j.cclet.2025.111444

    3. [3]

      Chaojian XuJuxin YinSihong WangYue PanQianhe ZhangNingkang XieShuo YangShaowu Lv . Aerobic radical polymerization of hydrogels triggered by acetylacetone-transition metal self-initiation. Chinese Chemical Letters, 2025, 36(7): 111075-. doi: 10.1016/j.cclet.2025.111075

    4. [4]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Manoj Kumar SarangiL․D PatelGoutam RathSitansu Sekhar NandaDong Kee Yi . Metal organic framework modulated nanozymes tailored with their biomedical approaches. Chinese Chemical Letters, 2024, 35(11): 109381-. doi: 10.1016/j.cclet.2023.109381

    7. [7]

      Longlong GengHuiling LiuWenfeng ZhouYong-Zheng ZhangHongliang HuangDa-Shuai ZhangHui HuChao LvXiuling ZhangSuijun Liu . Construction of metal-organic frameworks with unsaturated Cu sites for efficient and fast reduction of nitroaromatics: A combined experimental and theoretical study. Chinese Chemical Letters, 2024, 35(8): 109120-. doi: 10.1016/j.cclet.2023.109120

    8. [8]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    9. [9]

      Shuai LiLiuting ZhangFuying WuYiqun JiangXuebin Yu . Efficient catalysis of FeNiCu-based multi-site alloys on magnesium-hydride for solid-state hydrogen storage. Chinese Chemical Letters, 2025, 36(1): 109566-. doi: 10.1016/j.cclet.2024.109566

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Mengxiang ZhuTao DingYunzhang LiYuanjie PengRuiping LiuQuan ZouLeilei YangShenglei SunPin ZhouGuosheng ShiDongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833

    12. [12]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    13. [13]

      Haijiang GongQingtan ZengShili GaiYaqian DuJing ZhangQingyu WangHe DingLichun WuAnees Ahmad AnsariPiaoping Yang . Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chinese Chemical Letters, 2025, 36(5): 110059-. doi: 10.1016/j.cclet.2024.110059

    14. [14]

      Li-Min CuiWei-Hui FangJian Zhang . Polyoxometalates containing aluminum atoms. Chinese Chemical Letters, 2025, 36(10): 110386-. doi: 10.1016/j.cclet.2024.110386

    15. [15]

      Jialin HuangLiying FuZhanyong TangXiaoqiang MaXingda ZhaoDepeng Zhao . Cross-coupling of trifluoromethylarenes with alkynes C(sp)-H bonds and azoles C(sp2)-H bonds via photoredox/copper dual catalysis. Chinese Chemical Letters, 2025, 36(7): 110505-. doi: 10.1016/j.cclet.2024.110505

    16. [16]

      Fuyang YueMingxing LiFei YuanHongjian SongYuxiu LiuQingmin Wang . Deboronative cross-coupling enabled by nickel metallaphotoredox catalysis. Chinese Chemical Letters, 2025, 36(12): 111053-. doi: 10.1016/j.cclet.2025.111053

    17. [17]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    18. [18]

      Yan Qi Yueqin Yu Weisi Guo Yongjun Liu . 过渡金属参与的有机反应案例教学与实践探索. University Chemistry, 2025, 40(6): 111-117. doi: 10.12461/PKU.DXHX202411021

    19. [19]

      Jinjin YangChuanhui ZhuShuang ZhaoTao XiaPengfei TanYutian ZhangMei-Huan ZhaoYijie ZengMan-Rong Li . Spin-orbit-controlled metal-insulator transition in metastable SrIrO3 stabilized by physical and chemical pressures. Chinese Chemical Letters, 2025, 36(6): 109891-. doi: 10.1016/j.cclet.2024.109891

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(6)
  • Abstract views(1379)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return