Citation: Chen Qiankun, Chen Long, Qi Juanjuan, Tong Yingqian, Lv Yitao, Xu Chaokai, Ni Jinren, Liu Wen. Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength[J]. Chinese Chemical Letters, ;2019, 30(6): 1214-1218. doi: 10.1016/j.cclet.2019.03.002 shu

Photocatalytic degradation of amoxicillin by carbon quantum dots modified K2Ti6O13 nanotubes: Effect of light wavelength

    * Corresponding author at: The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
    E-mail addresses: wen.liu@pku.edu.cn, liuwensee@pku.edu.cn (W. Liu)
  • Received Date: 2 February 2019
    Revised Date: 28 February 2019
    Accepted Date: 1 March 2019
    Available Online: 1 June 2019

Figures(4)

  • A novel carbon quantum dots modified potassium titanate nanotubes (CQDs/K2Ti6O13) composite photocatalyst was synthesized by hydrothermal treatment combined with calcination. X-ray diffraction (XRD) pattern and transmission electron microscopy (TEM) indicated formation of potassium titanate nanotubes and successful deposition of CQDs onto K2Ti6O13. The photocatalytic performance of CQDs/K2Ti6O13 composite was evaluated by degradation of amoxicillin (AMX) under the irradiation of visible light and lights with the wavelengths of 365, 385, 420, 450, 485, 520, 595 and 630 nm. The results showed that the photocatalytic activity of CQDs/K2Ti6O13 hybrid material was greatly enhanced compared with the neat K2Ti6O13 calcined at 300 ℃. The narrowed band gap energy (Eg) and transfer of photo-excited electron by CQDs inhibited the immediate combination of electron-hole pairs, thus promoting photocatalytic activity. Moreover, CQDs/K2Ti6O13 exhibited a broad spectrum of photocatalytic ability and it was interesting that the photocatalytic activity decreased with the increase of the irradiation wavelength. Reactive oxygen species (ROS) quenching tests suggested the hole (h+) and hydroxyl radical (·OH) played the primary roles in photocatalytic degradation of AMX. Moreover, CQDs/K2Ti6O13 showed good reusability for AMX photocatalytic degradation after five successive runs. This study proposed an available method for titanate nanomaterials modification, and the developed novel CQDs/K2Ti6O13 hybrid material is promising for potential application on antibiotics removal from water and wastewater.
  • In the past two decades, immense attention has been received in the area of coordination polymers (CPs) or metal-organic frameworks (MOFs) due to their diverse and remarkable structural related properties, multi-functionality and promising applications in gas storage, separation science, catalysis, sensing, displays, and optical devices [1-8]. In this realm, one of advantages for such functional organic-inorganic hybrid materials is that they can accomplish the synergy of multifunction from inorganic connecting linkers and organic ligands [9, 10]. Compared with luminescent coordination complexes based on noble metals, such as Os(Ⅱ), Ir(Ⅲ) and Pt(Ⅱ), copper(Ⅰ) and silver(Ⅰ) coordination complexes show fascinating photoluminescence properties and potential applications with much lower cost since copper and silver are both abundant elements on the earth [11-22]. For example, copper(Ⅰ)and silver(Ⅰ) complexes with phosphorescence and/or thermally activated delayed fluorescence (TADF) which could be potentially used as highly efficient emitter materials for organic light emitting diodes (OLEDs) [23-26].

    Phosphorescent emitter materials can harvest both singlet and triplet excitons due to singlet-triplet state mixing via efficient spin orbit coupling [27, 28]. Therefore phosphors are attracted much interest in both fluorescent lamps and light-emitting diodes. By utilizing Cu(Ⅰ)-based crystalline coordination polymers, J. Li et al. had endeavored to achieve high performance luminescence phosphors [29-32]. Besides phosphors, TADF emitters have been proved to be the promising and practical option for next generation OLEDs in commercial market as well [33-35]. No matter for metalfree TADF materials with donor-acceptor (D-A) motif, or metal complexes for phosphorescence OLEDs (PhOLEDs), shorter excited lifetime will benefit the device performance such as slow efficiency roll-off, long device duration [36-38]. Now the luminescent Cu(Ⅰ) and Ag(Ⅰ) coordination polymers based on D-A organic ligands still need tobe exploited, especiallywith phosphorescence and/or TADF.

    In this work, we explored three new copper(Ⅰ) and silver(Ⅰ) coordination polymers based on donor-acceptor motif ligands. The ligands we adopted bear twisting donor acceptor architecture to effectively separate the spatial distribution of HOMO and LUMO, which we supposed would raise the possibility of the accomplishment of small ΔEST, that is the energy difference between lowest excited triplet state (T1) and lowest excited singlet state (S1). Three coordination polymers exhibit similar structural feature with onedimensional (1D) linear chains, as revealed by the single crystals X-ray analysis. The photoluminescence of CP1 and CP2 are both red-shifted with much higher PLQY and longer lifetime, comparing with their corresponding ligands. The temperature-dependent PL decay measurements and PLQY characteristics illustrated that the PL emission of CP1 and CP2 is both fast phosphorescence from 50 to 300 K. Whilst, by introducing Ag(Ⅰ) ion as metal connectors, The photoluminescence of CP3 was proved to possess TADF emission.

    The ligands (L1 and L2) of donor-acceptor motif designed in this study are composed of pyridine as acceptor (A), connected to dihydrophenazine and spiroacridine moieties as donors (D) as illustrated in Scheme S1 (Supporting information), which were prepared with a Buchwald-Hartwig amination reaction. All the materials were fully characterized by 1H NMR, 13C NMR and high-resolution mass spectrometry (HRMS). In L1, two parallel terminal pyridine groups are basically vertical to the central dihydrophenazine moiety with the dihedral angles of 89.241(45)° and 89.241(45)° respectively (Fig. S1a in Supporting information). The structure of L2 is presented by Fig. S1b (Supporting information), which revealed the spiroacridine rings are both planar and vertical to each other with the dihedral angle of 89.190 (55)°. And the dihedral angles between two pyridine and neighboring spiroacridine ring are 85.684(68)° and 83.618(103)°, respectively. Above all, in two ligands, the donor segment and acceptor segment adopt a highly twisted configuration in both.

    Reactions between ligands and metal salts at room temperature through solvent diffusion method afforded coordination polymers CP1, CP2 and CP3. Single-crystal X-ray diffraction pattern revealed that CP1 crystallizes in the triclinic system P-1. The asymmetry unit consists of four CuI, and two L1 ligand. As shown in Fig. 1, all CuI ion in CP1 are four coordinated (CuI3N) and lie in the center of tetrahedron coordination environment (Cu-I bond lengths of d = 2.664(2)–2.706(2) Å). The Cu4I4 cluster core are formed by four CuI moieties as the connection nodes in CP1 with Cu…Cu distances between 2.602(2)–2.824(2) Å. These Cu4I4 cores lie in a bent coordination environment {Cu4I4N2} which is composed of two terminal pyridyl N-donors with Cu-N bond lengths of 2.01(1) and 2.031(9) Å). Solid-state structure of CP1 exhibits 1D linear chain motif consisting of the boxlike Cu4I4(L1)2 units (Fig. S2 in Supporting information), in which two saddleshaped L1 serve as the linker to bind the adjacent Cu4I4 cluster cores through Cu-N coordination bonds. As shown in Fig. 1, the formed 1D chains are stagger arrangement and extend along the crystallographic [011] direction, in which no obvious interchain interactions are observed.

    Figure 1

    Figure 1.  (a) ORTEP figure of CP1 (30% probability displacement ellipsoids); (b) Packing pattern (view along a axis) of CP1 (H atoms have been omitted for clarity).

    CP2 crystallizes the triclinic system with P-1 space group. The asymmetry unit consists of one CuI, one L1 ligand and one chloroform molecule as guest. CuI ion in CP2 are also four coordinated (CuI2N2) and lie in the center of tetrahedron coordination environment (Cu--I bond length of d = 2.629(1) Å). It is similar to CP1, CP2 also adopts a 1D chain motif in which the Cu2I2 dimer instead of Cu4I4 cluster core acts as the node. The Cu2I2 cluster core are formed by two CuI moieties with Cu…Cu distances of 2.603(1) Å. It is different from CP1, the ligand conformation in boxlike unit of Cu2I2(L2)2 in CP2 is identical to that of free ligand, which is evidenced by the observed dihedral angles between two pyridine and neighboring spiroacridine ring in CP2 are 82.132(214)° and 72.954(111)°, respectively (Fig. S3 in Supporting information). Crystal stacking pattern revealed that there is no intermolecular spatial contacts to be obtained in CP2 (Fig. 2).

    Figure 2

    Figure 2.  Packing pattern (view along a axis) of CP2 (H atoms and chloroform as solvent molecule have been omitted for clarity).

    And CP3 crystallized in the monoclinic system with P21/c space group. And the asymmetric unit is composed of one AgI cation, one L2 anion, one CF3CO2- anion and one chloroform molecule. Fig. 3 exhibited that the Ag ion is coordinated by two nitrogen atoms from pyridine terminal groups of two individual L2 and two oxygen atoms from two CF3CO2- anion, presenting a distorted tetrahedron geometry (Ag--N bond length of d = 2.233(7)–2.259(7) Å; Ag--O bond length of d = 2.464(7)–2.471(8) Å). Similar with CP2, the ligand conformation in CP3 is identical to that of L2. The dihedral angles between two pyridine and neighboring spiroacridine ring in CP3 are 86.101° and 76.406°, respectively. With Ag ion acting as connecting node, CP3 adopts a 1D chain in the first place. Furthermore, the adjacent AgI chains can be expanded by CF3CO2- anion to double chains via Ag--O bonds (Fig. 3). It turned out that there is no intermolecular spatial contact between double chains, as presented by crystal stacking pattern (Fig. S4 in Supporting information). The thermogravimetric analysis (TGA) revealed that the decomposition temperatures (Td) with 5% loss of CP1, CP2 and CP3 are all over 320 ℃ (Figs. S5–S7 in Supporting information). And three coordination polymers exhibit homogeneity in solid state as revealed by the agreements between single crystal and as synthesized solid product in powder X-ray diffraction (PXRD) analysis (Figs. S8–S10 in Supporting information).

    Figure 3

    Figure 3.  (a) ORTEP figure of CP3 (30% probability displacement ellipsoids); (b) Double chain moiety in CP3 (H atoms and chloroform as solvent molecules have been omitted for clarity).

    The DFT calculation revealed that the HOMO and LUMO of L1 and L2 are mainly dispersed over the electron-donating moiety and the acceptor moiety, respectively (Fig. S11 in Supporting information) [39]. Because of the big dihedral angles between donor and acceptor units revealed by single crystal analysis, the overlap between the HOMO and LUMO is clearly minimized by the effective separation of their electron densities, frequently implying a small energy difference between the singlet and triplet excited states [33-36]. The ΔEST values of L1 and L2 are calculated to be 0.38 and 0.40 eV, respectively, as illustrated in Table S1 (Supporting information). By cyclicvoltammetry (CV), the first oxidation and reduction potentials were measured in DCM and dimethylformamide (DMF) solutions, respectively. As shown in Fig. S12, two ligands present the similar reduction potential of -2.34 V (for L1) and -2.36 V (for L2) respectively, which can be assigned to the reduction of the pyridine acceptor moieties. The oxidation potentials are -0.20 and 0.55 V, which is in good agreement with the electron-donating capabilities of dihydrophenazine and spiroacridine moiety. Thus, the LUMO energy levels of L1 and L2 were estimated to be -2.00 and -1.97 eV, and the HOMO energy levels as -4.32 and -5.37 eV, respectively (Table S2 in Supporting information) [40].

    As presented in Fig. S13 (Supporting information), ligand L1 exhibit absorption bands in the region of 350 nm to 420 nm, with moderately weak molar absorption coefficient ε, which can be ascribed to the intramolecular charge-transfer (ICT) transition from the HOMO to the LUMO. Whilst, the absorption spectra of L2 do not present observable ICT states in the longer-wavelength region, indicating quite weak CT interaction in its ground states. Nevertheless, the photoluminescence (PL) spectra of both ligands exhibit broad and structureless emission, indicating that their emissive S1 excited states are ICT states in nature. Further, the emission maxima of L2 are blue-shifted relative to that of L1, corresponding to their lower electron-donating capabilities. Meanwhile, the phosphorescence spectra of them captured at 77 K are all well resolved and show characteristic vibrational structures, indicating that their lowest emissive T1 excited states are 3LE at this temperature [33-36]. Based on the values calculated from their fluorescence and phosphorescence spectra, the ΔEST of L1 and L2 are estimated to be 0.45 and 0.50 eV, respectively (Table S3 in Supporting information). L1 and L2 in solid state exhibit sky blue and blue ICT emission with the maximum wavelength of 501 nm and 412 nm, as illustrated in Figs. S14 and S15 (Supporting information). Unlike their TADF analogues [41, 42], Fig. 4 revealed that the transient PL decay characteristics of two ligands, with pyridine as weaker acceptor, both exhibits one component decay only, which means the big barriers from T1 to S1 would definitely hinder the occurrence of TADF process for both ligands. In comparison with two ligands, coordination polymer CP1 and CP2 both exhibited red-shift of PL emission and higher PLQY of 15% and 46% respectively (Table S4 and Fig. S15). The temperature-dependent transient PL decay measurements (Fig. S17 in Supporting information) illustrate that the luminescence lifetimes at 75 K of both coordination polymers (CP1 and CP2) are 12 and 11 μs respectively. As shown in Fig. S17, the PL emission life times of CP1 and CP2 both were revealed to have little variation with 5–12 μs in the temperature range of 75–300 K, and the emission spectra remain unchanged despite the variation of temperature, which indicate not effective reverse intersystem crossing (RISC) but spin-orbit coupling (SOC) to realized radiative transition from first excited triplet state to the ground state. Meanwhile, the spin-orbit coupling matrix elements of CP1 and CP2 were calculated based on the quadratic response function method by Dalton package [43, 44]. Small SOC effect (1.44 cm-1 for CP1 and 1.52 cm-1 for CP2) show that the ISC process from S1 to T1 is preferably occurred. The characteristics of temperature-dependent PLQYs of CP1 and CP2 prove the absence of TADF, since the PLQYs of both CP1 and CP2 are actually reduced with the increase of temperature, which is the typical behavior of triplet emitter (Table S5 in Supporting information). To better understand the observation, the HOMO and LUMO of CP1 and CP2 were calculated using density functional theory (DFT) with the Gaussian 09 package at the B3LYP/6-31G(d) level [39], which turned out to be mainly dispersed over rather copper cluster than ligands themselves (Fig. S19 in Supporting information).

    Figure 4

    Figure 4.  Transient PL decay spectra at 300 K of L1, L2, CP1, CP2 and CP3 in solid state.

    Different from the reported TADF Cu(Ⅰ) complexes [24-26], CuI cluster-based coordination complexes usually exhibit phosphorescence due to effective intersystem crossing (ISC) [30-32]. In order to realize TADF property, Ag(Ⅰ) ion was applied for constructing coordination polymer instead of CuI. The DFT calculation illustrated that the HOMO and LUMO of CP3 are mainly dispersed over the electron-donating moiety and the acceptor moiety, respectively (Fig. S20 in Supporting information). And the overlap between the HOMO and LUMO of CP3 is clearly minimized by the effective separation of their electron densities due to large dihedral angles between donor and acceptor units, which is in good agreement with single crystal analysis as well. The difference of the electron configuration between CP1, CP2 and CP3 may result in different PL emission nature of them. Comparing with CP2 derived from the same ligand, CP3 exhibited similar PL emission with small blue-shift in spectra, as indicated in Fig. S16 (Supporting information). Comparing with L2, higher PLQY with 34% of CP3 suggest non-radiative decay via intramolecular rotation and vibrational motions could be suppressed in coordination polymers [45]. The temperature-dependent transient PL decay measurements revealed that CP3 clearly exhibited sky blue emission with both the prompt and delayed components (Fig. 4). The lifetime of the delayed component at room temperature is 7.7 μs. The increase of PL emission intensity with temperature is consistent with TADF materials (Fig. S18a and Table S5 in Supporting information). The delayed emission spectrum of CP3 is slightly red-shifted from that of the prompt emission (Fig. S18b in Supporting information), which is usual for TADF materials and could be explained by structural relaxation [33-38].

    In this communication, we have investigated the synthesis of three luminescent Cu(Ⅰ) and Ag(Ⅰ) coordination polymers. Two Cu(Ⅰ) coordination polymers, CP1 and CP2, exhibit PL emission with much higher PLQY and longer lifetime, comparing with those of the corresponding ligands L1 and L2. Unfortunately, TADF has not been observed in both coordination polymers due to effective ISC process with the involvements of copper iodine clusters as metal connections. By applying Ag(Ⅰ) cation as metal connectors, the resulting coordination polymers, CP3, realize sky blue PL emission with TADF component.

    This work was financially supported by the National Natural Science Foundation (Nos. 21772116, 21671122 and 21475078), the Shandong Taishan Scholar’s Construction Project, JSPS KAKENHI (No. JP17H01232) and the Japan Science and Technology Agency (JST), ERATO, Adachi Molecular Exciton Engineering Project, under JST ERATO (No. JPMJER1305), Japan.

    Supplementary material related to this article canbefound, in the online version, at doi:https://doi.org/10.1016/j.cclet.2019.08.006.


    1. [1]

      B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, Water Res. 43(2009) 363-380.  doi: 10.1016/j.watres.2008.10.047

    2. [2]

      J. Wang, S. Wang, J. Environ. Manage. 182(2016) 620-640.  doi: 10.1016/j.jenvman.2016.07.049

    3. [3]

      M.F. Li, Y.G. Liu, et al., J. Colloid Interface Sci. 521(2018) 150-159.  doi: 10.1016/j.jcis.2018.03.003

    4. [4]

      A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Appl. Catal. B:Environ. 242(2019) 337-348.  doi: 10.1016/j.apcatb.2018.10.009

    5. [5]

      M. Pourakbar, G. Moussavi, S. Shekoohiyan, Ecotoxicol. Environ. Saf. 125(2016) 72-77.  doi: 10.1016/j.ecoenv.2015.11.040

    6. [6]

      Y.J. Jung, W.G. Kim, Y. Yoon, et al., Sci. Total Environ. 420(2012) 160-167.  doi: 10.1016/j.scitotenv.2011.12.011

    7. [7]

      E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli, J. Hazard. Mater. 179(2010) 1042-1048.  doi: 10.1016/j.jhazmat.2010.03.110

    8. [8]

      N.A. Alygizakis, P. Gago-Ferrero, V.L. Borova, et al., Sci. Total Environ. 541(2016) 1097-1105.  doi: 10.1016/j.scitotenv.2015.09.145

    9. [9]

      X.Q. Liu, W.J. Chen, H. Jiang, Chem. Eng. J. 308(2017) 889-896.  doi: 10.1016/j.cej.2016.09.125

    10. [10]

      V. Singh, B. Pandey, S. Suthar, Chemosphere 201(2018) 492-502.  doi: 10.1016/j.chemosphere.2018.03.010

    11. [11]

      M. Gmurek, M. Bizukojć, J. Mosinger, S. Ledakowicz, Catal. Today 240(2015) 160-167.  doi: 10.1016/j.cattod.2014.06.015

    12. [12]

      J. Yan, J. Peng, L. Lai, et al., Environ. Sci. Technol. 52(2018) 14302-14310.  doi: 10.1021/acs.est.8b03340

    13. [13]

      H. Zhang, Q. Ji, L. Lai, G. Yao, B. Lai, Chin. Chem. Lett. 30(2019) 1129-1132.  doi: 10.1016/j.cclet.2019.01.025

    14. [14]

      J. Cao, L. Lai, B. Lai, et al., Chem. Eng. J. 364(2019) 45-56.  doi: 10.1016/j.cej.2019.01.113

    15. [15]

      D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, I. Di Somma, Appl. Catal. B:Environ. 170-171(2015) 90-123.
       

    16. [16]

      B.A. Wols, C.H. Hofman-Caris, Water Res. 46(2012) 2815-2827.  doi: 10.1016/j.watres.2012.03.036

    17. [17]

      Z. Cai, A.D. Dwivedi, W.N. Lee, et al., Environ. Sci. Nano 5(2018) 27-47.  doi: 10.1039/C7EN00644F

    18. [18]

      W. Huang, Z. Wu, J. Tang, W.D. Wei, X. Guo, Chin. Chem. Lett. 29(2018) 725-726.  doi: 10.1016/j.cclet.2018.05.021

    19. [19]

      J. Di, J. Xia, M. Ji, et al., ACS Appl. Mater. Interfaces 7(2015) 20111-20123.  doi: 10.1021/acsami.5b05268

    20. [20]

      W. Liu, J. Ni, X. Yin, Water Res. 53(2014) 12-25.  doi: 10.1016/j.watres.2013.12.043

    21. [21]

      X. Liu, P. Du, W. Pan, et al., Appl. Catal. B:Environ. 231(2018) 11-22.  doi: 10.1016/j.apcatb.2018.02.062

    22. [22]

      A. Cuprys, R. Pulicharla, J. Lecka, et al., Chemosphere 202(2018) 549-559.  doi: 10.1016/j.chemosphere.2018.03.117

    23. [23]

      M.A. Siddiqui, V.S. Chandel, A. Azam, Appl. Surf. Sci. 258(2012) 7354-7358.  doi: 10.1016/j.apsusc.2012.04.018

    24. [24]

      W. Liu, X. Zhao, T. Wang, J. Fu, J. Ni, J. Mater. Chem. A 3(2015) 17676-17684.  doi: 10.1039/C5TA04521E

    25. [25]

      X. Zhang, Y. Guo, Y. Li, Y. Liu, S. Dong, Chin. Chem. Lett. 30(2019) 502-504.  doi: 10.1016/j.cclet.2018.07.007

    26. [26]

      P. Ponce-Peña, M.A. González-Lozano, M.A. Escobedo-Bretado, et al., Ceram. Int. 41(2015) 10051-10056.  doi: 10.1016/j.ceramint.2015.04.093

    27. [27]

      H. Li, Z. Kang, Y. Liu, S.T. Lee, J. Mater. Chem. 22(2012) 24230.  doi: 10.1039/c2jm34690g

    28. [28]

      S.Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 44(2015) 362-381.  doi: 10.1039/C4CS00269E

    29. [29]

      M. Pirsaheb, A. Asadi, M. Sillanpää, N. Farhadian, J. Mol. Liq. 271(2018) 857-871.  doi: 10.1016/j.molliq.2018.09.064

    30. [30]

      Y. Wang, A. Hu, J. Mater. Chem. C 2(2014) 6921-6939.  doi: 10.1039/C4TC00988F

    31. [31]

      J. Wang, L. Tang, G. Zeng, et al., Appl. Catal. B:Environ. 222(2018) 115-123.  doi: 10.1016/j.apcatb.2017.10.014

    32. [32]

      J. Tian, Y. Leng, Z. Zhao, et al., Nano Energy 11(2015) 419-427.  doi: 10.1016/j.nanoen.2014.10.025

    33. [33]

      W. Liu, Y. Li, F. Liu, et al., Water Res. 150(2019) 431-441.  doi: 10.1016/j.watres.2018.12.001

    34. [34]

      S. Zhu, Q. Meng, L. Wang, et al., Angew. Chem. Int. Ed. 52(2013) 3953-3957.  doi: 10.1002/anie.v52.14

    35. [35]

      Y.M. Qi, C.X. Cui, et al., Adv. Mater. Res. 535-537(2012) 376-379.

    36. [36]

      K. Zhang, X. Zhou, P. Du, et al., Water Res. 123(2017) 153-161.  doi: 10.1016/j.watres.2017.06.057

    37. [37]

      F. Liu, J. Liang, L. Chen, M. Tong, W. Liu, J. Mol. Liq. 275(2019) 807-814.  doi: 10.1016/j.molliq.2018.11.119

    38. [38]

      E.M. Rodríguez, G. Márquez, M. Tena, P.M. Álvarez, F.J. Beltrán, Appl. Catal. B:Environ. 178(2015) 44-53.  doi: 10.1016/j.apcatb.2014.11.002

    39. [39]

      J. Yu, H. Yu, B. Cheng, C. Trapalis, J. Mol. Catal. A:Chem. 249(2006) 135-142.  doi: 10.1016/j.molcata.2006.01.003

    40. [40]

      W. Liu, X. Zhao, A.G. Borthwick, Y. Wang, J. Ni, ACS Appl. Mater. Interfaces 7(2015) 19726-19735.  doi: 10.1021/acsami.5b05263

    41. [41]

      X. Zhao, Z. Cai, T. Wang, et al., Appl. Catal. B:Environ. 187(2016) 134-143.  doi: 10.1016/j.apcatb.2016.01.010

    42. [42]

      W. Liu, Z. Cai, X. Zhao, et al., Environ. Sci. Technol. 50(2016) 11174-11183.  doi: 10.1021/acs.est.6b02623

    43. [43]

      Z. Zhang, J. Huang, Y. Fang, et al., Adv. Mater. 29(2017)1606688.  doi: 10.1002/adma.201606688

    44. [44]

      F. Chen, H. Huang, Y. Zhang, T. Zhang, Chin. Chem. Lett. 28(2017) 2244-2250.  doi: 10.1016/j.cclet.2017.09.017

    45. [45]

      K. Hentschel, Photons: The History and Mental Models of Light Quanta, Springer, Basel, 2018, pp. 66-71.

    46. [46]

      B. Dong, T. Liu, C. Li, F. Zhang, Chin. Chem. Lett. 29(2018) 671-680.  doi: 10.1016/j.cclet.2017.12.002

    1. [1]

      B. Kasprzyk-Hordern, R.M. Dinsdale, A.J. Guwy, Water Res. 43(2009) 363-380.  doi: 10.1016/j.watres.2008.10.047

    2. [2]

      J. Wang, S. Wang, J. Environ. Manage. 182(2016) 620-640.  doi: 10.1016/j.jenvman.2016.07.049

    3. [3]

      M.F. Li, Y.G. Liu, et al., J. Colloid Interface Sci. 521(2018) 150-159.  doi: 10.1016/j.jcis.2018.03.003

    4. [4]

      A. Mirzaei, Z. Chen, F. Haghighat, L. Yerushalmi, Appl. Catal. B:Environ. 242(2019) 337-348.  doi: 10.1016/j.apcatb.2018.10.009

    5. [5]

      M. Pourakbar, G. Moussavi, S. Shekoohiyan, Ecotoxicol. Environ. Saf. 125(2016) 72-77.  doi: 10.1016/j.ecoenv.2015.11.040

    6. [6]

      Y.J. Jung, W.G. Kim, Y. Yoon, et al., Sci. Total Environ. 420(2012) 160-167.  doi: 10.1016/j.scitotenv.2011.12.011

    7. [7]

      E. Zuccato, S. Castiglioni, R. Bagnati, M. Melis, R. Fanelli, J. Hazard. Mater. 179(2010) 1042-1048.  doi: 10.1016/j.jhazmat.2010.03.110

    8. [8]

      N.A. Alygizakis, P. Gago-Ferrero, V.L. Borova, et al., Sci. Total Environ. 541(2016) 1097-1105.  doi: 10.1016/j.scitotenv.2015.09.145

    9. [9]

      X.Q. Liu, W.J. Chen, H. Jiang, Chem. Eng. J. 308(2017) 889-896.  doi: 10.1016/j.cej.2016.09.125

    10. [10]

      V. Singh, B. Pandey, S. Suthar, Chemosphere 201(2018) 492-502.  doi: 10.1016/j.chemosphere.2018.03.010

    11. [11]

      M. Gmurek, M. Bizukojć, J. Mosinger, S. Ledakowicz, Catal. Today 240(2015) 160-167.  doi: 10.1016/j.cattod.2014.06.015

    12. [12]

      J. Yan, J. Peng, L. Lai, et al., Environ. Sci. Technol. 52(2018) 14302-14310.  doi: 10.1021/acs.est.8b03340

    13. [13]

      H. Zhang, Q. Ji, L. Lai, G. Yao, B. Lai, Chin. Chem. Lett. 30(2019) 1129-1132.  doi: 10.1016/j.cclet.2019.01.025

    14. [14]

      J. Cao, L. Lai, B. Lai, et al., Chem. Eng. J. 364(2019) 45-56.  doi: 10.1016/j.cej.2019.01.113

    15. [15]

      D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, I. Di Somma, Appl. Catal. B:Environ. 170-171(2015) 90-123.
       

    16. [16]

      B.A. Wols, C.H. Hofman-Caris, Water Res. 46(2012) 2815-2827.  doi: 10.1016/j.watres.2012.03.036

    17. [17]

      Z. Cai, A.D. Dwivedi, W.N. Lee, et al., Environ. Sci. Nano 5(2018) 27-47.  doi: 10.1039/C7EN00644F

    18. [18]

      W. Huang, Z. Wu, J. Tang, W.D. Wei, X. Guo, Chin. Chem. Lett. 29(2018) 725-726.  doi: 10.1016/j.cclet.2018.05.021

    19. [19]

      J. Di, J. Xia, M. Ji, et al., ACS Appl. Mater. Interfaces 7(2015) 20111-20123.  doi: 10.1021/acsami.5b05268

    20. [20]

      W. Liu, J. Ni, X. Yin, Water Res. 53(2014) 12-25.  doi: 10.1016/j.watres.2013.12.043

    21. [21]

      X. Liu, P. Du, W. Pan, et al., Appl. Catal. B:Environ. 231(2018) 11-22.  doi: 10.1016/j.apcatb.2018.02.062

    22. [22]

      A. Cuprys, R. Pulicharla, J. Lecka, et al., Chemosphere 202(2018) 549-559.  doi: 10.1016/j.chemosphere.2018.03.117

    23. [23]

      M.A. Siddiqui, V.S. Chandel, A. Azam, Appl. Surf. Sci. 258(2012) 7354-7358.  doi: 10.1016/j.apsusc.2012.04.018

    24. [24]

      W. Liu, X. Zhao, T. Wang, J. Fu, J. Ni, J. Mater. Chem. A 3(2015) 17676-17684.  doi: 10.1039/C5TA04521E

    25. [25]

      X. Zhang, Y. Guo, Y. Li, Y. Liu, S. Dong, Chin. Chem. Lett. 30(2019) 502-504.  doi: 10.1016/j.cclet.2018.07.007

    26. [26]

      P. Ponce-Peña, M.A. González-Lozano, M.A. Escobedo-Bretado, et al., Ceram. Int. 41(2015) 10051-10056.  doi: 10.1016/j.ceramint.2015.04.093

    27. [27]

      H. Li, Z. Kang, Y. Liu, S.T. Lee, J. Mater. Chem. 22(2012) 24230.  doi: 10.1039/c2jm34690g

    28. [28]

      S.Y. Lim, W. Shen, Z. Gao, Chem. Soc. Rev. 44(2015) 362-381.  doi: 10.1039/C4CS00269E

    29. [29]

      M. Pirsaheb, A. Asadi, M. Sillanpää, N. Farhadian, J. Mol. Liq. 271(2018) 857-871.  doi: 10.1016/j.molliq.2018.09.064

    30. [30]

      Y. Wang, A. Hu, J. Mater. Chem. C 2(2014) 6921-6939.  doi: 10.1039/C4TC00988F

    31. [31]

      J. Wang, L. Tang, G. Zeng, et al., Appl. Catal. B:Environ. 222(2018) 115-123.  doi: 10.1016/j.apcatb.2017.10.014

    32. [32]

      J. Tian, Y. Leng, Z. Zhao, et al., Nano Energy 11(2015) 419-427.  doi: 10.1016/j.nanoen.2014.10.025

    33. [33]

      W. Liu, Y. Li, F. Liu, et al., Water Res. 150(2019) 431-441.  doi: 10.1016/j.watres.2018.12.001

    34. [34]

      S. Zhu, Q. Meng, L. Wang, et al., Angew. Chem. Int. Ed. 52(2013) 3953-3957.  doi: 10.1002/anie.v52.14

    35. [35]

      Y.M. Qi, C.X. Cui, et al., Adv. Mater. Res. 535-537(2012) 376-379.

    36. [36]

      K. Zhang, X. Zhou, P. Du, et al., Water Res. 123(2017) 153-161.  doi: 10.1016/j.watres.2017.06.057

    37. [37]

      F. Liu, J. Liang, L. Chen, M. Tong, W. Liu, J. Mol. Liq. 275(2019) 807-814.  doi: 10.1016/j.molliq.2018.11.119

    38. [38]

      E.M. Rodríguez, G. Márquez, M. Tena, P.M. Álvarez, F.J. Beltrán, Appl. Catal. B:Environ. 178(2015) 44-53.  doi: 10.1016/j.apcatb.2014.11.002

    39. [39]

      J. Yu, H. Yu, B. Cheng, C. Trapalis, J. Mol. Catal. A:Chem. 249(2006) 135-142.  doi: 10.1016/j.molcata.2006.01.003

    40. [40]

      W. Liu, X. Zhao, A.G. Borthwick, Y. Wang, J. Ni, ACS Appl. Mater. Interfaces 7(2015) 19726-19735.  doi: 10.1021/acsami.5b05263

    41. [41]

      X. Zhao, Z. Cai, T. Wang, et al., Appl. Catal. B:Environ. 187(2016) 134-143.  doi: 10.1016/j.apcatb.2016.01.010

    42. [42]

      W. Liu, Z. Cai, X. Zhao, et al., Environ. Sci. Technol. 50(2016) 11174-11183.  doi: 10.1021/acs.est.6b02623

    43. [43]

      Z. Zhang, J. Huang, Y. Fang, et al., Adv. Mater. 29(2017)1606688.  doi: 10.1002/adma.201606688

    44. [44]

      F. Chen, H. Huang, Y. Zhang, T. Zhang, Chin. Chem. Lett. 28(2017) 2244-2250.  doi: 10.1016/j.cclet.2017.09.017

    45. [45]

      K. Hentschel, Photons: The History and Mental Models of Light Quanta, Springer, Basel, 2018, pp. 66-71.

    46. [46]

      B. Dong, T. Liu, C. Li, F. Zhang, Chin. Chem. Lett. 29(2018) 671-680.  doi: 10.1016/j.cclet.2017.12.002

  • 加载中
    1. [1]

      Weixu Li Yuexin Wang Lin Li Xinyi Huang Mengdi Liu Bo Gui Xianjun Lang Cheng Wang . Promoting energy transfer pathway in porphyrin-based sp2 carbon-conjugated covalent organic frameworks for selective photocatalytic oxidation of sulfide. Chinese Journal of Structural Chemistry, 2024, 43(7): 100299-100299. doi: 10.1016/j.cjsc.2024.100299

    2. [2]

      Chaoqun MaYuebo WangNing HanRongzhen ZhangHui LiuXiaofeng SunLingbao Xing . Carbon dot-based artificial light-harvesting systems with sequential energy transfer and white light emission for photocatalysis. Chinese Chemical Letters, 2024, 35(4): 108632-. doi: 10.1016/j.cclet.2023.108632

    3. [3]

      Qiang Zhang Weiran Gong Huinan Che Bin Liu Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205

    4. [4]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    5. [5]

      Fengkai ZouBorui SuHan LengNini XinShichao JiangDan WeiMei YangYouhua WangHongsong Fan . Red-emissive carbon quantum dots minimize phototoxicity for rapid and long-term lipid droplet monitoring. Chinese Chemical Letters, 2024, 35(10): 109523-. doi: 10.1016/j.cclet.2024.109523

    6. [6]

      Yue PanWenping SiYahao LiHaotian TanJi LiangFeng Hou . Promoting exciton dissociation by metal ion modification in polymeric carbon nitride for photocatalysis. Chinese Chemical Letters, 2024, 35(12): 109877-. doi: 10.1016/j.cclet.2024.109877

    7. [7]

      Yusong BiRongzhen ZhangKaikai NiuShengsheng YuHui LiuLingbao Xing . Construction of a three-step sequential energy transfer system with selective enhancement of superoxide anion radicals for photocatalysis. Chinese Chemical Letters, 2025, 36(5): 110311-. doi: 10.1016/j.cclet.2024.110311

    8. [8]

      Yuxin LiChengbin LiuQiuju LiShun Mao . Fluorescence analysis of antibiotics and antibiotic-resistance genes in the environment: A mini review. Chinese Chemical Letters, 2024, 35(10): 109541-. doi: 10.1016/j.cclet.2024.109541

    9. [9]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    10. [10]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    11. [11]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Cailing WuShaojie WuQifei HuangKai SunXianqiang HuangJianji WangBing Yu . Potassium-modified carbon nitride photocatalyzed-aminoacylation of N-sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110250-. doi: 10.1016/j.cclet.2024.110250

    13. [13]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    14. [14]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    15. [15]

      Jiangqi Ning Junhan Huang Yuhang Liu Yanlei Chen Qing Niu Qingqing Lin Yajun He Zheyuan Liu Yan Yu Liuyi Li . Alkyl-linked TiO2@COF heterostructure facilitating photocatalytic CO2 reduction by targeted electron transport. Chinese Journal of Structural Chemistry, 2024, 43(12): 100453-100453. doi: 10.1016/j.cjsc.2024.100453

    16. [16]

      Jiaqi Ma Lan Li Yiming Zhang Jinjie Qian Xusheng Wang . Covalent organic frameworks: Synthesis, structures, characterizations and progress of photocatalytic reduction of CO2. Chinese Journal of Structural Chemistry, 2024, 43(12): 100466-100466. doi: 10.1016/j.cjsc.2024.100466

    17. [17]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    18. [18]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    19. [19]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    20. [20]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

Metrics
  • PDF Downloads(5)
  • Abstract views(972)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return