New strategy for reversal tolerant anode for automotive polymer electrolyte fuel cell
-
* Corresponding authors.
E-mail addresses: Chanho.pak@gist.ac.kr (C. Pak), eunyoung.you@mobis.co.kr (E. You)
Citation:
Pak Chanho, Woo Lee Seung, Baik Chaekyung, Ho Lee Bong, Jong You Dae, You Eunyoung. New strategy for reversal tolerant anode for automotive polymer electrolyte fuel cell[J]. Chinese Chemical Letters,
;2019, 30(6): 1186-1189.
doi:
10.1016/j.cclet.2019.02.020
Z.P. Cano, D. Banham, S. Ye, et al., Nature Ener. 3(2018) 279-289.
doi: 10.1038/s41560-018-0108-1
T. Wilberforce, Z. El-Hassan, F.N. Khatib, et al., Int. J. Hydrogen Energy 42(2017) 25695-25734.
doi: 10.1016/j.ijhydene.2017.07.054
A. Alaswad, A. Baroutaji, H. Achour, et al., Int. J. Hydrogen Energy 41(2016) 16499-16508.
doi: 10.1016/j.ijhydene.2016.03.164
B.K. Hong, S.H. Kim, ECS Trans. 86(2018) 3-11.
A. Kongkanad, M.F. Mathias, J. Phys. Chem. Lett. 7(2016) 1127-1137.
doi: 10.1021/acs.jpclett.6b00216
T. Zhang, P. Wang, H. Chen, P. Pei, Acs Appl. Energy Mater. 223(2018) 249-262.
T. Mittermeier, A. Weiß, F. Hasché, G. Hübner, H.A. Gasteiger, J. Electrochem. Soc. 164(2017) F127-F137.
doi: 10.1149/2.1061702jes
G.S. Harzer, J.N. Schwämmlein, et al., J. Electrochem. Soc. 165(2018) F3118-F3131.
doi: 10.1149/2.0161806jes
H. Zhang, H. Haas, J. Hu, et al., J. Electrochem. Soc. 160(2013) F840-F847.
doi: 10.1149/2.083308jes
N. Macauley, D.D. Papadias, J. Fairweather, et al., J. Electrochem. Soc.165(2018) F3148-F3160.
doi: 10.1149/2.0061806jes
F. Forouzandeh, X. Li, D.W. Banham, et al., J. Electrochem. Soc. 165(2018) F3230-F3240.
doi: 10.1149/2.0261806jes
C. Qin, J. Wang, D. Yang, B. Li, C. Zhang, Catalysts 6(2016) 197-217.
doi: 10.3390/catal6120197
Ž. Penga, G. Radica, F. Barbir, P. Eckert, Degradation mechanisms in automotive fuel cell systems, FCHJU deliverable D1.3, (2018).
A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, Int. J. Hydrogen Energy 33(2008) 2323-2329.
doi: 10.1016/j.ijhydene.2008.02.049
A. Taniguchi, T. Akita, K. Yasuda, Y. Miyazaki, J. Power Sources 130(2004) 42-49.
doi: 10.1016/j.jpowsour.2003.12.035
T.R. Ralph, M.P. Hogath, Platinum Metals Rev. 46(2002) 117-135.
B.K. Hong, P. Mandal, J.G. Oh, S. Lister, J. Power Sources 328(2016) 280-288.
doi: 10.1016/j.jpowsour.2016.07.002
W.R.W. Daud, R.E. Rosli, E.H. Majlan, et al., Renew. Energy 113(2017) 620-638.
doi: 10.1016/j.renene.2017.06.027
J. Thangavelautham, Degradation in PEM fuel cells and mitigation strategies using system design and control, in: T. Taner (Ed.), Proton Exchange Membrane Fuel Cell, Intech Open Ltd, London, 2018, pp. 63-95.
Y.B. Park, E. You, C. Pak, M. Min, Electrochim. Acta 284(2018) 242-252.
doi: 10.1016/j.electacta.2018.07.171
W.S. Jung, B.N. Popov, Carbon 122(2017) 746-755.
doi: 10.1016/j.carbon.2017.07.028
Y.J. Wang, B. Fang, H. Li, X. Bi, H. Wang, Prog. Mater. Sci. 82(2016) 445-498.
doi: 10.1016/j.pmatsci.2016.06.002
Y. Jeon, Y. Ji, Y.I. Cho, et al., ACS Nano 12(2018) 6819-6829.
doi: 10.1021/acsnano.8b02040
O. Lori, L. Elbaz, Catalysts 5(2015) 1445-1464.
doi: 10.3390/catal5031445
P. Mandal, B.K. Hong, J.G. Oh, S. Litster, J. Power Sources 397(2018) 397-404.
doi: 10.1016/j.jpowsour.2018.06.083
K.H. Lim, W.H. Lee, Y. Jeong, H. Kim, J. Electrochem. Soc. 164(2017) F1580-F1586.
doi: 10.1149/2.0731714jes
T.R. Ralph, S. Hudson, D.P. Wilkinson, ECS Trans. 1(2006) 67-84.
Z. Zhu, X. Yan, H. Tang, et al., J. Power Sources 351(2017) 138-144.
doi: 10.1016/j.jpowsour.2017.03.076
E. You, M. Min, S.A. Jin, T. Kim, C. Pak, J. Electrochem. Soc. 165(2018) F3094-F3099.
doi: 10.1149/2.0121806jes
S.D. Knights, D.P. Wilkinson, S.A. Campbell, et al., Patent PCT WO 01/15247 A2, (2001).
J.L. Taylor, D.P. Wilkinson, D.S. Wainwright, T.R. Ralph, S.D. Knights, Patent PCT WO 01/15249 A2, (2001).
S. Ye, P. Beattie, S. A. Campbell, et al., Patent, US 2004/0013935 A1, 2004.
S. Ye, Reversal-tolerant catalyst layers, in: J. Zhang (Ed.), PEM Fuel Cell Electrocatalysts and Catalyst Layers, Fundamentals and Applications, SpringerVerlag Ltd., London, 2008835-680.
T. Yasuda, A. Ogawa, M. Kanno, et al., Chem. Lett. 38(2009) 692-693.
doi: 10.1246/cl.2009.692
G.G. Eshetu, M. Armand, H. Ohno, B. Scrosati, S. Passerini, Energy Environ. Sci. 9(2016) 49-61.
doi: 10.1039/C5EE02284C
A.R. Neale, P. Li, J. Jacquemin, et al., Phys. Chem. Chem. Phys. 18(2016) 11251-11262.
doi: 10.1039/C5CP07160G
C. Pozo-Gonzalo, M. Kar, E. Jónsson, et al., Electrochim. Acta 196(2016) 727-734.
doi: 10.1016/j.electacta.2016.02.208
E. You, S.W. Lee, C. Pak, Development and application of cell reversal durable, carbon supported anode catalysts for membrane electrode assembly of automotive PEMFC, International Symposium on Advancement and Prospect of Catalysis Science (2018) 25-27.
D.A. Stevens, R.J. Sanderson, T.D. Hatchard, et al., ECS Trans. 33(2010) 419-423.
D.A. Cullen, K.L. More, K.S. Reeves, et al., ECS Trans. 41(2011) 1099-1103.
J. Durst, A. Orfanidi, P.J. Rheinländer, et al., ECS Trans. 69(2015) 67-76.
S.A. Jin, C. Pak, D. J. Yoo, K. H. Lee, Patent, US 2013/0137009 A1, 2013.
D.J. You, D.H. Kim, J.R. De Lile, et al., Appl. Catal. A:General 562(2018) 250-257.
doi: 10.1016/j.apcata.2018.06.018
Baokang Geng , Xiang Chu , Li Liu , Lingling Zhang , Shuaishuai Zhang , Xiao Wang , Shuyan Song , Hongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
Yanling Yang , Zhenfa Ding , Huimin Wang , Jianhui Li , Yanping Zheng , Hongquan Guo , Li Zhang , Bing Yang , Qingqing Gu , Haifeng Xiong , Yifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585
Mengxiang Zhu , Tao Ding , Yunzhang Li , Yuanjie Peng , Ruiping Liu , Quan Zou , Leilei Yang , Shenglei Sun , Pin Zhou , Guosheng Shi , Dongting Yue . Graphene controlled solid-state growth of oxygen vacancies riched V2O5 catalyst to highly activate Fenton-like reaction. Chinese Chemical Letters, 2024, 35(12): 109833-. doi: 10.1016/j.cclet.2024.109833
Xiaoke Xi , Xinpeng Li , Yang Liu , Yucheng Zhang , Linmei Li , Jianming Li , Xu Jin , Shuhong Jiao , Zhanwu Lei , Ruiguo Cao . Monolithic medium-entropy alloy electrode enables efficient and stable oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(12): 110535-. doi: 10.1016/j.cclet.2024.110535
Jiawei Ge , Xian Wang , Heyuan Tian , Hao Wan , Wei Ma , Jiangying Qu , Junjie Ge . Iridium-based catalysts for oxygen evolution reaction in proton exchange membrane water electrolysis. Chinese Chemical Letters, 2025, 36(5): 109906-. doi: 10.1016/j.cclet.2024.109906
Hong Yin , Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Yizhe Chen , Yuzhou Jiao , Liangyu Sun , Cheng Yuan , Qian Shen , Peng Li , Shiming Zhang , Jiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Fenglin Wang , Chengwei Kuang , Zhicheng Zheng , Dan Wu , Hao Wan , Gen Chen , Ning Zhang , Xiaohe Liu , Renzhi Ma . Noble metal clusters substitution in porous Ni substrate renders high mass-specific activities toward oxygen evolution reaction and methanol oxidation reaction. Chinese Chemical Letters, 2025, 36(6): 109989-. doi: 10.1016/j.cclet.2024.109989
Guo Yang , Kai Li , Hanshi Qu , Jianbing Zhu , Chunyu Ru , Meiling Xiao , Wei Xing , Changpeng Liu . Tailoring OH* adsorption strength on Ni/NbOx for boosting alkaline hydrogen oxidation reaction via oxygen vacancy. Chinese Chemical Letters, 2025, 36(7): 110150-. doi: 10.1016/j.cclet.2024.110150
Gang Hu , Chun Wang , Qinqin Wang , Mingyuan Zhu , Lihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Mengzhao Liu , Jie Yin , Chengjian Wang , Weiji Wang , Yuan Gao , Mengxia Yan , Ping Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Kexin Yin , Jingren Yang , Yanwei Li , Qian Li , Xing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847
Meng Wang , Yan Zhang , Yunbo Yu , Wenpo Shan , Hong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928
Xiaoqiang Wang , Fangyuan Zhou , Yue Liu , Zhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345