Citation: Qi Chubo, Ding Jianghui, Yuan Bifeng, Feng Yuqi. Analytical methods for locating modifications in nucleic acids[J]. Chinese Chemical Letters, ;2019, 30(9): 1618-1626. doi: 10.1016/j.cclet.2019.02.005 shu

Analytical methods for locating modifications in nucleic acids

    * Corresponding author.
    E-mail address: bfyuan@whu.edu.cn (B. Yuan)
    1 These authors contributed equally to this work
  • Received Date: 19 January 2019
    Revised Date: 15 February 2019
    Accepted Date: 16 February 2019
    Available Online: 18 September 2019

Figures(10)

  • In addition to the canonical nucleobases, a variety of chemical modifications have been identified presence in nucleic acids. These modifications have been demonstrated to involve in regulating the spatiotemporal expression of genes. Up to date, over 150 types of chemical modifications have been found existence in nucleic acids. Understanding the functional roles of modifications relies on deciphering the location information of modifications in nucleic acids. Analytical methods for studying nucleic acid modifications have greatly advanced in the last decade. To locate the modifications in nucleic acids, various mass spectrometry (MS)-based analytical strategies have been established. Recent progress in next-generation sequencing (NGS) in conjugation with immunoprecipitation, chemical reaction, enzyme-mediated mutation, or nanomaterials offer genome-wide or transcriptome-wide mapping of modifications, which greatly revolutionize the field of epigenetic modifications. Herein, we reviewed and summarized the established methods and the breakthrough of the techniques for locating modifications in nucleic acids. In addition, we discussed the principles, applications, advantages and drawbacks of these methods. We believe that with the rapid advancement of techniques and methods, the functions of nucleic acid modifications will be fully understood in the future.

    1. [1]

      T. Carell, M.Q. Kurz, M. Muller, M. Rossa, F. Spada, Angew. Chem. Int. Ed. Engl. 57(2018) 4296-4312.  doi: 10.1002/anie.201708228

    2. [2]

      P. Boccaletto, M.A. Machnicka, E. Purta, et al., Nucleic Acids Res. 46 (2018) D303-D307.

    3. [3]

      K. Chen, B.S. Zhao, C. He, Cell Chem. Biol. 23(2016) 74-85.  doi: 10.1016/j.chembiol.2015.11.007

    4. [4]

      B. Chen, B.F. Yuan, Y.Q. Feng, Anal. Chem. 91(2019) 743-756.  doi: 10.1021/acs.analchem.8b04078

    5. [5]

      T. Liu, C.J. Ma, B.F. Yuan, Y.Q. Feng, Sci. China Chem. 61(2018) 381-392.  doi: 10.1007/s11426-017-9186-y

    6. [6]

      J. Song, C. Yi, ACS Chem. Biol. 12(2017) 316-325.  doi: 10.1021/acschembio.6b00960

    7. [7]

      X. Wu, Y. Zhang, Nat. Rev. Genet. 18(2017) 517-534.

    8. [8]

      G.Z. Luo, C. He, Nat. Struct. Mol. Biol. 24(2017) 503-506.  doi: 10.1038/nsmb.3412

    9. [9]

      J. Xiong, T.T. Ye, C.J. Ma, et al., Nucleic Acids Res. 47(2019) 1268-1277.  doi: 10.1093/nar/gky1218

    10. [10]

      X. Lu, B.S. Zhao, C. He, Chem. Rev. 115(2015) 2225-2239.  doi: 10.1021/cr500470n

    11. [11]

      S. Kriaucionis, N. Heintz, Science 324(2009) 929-930.  doi: 10.1126/science.1169786

    12. [12]

      M. Tahiliani, K.P. Koh, Y. Shen, et al., Science 324(2009) 930-935.  doi: 10.1126/science.1170116

    13. [13]

      S. Ito, L. Shen, Q. Dai, et al., Science 333(2011) 1300-1303.  doi: 10.1126/science.1210597

    14. [14]

      Y.F. He, B.Z. Li, Z. Li, et al., Science 333(2011) 1303-1307.  doi: 10.1126/science.1210944

    15. [15]

      E.L. Greer, M.A. Blanco, L. Gu, et al., Cell 161(2015) 868-878.  doi: 10.1016/j.cell.2015.04.005

    16. [16]

      Q. Xie, T.P. Wu, R.C. Gimple, et al., Cell 175(2018) 1228-1243.  doi: 10.1016/j.cell.2018.10.006

    17. [17]

      G. Zhang, H. Huang, D. Liu, et al., Cell 161(2015) 893-906.  doi: 10.1016/j.cell.2015.04.018

    18. [18]

      T.P. Wu, T. Wang, M.G. Seetin, et al., Nature 532(2016) 329-333.  doi: 10.1038/nature17640

    19. [19]

      I.A. Roundtree, M.E. Evans, T. Pan, C. He, Cell 169(2017) 1187-1200.  doi: 10.1016/j.cell.2017.05.045

    20. [20]

      S. Li, C.E. Mason, Annu. Rev. Genomics Hum. Genet. 15(2014) 127-150.  doi: 10.1146/annurev-genom-090413-025405

    21. [21]

      M. Helm, Y. Motorin, Nat. Rev. Genet. 18(2017) 275-291.

    22. [22]

      M.D. Lan, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 1-6.  doi: 10.1016/j.cclet.2018.04.021

    23. [23]

      B.F. Yuan, Y.Q. Feng, TrAC-Trend. Anal. Chem. 54(2014) 24-35.  doi: 10.1016/j.trac.2013.11.002

    24. [24]

      Y. Tang, J.M. Chu, W. Huang, et al., Anal. Chem. 85(2013) 6129-6135.  doi: 10.1021/ac4010869

    25. [25]

      Y. Tang, J. Xiong, H.P. Jiang, et al., Anal. Chem. 86(2014) 7764-7772.  doi: 10.1021/ac5016886

    26. [26]

      Y. Tang, S.J. Zheng, C.B. Qi, Y.Q. Feng, B.F. Yuan, Anal. Chem. 87(2015) 3445-3452.  doi: 10.1021/ac504786r

    27. [27]

      Q.Y. Li, B.F. Yuan, Y.Q. Feng, Chem. Lett. 47(2018) 1453-1459.

    28. [28]

      W. Huang, M.D. Lan, C.B. Qi, et al., Chem. Sci. 7(2016) 5495-5502.  doi: 10.1039/C6SC01589A

    29. [29]

      H. Zeng, C.B. Qi, T. Liu, et al., Anal. Chem. 89(2017) 4153-4160.  doi: 10.1021/acs.analchem.7b00052

    30. [30]

      M. Buck, M. Connick, B.N. Ames, Anal. Biochem. 129(1983) 1-13.  doi: 10.1016/0003-2697(83)90044-1

    31. [31]

      H. Grosjean, G. Keith, L. Droogmans, Methods Mol. Biol. 265(2004) 357-391.
       

    32. [32]

      M.G. Cornelius, H.H. Schmeiser, Electrophoresis 28(2007) 3901-3907.  doi: 10.1002/elps.200700127

    33. [33]

      C. Wetzel, P.A. Limbach, Analyst 141(2016) 16-23.  doi: 10.1039/C5AN01797A

    34. [34]

      P.A. Limbach, M.J. Paulines, Wiley Interdiscip. Rev. RNA 8 (2017) e1367.

    35. [35]

      T. Huang, M.R. Armbruster, J.B. Coulton, J.L. Edwards, Anal. Chem. 91(2018) 109-125.  doi: 10.1021/acs.analchem.7b04669

    36. [36]

      N. Hamada, Y. Hashi, S. Yamaki, et al., Chin. Chem. Lett. 30(2019) 99-102.  doi: 10.1016/j.cclet.2018.10.029

    37. [37]

      Z. Wang, L. Chi, Chin. Chem. Lett. 29(2018) 11-18.  doi: 10.1016/j.cclet.2017.08.050

    38. [38]

      W. Huang, C.B. Qi, S.W. Lv, et al., Anal. Chem. 88(2016) 1378-1384.  doi: 10.1021/acs.analchem.5b03962

    39. [39]

      W. Huang, J. Xiong, Y. Yang, et al., RSC Adv. 5(2015) 64046-64054.  doi: 10.1039/C5RA05307B

    40. [40]

      S. Liu, Y. Wang, Chem. Soc. Rev. 44(2015) 7829-7854.  doi: 10.1039/C5CS00316D

    41. [41]

      J.M. Chu, T.T. Ye, C.J. Ma, et al., ACS Chem. Biol. 13(2018) 3243-3250.  doi: 10.1021/acschembio.7b00906

    42. [42]

      J. Xiong, X. Liu, Q.Y. Cheng, et al., ACS Chem. Biol. 12(2017) 1636-1643.  doi: 10.1021/acschembio.7b00170

    43. [43]

      J.M. Chu, C.B. Qi, Y.Q. Huang, et al., Anal. Chem. 87(2015) 7364-7372.  doi: 10.1021/acs.analchem.5b01614

    44. [44]

      H.P. Jiang, T. Liu, N. Guo, et al., Anal. Chim. Acta 981(2017) 1-10.  doi: 10.1016/j.aca.2017.06.009

    45. [45]

      H.Y. Zhang, J. Xiong, B.L. Qi, Y.Q. Feng, B.F. Yuan, Chem. Commun. (Camb.) 52(2016) 737-740.  doi: 10.1039/C5CC07354E

    46. [46]

      H.P. Jiang, J. Xiong, F.L. Liu, et al., Chem. Sci. 9(2018) 4160-4167.  doi: 10.1039/C7SC05472F

    47. [47]

      A. Nyakas, S.R. Stucki, S. Schurch, J. Am. Soc. Mass. Spectrom. 22(2011) 875-887.  doi: 10.1007/s13361-011-0106-z

    48. [48]

      J.A. Kowalak, S.C. Pomerantz, P.F. Crain, J.A. McCloskey, Nucleic Acids Res. 21(1993) 4577-4585.  doi: 10.1093/nar/21.19.4577

    49. [49]

      C.B. Qi, H.P. Jiang, J. Xiong, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 553-557.  doi: 10.1016/j.cclet.2018.11.029

    50. [50]

      M.D. Lan, J. Xiong, X.J. You, et al., Chem.-Eur. J. 24(2018) 9949-9956.  doi: 10.1002/chem.201801640

    51. [51]

      M.L. Chen, F. Shen, W. Huang, et al., Clin. Chem. 59(2013) 824-832.  doi: 10.1373/clinchem.2012.193938

    52. [52]

      J. Xiong, H.P. Jiang, C.Y. Peng, et al., Clin. Epigenet. 7 (2015) 72. 

    53. [53]

      B.F. Yuan, Methods Mol. Biol. 1562(2017) 33-42.

    54. [54]

      Q.Y. Cheng, J. Xiong, F. Wang, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 29(2018) 115-118.  doi: 10.1016/j.cclet.2017.06.009

    55. [55]

      T. Suzuki, T. Suzuki, Nucleic Acids Res. 42(2014) 7346-7357.  doi: 10.1093/nar/gku390

    56. [56]

      M. Taoka, Y. Nobe, Y. Yamaki, et al., Nucleic Acids Res. 46(2018) 9289-9298.  doi: 10.1093/nar/gky811

    57. [57]

      X. Cao, P.A. Limbach, Anal. Chem. 87(2015) 8433-8440.  doi: 10.1021/acs.analchem.5b01826

    58. [58]

      M. Taoka, Y. Nobe, M. Hori, et al., Nucleic Acids Res. 43 (2015) e115. 

    59. [59]

      J.A. Kowalak, E. Bruenger, T. Hashizume, et al., Nucleic Acids Res. 24(1996) 688-693.  doi: 10.1093/nar/24.4.688

    60. [60]

      B. Felden, K. Hanawa, J.F. Atkins, et al., EMBO J. 17(1998) 3188-3196.  doi: 10.1093/emboj/17.11.3188

    61. [61]

      P.F. Crain, J.D. Alfonzo, J. Rozenski, et al., RNA 8(2002) 752-761.  doi: 10.1017/S1355838202022045

    62. [62]

      B.I. Kang, K. Miyauchi, M. Matuszewski, et al., Nucleic Acids Res. 45(2017) 2124-2136.  doi: 10.1093/nar/gkw1120

    63. [63]

      S. Douthwaite, F. Kirpekar, Methods Enzymol. 425(2007) 1-20.  doi: 10.1016/S0076-6879(07)25001-3

    64. [64]

      A.M. Giessing, F. Kirpekar, J. Proteomics 75(2012) 3434-3449.  doi: 10.1016/j.jprot.2012.01.032

    65. [65]

      K.G. Patteson, L.P. Rodicio, P.A. Limbach, Nucleic Acids Res. 29 (2001) E49. 

    66. [66]

      J. Mengel-Jorgensen, F. Kirpekar, Nucleic Acids Res. 30 (2002) e135. 

    67. [67]

      B. Yu, Z. Yang, J. Li, et al., Science 307(2005) 932-935.  doi: 10.1126/science.1107130

    68. [68]

      M. Taucher, K. Breuker, Angew. Chem. Int. Ed. Engl. 51(2012) 11289-11292.  doi: 10.1002/anie.201206232

    69. [69]

      H. Glasner, C. Riml, R. Micura, K. Breuker, Nucleic Acids Res. 45(2017) 8014-8025.  doi: 10.1093/nar/gkx470

    70. [70]

      Y. Ruike, Y. Imanaka, F. Sato, K. Shimizu, G. Tsujimoto, BMC Genomics 11 (2010) 137. 

    71. [71]

      D. Serre, B.H. Lee, A.H. Ting, Nucleic Acids Res. 38(2010) 391-399.  doi: 10.1093/nar/gkp992

    72. [72]

      T.A. Down, V.K. Rakyan, D.J. Turner, et al., Nat. Biotechnol. 26(2008) 779-785.  doi: 10.1038/nbt1414

    73. [73]

      J.H. Park, J. Park, J.K. Choi, et al., BMC Med. Genomics 4 (2011) 82.

    74. [74]

      A.B. Brinkman, F. Simmer, K. Ma, et al., Methods 52(2010) 232-236.  doi: 10.1016/j.ymeth.2010.06.012

    75. [75]

      B. Yao, Y. Li, Z. Wang, et al., Mol. Cell 71(2018) 848-857.  doi: 10.1016/j.molcel.2018.07.005

    76. [76]

      C.L. Xiao, S. Zhu, M. He, et al., Mol. Cell 71(2018) 306-318.  doi: 10.1016/j.molcel.2018.06.015

    77. [77]

      G. Ficz, M.R. Branco, S. Seisenberger, et al., Nature 473(2011) 398-402.  doi: 10.1038/nature10008

    78. [78]

      K. Williams, J. Christensen, M.T. Pedersen, et al., Nature 473(2011) 343-348.  doi: 10.1038/nature10066

    79. [79]

      M. Ko, Y. Huang, A.M. Jankowska, et al., Nature 468(2010) 839-843.  doi: 10.1038/nature09586

    80. [80]

      E.A. Raiber, D. Beraldi, G. Ficz, et al., Genome Biol. 13 (2012) R69. 

    81. [81]

      K.D. Meyer, Y. Saletore, P. Zumbo, et al., Cell 149(2012) 1635-1646.  doi: 10.1016/j.cell.2012.05.003

    82. [82]

      D. Dominissini, S. Moshitch-Moshkovitz, S. Schwartz, et al., Nature 485(2012) 201-206.  doi: 10.1038/nature11112

    83. [83]

      S. Schwartz, S.D. Agarwala, M.R. Mumbach, et al., Cell 155(2013) 1409-1421.  doi: 10.1016/j.cell.2013.10.047

    84. [84]

      B. Linder, A.V. Grozhik, A.O. Olarerin-George, et al., Nat. Methods 12(2015) 767-772.  doi: 10.1038/nmeth.3453

    85. [85]

      X. Li, X. Xiong, K. Wang, et al., Nat. Chem. Biol. 12(2016) 311-316.  doi: 10.1038/nchembio.2040

    86. [86]

      D. Dominissini, S. Nachtergaele, S. Moshitch-Moshkovitz, et al., Nature 530(2016) 441-446.  doi: 10.1038/nature16998

    87. [87]

      D. Arango, D. Sturgill, N. Alhusaini, et al., Cell 175(2018) 1872-1886.  doi: 10.1016/j.cell.2018.10.030

    88. [88]

      K.D. Hansen, W. Timp, H.C. Bravo, et al., Nat. Genet. 43(2011) 768-775.  doi: 10.1038/ng.865

    89. [89]

      M.J. Booth, M.R. Branco, G. Ficz, et al., Science 336(2012) 934-937.  doi: 10.1126/science.1220671

    90. [90]

      H. Zeng, B. He, B. Xia, et al., J. Am. Chem. Soc. 140(2018) 13190-13194.  doi: 10.1021/jacs.8b08297

    91. [91]

      G. Hayashi, K. Koyama, H. Shiota, et al., J. Am. Chem. Soc. 138(2016) 14178-14181.  doi: 10.1021/jacs.6b06428

    92. [92]

      M. Yu, G.C. Hon, K.E. Szulwach, et al., Cell 149(2012) 1368-1380.  doi: 10.1016/j.cell.2012.04.027

    93. [93]

      M.J. Booth, G. Marsico, M. Bachman, D. Beraldi, S. Balasubramanian, Nat. Chem. 6(2014) 435-440.  doi: 10.1038/nchem.1893

    94. [94]

      B. Xia, D. Han, X. Lu, et al., Nat. Methods 12(2015) 1047-1050.  doi: 10.1038/nmeth.3569

    95. [95]

      X. Lu, C.X. Song, K. Szulwach, et al., J. Am. Chem. Soc. 135(2013) 9315-9317.  doi: 10.1021/ja4044856

    96. [96]

      M. Schaefer, T. Pollex, K. Hanna, F. Lyko, Nucleic Acids Res. 37 (2009) e12. 

    97. [97]

      J.E. Squires, H.R. Patel, M. Nousch, et al., Nucleic Acids Res. 40(2012) 5023-5033.  doi: 10.1093/nar/gks144

    98. [98]

      S. Edelheit, S. Schwartz, M.R. Mumbach, O. Wurtzel, R. Sorek, PLoS Genet. 9 (2013) e1003602. 

    99. [99]

      U. Birkedal, M. Christensen-Dalsgaard, N. Krogh, et al., Angew. Chem. Int. Ed. Engl. 54(2015) 451-455.

    100. [100]

      N. Krogh, M.D. Jansson, S.J. Hafner, et al., Nucleic Acids Res. 44(2016) 7884-7895.  doi: 10.1093/nar/gkw482

    101. [101]

      Q. Dai, S. Moshitch-Moshkovitz, D. Han, et al., Nat. Methods 14(2017) 695-698.  doi: 10.1038/nmeth.4294

    102. [102]

      C. Riml, T. Amort, D. Rieder, et al., Angew. Chem. Int. Ed. Engl. 56(2017) 13479-13483.  doi: 10.1002/anie.201707465

    103. [103]

      A.L. Yablonovitch, P. Deng, D. Jacobson, J.B. Li, PLoS Genet.13 (2017) e1007064. 

    104. [104]

      M. Sakurai, T. Yano, H. Kawabata, H. Ueda, T. Suzuki, Nat. Chem. Biol. 6(2010) 733-740.  doi: 10.1038/nchembio.434

    105. [105]

      J.M. Thomas, C.A. Briney, K.D. Nance, et al., J. Am. Chem. Soc. 140(2018) 12667-12670.  doi: 10.1021/jacs.8b06636

    106. [106]

      X. Li, P. Zhu, S. Ma, et al., Nat. Chem. Biol. 11(2015) 592-597.  doi: 10.1038/nchembio.1836

    107. [107]

      V.A.Herzog, B.Reichholf, T.Neumann, etal., Nat.Methods14(2017)1198-1204.  doi: 10.1038/nmeth.4435

    108. [108]

      Q.Y. Li, N.B. Xie, J. Xiong, B.F. Yuan, Y.Q. Feng, Anal. Chem. 90(2018) 14622-14628.  doi: 10.1021/acs.analchem.8b04833

    109. [109]

      E.K. Schutsky, J.E. DeNizio, P. Hu, et al., Nat. Biotechnol. 36(2018) 1083-1090.  doi: 10.1038/nbt.4204

    110. [110]

      S.U. Siriwardena, K. Chen, A.S. Bhagwat, Chem. Rev.116(2016) 12688-12710.  doi: 10.1021/acs.chemrev.6b00296

    111. [111]

      A.E. Cozen, E. Quartley, A.D. Holmes, et al., Nat. Methods 12(2015) 879-884.  doi: 10.1038/nmeth.3508

    112. [112]

      T. Hong, Y. Yuan, Z. Chen, et al., J. Am. Chem. Soc. 140(2018) 5886-5889.  doi: 10.1021/jacs.7b13633

    113. [113]

      J. Aschenbrenner, S. Werner, V. Marchand, et al., Angew. Chem. Int. Ed. Engl. 57(2018) 417-421.  doi: 10.1002/anie.201710209

    114. [114]

      D.P. Morse, B.L. Bass, Biochemistry 36(1997) 8429-8434.  doi: 10.1021/bi9709607

    115. [115]

      X. Zhao, Y.T. Yu, RNA 10(2004) 996-1002.  doi: 10.1261/rna.7110804

    116. [116]

      Y.T. Yu, M.D. Shu, J.A. Steitz, RNA 3(1997) 324-331.
       

    117. [117]

      N. Liu, M. Parisien, Q. Dai, et al., RNA 19(2013) 1848-1856.  doi: 10.1261/rna.041178.113

    118. [118]

      P. Ryvkin, Y.Y. Leung, I.M. Silverman, et al., RNA 19(2013) 1684-1692.  doi: 10.1261/rna.036806.112

    119. [119]

      C. Gustafsson, B.C. Persson, J. Bacteriol. 180(1998) 359-365.
       

    120. [120]

      D. Lafontaine, J. Vandenhaute, D. Tollervey, Gene Dev. 9(1995) 2470-2481.  doi: 10.1101/gad.9.20.2470

    121. [121]

      Z.W. Dong, P. Shao, L.T. Diao, et al., Nucleic Acids Res. 40 (2012) e157.

    122. [122]

      A. Bakin, J. Ofengand, Biochemistry 32(1993) 9754-9762.  doi: 10.1021/bi00088a030

    123. [123]

      B.A. Flusberg, D.R. Webster, J.H. Lee, et al., Nat. Methods 7(2010) 461-465.  doi: 10.1038/nmeth.1459

    124. [124]

      C. Zhou, C. Wang, H. Liu, et al., Nat. Plants 4(2018) 554-563.  doi: 10.1038/s41477-018-0214-x

    125. [125]

      Z. Liang, L. Shen, X. Cui, et al., Dev. Cell 45(2018) 406-416.  doi: 10.1016/j.devcel.2018.03.012

    126. [126]

      C.X. Song, T.A. Clark, X.Y. Lu, et al., Nat. Methods 9(2012) 75-77.  doi: 10.1038/nmeth.1779

    127. [127]

      I.D. Vilfan, Y.C. Tsai, T.A. Clark, et al., J. Nanobiotechnol. 11 (2013) 8.

    128. [128]

      B.M. Venkatesan, R. Bashir, Nat. Nanotechnol. 6(2011) 615-624.  doi: 10.1038/nnano.2011.129

    129. [129]

      J. Clarke, H.C. Wu, L. Jayasinghe, et al., Nat. Nanotechnol. 4(2009) 265-270.  doi: 10.1038/nnano.2009.12

    130. [130]

      U. Mirsaidov, W. Timp, X. Zou, et al., Biophys. J. 96 (2009) L32-L34. 

    131. [131]

      M. Wanunu, D. Cohen-Karni, R.R. Johnson, et al., J. Am. Chem. Soc.133(2011) 486-492.  doi: 10.1021/ja107836t

    132. [132]

      X. Lu, C. He, ChemBioChem 14(2013) 1289-1290.  doi: 10.1002/cbic.201300342

    133. [133]

      W.W. Li, L. Gong, H. Bayley, Angew. Chem. Int. Ed. Engl. 52(2013) 4350-4355.  doi: 10.1002/anie.201300413

    134. [134]

      M. Ayub, H. Bayley, Nano Lett. 12(2012) 5637-5643.  doi: 10.1021/nl3027873

    135. [135]

      D. Elmlund, H. Elmlund, Annu. Rev. Biochem. 84(2015) 499-517.  doi: 10.1146/annurev-biochem-060614-034226

    136. [136]

      S.K. Natchiar, A.G. Myasnikov, H. Kratzat, I. Hazemann, B.P. Klaholz, Nature 551(2017) 472-477.  doi: 10.1038/nature24482

    137. [137]

      F. Su, L. Wang, Y. Sun, et al., Chem. Commun. (Camb.) 51(2015) 3371-3374.  doi: 10.1039/C4CC07688E

    138. [138]

      Z.Y. Wang, L.J. Wang, Q. Zhang, B. Tang, C.Y. Zhang, Chem. Sci. 9(2018) 1330-1338.  doi: 10.1039/C7SC04813K

    1. [1]

      T. Carell, M.Q. Kurz, M. Muller, M. Rossa, F. Spada, Angew. Chem. Int. Ed. Engl. 57(2018) 4296-4312.  doi: 10.1002/anie.201708228

    2. [2]

      P. Boccaletto, M.A. Machnicka, E. Purta, et al., Nucleic Acids Res. 46 (2018) D303-D307.

    3. [3]

      K. Chen, B.S. Zhao, C. He, Cell Chem. Biol. 23(2016) 74-85.  doi: 10.1016/j.chembiol.2015.11.007

    4. [4]

      B. Chen, B.F. Yuan, Y.Q. Feng, Anal. Chem. 91(2019) 743-756.  doi: 10.1021/acs.analchem.8b04078

    5. [5]

      T. Liu, C.J. Ma, B.F. Yuan, Y.Q. Feng, Sci. China Chem. 61(2018) 381-392.  doi: 10.1007/s11426-017-9186-y

    6. [6]

      J. Song, C. Yi, ACS Chem. Biol. 12(2017) 316-325.  doi: 10.1021/acschembio.6b00960

    7. [7]

      X. Wu, Y. Zhang, Nat. Rev. Genet. 18(2017) 517-534.

    8. [8]

      G.Z. Luo, C. He, Nat. Struct. Mol. Biol. 24(2017) 503-506.  doi: 10.1038/nsmb.3412

    9. [9]

      J. Xiong, T.T. Ye, C.J. Ma, et al., Nucleic Acids Res. 47(2019) 1268-1277.  doi: 10.1093/nar/gky1218

    10. [10]

      X. Lu, B.S. Zhao, C. He, Chem. Rev. 115(2015) 2225-2239.  doi: 10.1021/cr500470n

    11. [11]

      S. Kriaucionis, N. Heintz, Science 324(2009) 929-930.  doi: 10.1126/science.1169786

    12. [12]

      M. Tahiliani, K.P. Koh, Y. Shen, et al., Science 324(2009) 930-935.  doi: 10.1126/science.1170116

    13. [13]

      S. Ito, L. Shen, Q. Dai, et al., Science 333(2011) 1300-1303.  doi: 10.1126/science.1210597

    14. [14]

      Y.F. He, B.Z. Li, Z. Li, et al., Science 333(2011) 1303-1307.  doi: 10.1126/science.1210944

    15. [15]

      E.L. Greer, M.A. Blanco, L. Gu, et al., Cell 161(2015) 868-878.  doi: 10.1016/j.cell.2015.04.005

    16. [16]

      Q. Xie, T.P. Wu, R.C. Gimple, et al., Cell 175(2018) 1228-1243.  doi: 10.1016/j.cell.2018.10.006

    17. [17]

      G. Zhang, H. Huang, D. Liu, et al., Cell 161(2015) 893-906.  doi: 10.1016/j.cell.2015.04.018

    18. [18]

      T.P. Wu, T. Wang, M.G. Seetin, et al., Nature 532(2016) 329-333.  doi: 10.1038/nature17640

    19. [19]

      I.A. Roundtree, M.E. Evans, T. Pan, C. He, Cell 169(2017) 1187-1200.  doi: 10.1016/j.cell.2017.05.045

    20. [20]

      S. Li, C.E. Mason, Annu. Rev. Genomics Hum. Genet. 15(2014) 127-150.  doi: 10.1146/annurev-genom-090413-025405

    21. [21]

      M. Helm, Y. Motorin, Nat. Rev. Genet. 18(2017) 275-291.

    22. [22]

      M.D. Lan, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 1-6.  doi: 10.1016/j.cclet.2018.04.021

    23. [23]

      B.F. Yuan, Y.Q. Feng, TrAC-Trend. Anal. Chem. 54(2014) 24-35.  doi: 10.1016/j.trac.2013.11.002

    24. [24]

      Y. Tang, J.M. Chu, W. Huang, et al., Anal. Chem. 85(2013) 6129-6135.  doi: 10.1021/ac4010869

    25. [25]

      Y. Tang, J. Xiong, H.P. Jiang, et al., Anal. Chem. 86(2014) 7764-7772.  doi: 10.1021/ac5016886

    26. [26]

      Y. Tang, S.J. Zheng, C.B. Qi, Y.Q. Feng, B.F. Yuan, Anal. Chem. 87(2015) 3445-3452.  doi: 10.1021/ac504786r

    27. [27]

      Q.Y. Li, B.F. Yuan, Y.Q. Feng, Chem. Lett. 47(2018) 1453-1459.

    28. [28]

      W. Huang, M.D. Lan, C.B. Qi, et al., Chem. Sci. 7(2016) 5495-5502.  doi: 10.1039/C6SC01589A

    29. [29]

      H. Zeng, C.B. Qi, T. Liu, et al., Anal. Chem. 89(2017) 4153-4160.  doi: 10.1021/acs.analchem.7b00052

    30. [30]

      M. Buck, M. Connick, B.N. Ames, Anal. Biochem. 129(1983) 1-13.  doi: 10.1016/0003-2697(83)90044-1

    31. [31]

      H. Grosjean, G. Keith, L. Droogmans, Methods Mol. Biol. 265(2004) 357-391.
       

    32. [32]

      M.G. Cornelius, H.H. Schmeiser, Electrophoresis 28(2007) 3901-3907.  doi: 10.1002/elps.200700127

    33. [33]

      C. Wetzel, P.A. Limbach, Analyst 141(2016) 16-23.  doi: 10.1039/C5AN01797A

    34. [34]

      P.A. Limbach, M.J. Paulines, Wiley Interdiscip. Rev. RNA 8 (2017) e1367.

    35. [35]

      T. Huang, M.R. Armbruster, J.B. Coulton, J.L. Edwards, Anal. Chem. 91(2018) 109-125.  doi: 10.1021/acs.analchem.7b04669

    36. [36]

      N. Hamada, Y. Hashi, S. Yamaki, et al., Chin. Chem. Lett. 30(2019) 99-102.  doi: 10.1016/j.cclet.2018.10.029

    37. [37]

      Z. Wang, L. Chi, Chin. Chem. Lett. 29(2018) 11-18.  doi: 10.1016/j.cclet.2017.08.050

    38. [38]

      W. Huang, C.B. Qi, S.W. Lv, et al., Anal. Chem. 88(2016) 1378-1384.  doi: 10.1021/acs.analchem.5b03962

    39. [39]

      W. Huang, J. Xiong, Y. Yang, et al., RSC Adv. 5(2015) 64046-64054.  doi: 10.1039/C5RA05307B

    40. [40]

      S. Liu, Y. Wang, Chem. Soc. Rev. 44(2015) 7829-7854.  doi: 10.1039/C5CS00316D

    41. [41]

      J.M. Chu, T.T. Ye, C.J. Ma, et al., ACS Chem. Biol. 13(2018) 3243-3250.  doi: 10.1021/acschembio.7b00906

    42. [42]

      J. Xiong, X. Liu, Q.Y. Cheng, et al., ACS Chem. Biol. 12(2017) 1636-1643.  doi: 10.1021/acschembio.7b00170

    43. [43]

      J.M. Chu, C.B. Qi, Y.Q. Huang, et al., Anal. Chem. 87(2015) 7364-7372.  doi: 10.1021/acs.analchem.5b01614

    44. [44]

      H.P. Jiang, T. Liu, N. Guo, et al., Anal. Chim. Acta 981(2017) 1-10.  doi: 10.1016/j.aca.2017.06.009

    45. [45]

      H.Y. Zhang, J. Xiong, B.L. Qi, Y.Q. Feng, B.F. Yuan, Chem. Commun. (Camb.) 52(2016) 737-740.  doi: 10.1039/C5CC07354E

    46. [46]

      H.P. Jiang, J. Xiong, F.L. Liu, et al., Chem. Sci. 9(2018) 4160-4167.  doi: 10.1039/C7SC05472F

    47. [47]

      A. Nyakas, S.R. Stucki, S. Schurch, J. Am. Soc. Mass. Spectrom. 22(2011) 875-887.  doi: 10.1007/s13361-011-0106-z

    48. [48]

      J.A. Kowalak, S.C. Pomerantz, P.F. Crain, J.A. McCloskey, Nucleic Acids Res. 21(1993) 4577-4585.  doi: 10.1093/nar/21.19.4577

    49. [49]

      C.B. Qi, H.P. Jiang, J. Xiong, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 30(2019) 553-557.  doi: 10.1016/j.cclet.2018.11.029

    50. [50]

      M.D. Lan, J. Xiong, X.J. You, et al., Chem.-Eur. J. 24(2018) 9949-9956.  doi: 10.1002/chem.201801640

    51. [51]

      M.L. Chen, F. Shen, W. Huang, et al., Clin. Chem. 59(2013) 824-832.  doi: 10.1373/clinchem.2012.193938

    52. [52]

      J. Xiong, H.P. Jiang, C.Y. Peng, et al., Clin. Epigenet. 7 (2015) 72. 

    53. [53]

      B.F. Yuan, Methods Mol. Biol. 1562(2017) 33-42.

    54. [54]

      Q.Y. Cheng, J. Xiong, F. Wang, B.F. Yuan, Y.Q. Feng, Chin. Chem. Lett. 29(2018) 115-118.  doi: 10.1016/j.cclet.2017.06.009

    55. [55]

      T. Suzuki, T. Suzuki, Nucleic Acids Res. 42(2014) 7346-7357.  doi: 10.1093/nar/gku390

    56. [56]

      M. Taoka, Y. Nobe, Y. Yamaki, et al., Nucleic Acids Res. 46(2018) 9289-9298.  doi: 10.1093/nar/gky811

    57. [57]

      X. Cao, P.A. Limbach, Anal. Chem. 87(2015) 8433-8440.  doi: 10.1021/acs.analchem.5b01826

    58. [58]

      M. Taoka, Y. Nobe, M. Hori, et al., Nucleic Acids Res. 43 (2015) e115. 

    59. [59]

      J.A. Kowalak, E. Bruenger, T. Hashizume, et al., Nucleic Acids Res. 24(1996) 688-693.  doi: 10.1093/nar/24.4.688

    60. [60]

      B. Felden, K. Hanawa, J.F. Atkins, et al., EMBO J. 17(1998) 3188-3196.  doi: 10.1093/emboj/17.11.3188

    61. [61]

      P.F. Crain, J.D. Alfonzo, J. Rozenski, et al., RNA 8(2002) 752-761.  doi: 10.1017/S1355838202022045

    62. [62]

      B.I. Kang, K. Miyauchi, M. Matuszewski, et al., Nucleic Acids Res. 45(2017) 2124-2136.  doi: 10.1093/nar/gkw1120

    63. [63]

      S. Douthwaite, F. Kirpekar, Methods Enzymol. 425(2007) 1-20.  doi: 10.1016/S0076-6879(07)25001-3

    64. [64]

      A.M. Giessing, F. Kirpekar, J. Proteomics 75(2012) 3434-3449.  doi: 10.1016/j.jprot.2012.01.032

    65. [65]

      K.G. Patteson, L.P. Rodicio, P.A. Limbach, Nucleic Acids Res. 29 (2001) E49. 

    66. [66]

      J. Mengel-Jorgensen, F. Kirpekar, Nucleic Acids Res. 30 (2002) e135. 

    67. [67]

      B. Yu, Z. Yang, J. Li, et al., Science 307(2005) 932-935.  doi: 10.1126/science.1107130

    68. [68]

      M. Taucher, K. Breuker, Angew. Chem. Int. Ed. Engl. 51(2012) 11289-11292.  doi: 10.1002/anie.201206232

    69. [69]

      H. Glasner, C. Riml, R. Micura, K. Breuker, Nucleic Acids Res. 45(2017) 8014-8025.  doi: 10.1093/nar/gkx470

    70. [70]

      Y. Ruike, Y. Imanaka, F. Sato, K. Shimizu, G. Tsujimoto, BMC Genomics 11 (2010) 137. 

    71. [71]

      D. Serre, B.H. Lee, A.H. Ting, Nucleic Acids Res. 38(2010) 391-399.  doi: 10.1093/nar/gkp992

    72. [72]

      T.A. Down, V.K. Rakyan, D.J. Turner, et al., Nat. Biotechnol. 26(2008) 779-785.  doi: 10.1038/nbt1414

    73. [73]

      J.H. Park, J. Park, J.K. Choi, et al., BMC Med. Genomics 4 (2011) 82.

    74. [74]

      A.B. Brinkman, F. Simmer, K. Ma, et al., Methods 52(2010) 232-236.  doi: 10.1016/j.ymeth.2010.06.012

    75. [75]

      B. Yao, Y. Li, Z. Wang, et al., Mol. Cell 71(2018) 848-857.  doi: 10.1016/j.molcel.2018.07.005

    76. [76]

      C.L. Xiao, S. Zhu, M. He, et al., Mol. Cell 71(2018) 306-318.  doi: 10.1016/j.molcel.2018.06.015

    77. [77]

      G. Ficz, M.R. Branco, S. Seisenberger, et al., Nature 473(2011) 398-402.  doi: 10.1038/nature10008

    78. [78]

      K. Williams, J. Christensen, M.T. Pedersen, et al., Nature 473(2011) 343-348.  doi: 10.1038/nature10066

    79. [79]

      M. Ko, Y. Huang, A.M. Jankowska, et al., Nature 468(2010) 839-843.  doi: 10.1038/nature09586

    80. [80]

      E.A. Raiber, D. Beraldi, G. Ficz, et al., Genome Biol. 13 (2012) R69. 

    81. [81]

      K.D. Meyer, Y. Saletore, P. Zumbo, et al., Cell 149(2012) 1635-1646.  doi: 10.1016/j.cell.2012.05.003

    82. [82]

      D. Dominissini, S. Moshitch-Moshkovitz, S. Schwartz, et al., Nature 485(2012) 201-206.  doi: 10.1038/nature11112

    83. [83]

      S. Schwartz, S.D. Agarwala, M.R. Mumbach, et al., Cell 155(2013) 1409-1421.  doi: 10.1016/j.cell.2013.10.047

    84. [84]

      B. Linder, A.V. Grozhik, A.O. Olarerin-George, et al., Nat. Methods 12(2015) 767-772.  doi: 10.1038/nmeth.3453

    85. [85]

      X. Li, X. Xiong, K. Wang, et al., Nat. Chem. Biol. 12(2016) 311-316.  doi: 10.1038/nchembio.2040

    86. [86]

      D. Dominissini, S. Nachtergaele, S. Moshitch-Moshkovitz, et al., Nature 530(2016) 441-446.  doi: 10.1038/nature16998

    87. [87]

      D. Arango, D. Sturgill, N. Alhusaini, et al., Cell 175(2018) 1872-1886.  doi: 10.1016/j.cell.2018.10.030

    88. [88]

      K.D. Hansen, W. Timp, H.C. Bravo, et al., Nat. Genet. 43(2011) 768-775.  doi: 10.1038/ng.865

    89. [89]

      M.J. Booth, M.R. Branco, G. Ficz, et al., Science 336(2012) 934-937.  doi: 10.1126/science.1220671

    90. [90]

      H. Zeng, B. He, B. Xia, et al., J. Am. Chem. Soc. 140(2018) 13190-13194.  doi: 10.1021/jacs.8b08297

    91. [91]

      G. Hayashi, K. Koyama, H. Shiota, et al., J. Am. Chem. Soc. 138(2016) 14178-14181.  doi: 10.1021/jacs.6b06428

    92. [92]

      M. Yu, G.C. Hon, K.E. Szulwach, et al., Cell 149(2012) 1368-1380.  doi: 10.1016/j.cell.2012.04.027

    93. [93]

      M.J. Booth, G. Marsico, M. Bachman, D. Beraldi, S. Balasubramanian, Nat. Chem. 6(2014) 435-440.  doi: 10.1038/nchem.1893

    94. [94]

      B. Xia, D. Han, X. Lu, et al., Nat. Methods 12(2015) 1047-1050.  doi: 10.1038/nmeth.3569

    95. [95]

      X. Lu, C.X. Song, K. Szulwach, et al., J. Am. Chem. Soc. 135(2013) 9315-9317.  doi: 10.1021/ja4044856

    96. [96]

      M. Schaefer, T. Pollex, K. Hanna, F. Lyko, Nucleic Acids Res. 37 (2009) e12. 

    97. [97]

      J.E. Squires, H.R. Patel, M. Nousch, et al., Nucleic Acids Res. 40(2012) 5023-5033.  doi: 10.1093/nar/gks144

    98. [98]

      S. Edelheit, S. Schwartz, M.R. Mumbach, O. Wurtzel, R. Sorek, PLoS Genet. 9 (2013) e1003602. 

    99. [99]

      U. Birkedal, M. Christensen-Dalsgaard, N. Krogh, et al., Angew. Chem. Int. Ed. Engl. 54(2015) 451-455.

    100. [100]

      N. Krogh, M.D. Jansson, S.J. Hafner, et al., Nucleic Acids Res. 44(2016) 7884-7895.  doi: 10.1093/nar/gkw482

    101. [101]

      Q. Dai, S. Moshitch-Moshkovitz, D. Han, et al., Nat. Methods 14(2017) 695-698.  doi: 10.1038/nmeth.4294

    102. [102]

      C. Riml, T. Amort, D. Rieder, et al., Angew. Chem. Int. Ed. Engl. 56(2017) 13479-13483.  doi: 10.1002/anie.201707465

    103. [103]

      A.L. Yablonovitch, P. Deng, D. Jacobson, J.B. Li, PLoS Genet.13 (2017) e1007064. 

    104. [104]

      M. Sakurai, T. Yano, H. Kawabata, H. Ueda, T. Suzuki, Nat. Chem. Biol. 6(2010) 733-740.  doi: 10.1038/nchembio.434

    105. [105]

      J.M. Thomas, C.A. Briney, K.D. Nance, et al., J. Am. Chem. Soc. 140(2018) 12667-12670.  doi: 10.1021/jacs.8b06636

    106. [106]

      X. Li, P. Zhu, S. Ma, et al., Nat. Chem. Biol. 11(2015) 592-597.  doi: 10.1038/nchembio.1836

    107. [107]

      V.A.Herzog, B.Reichholf, T.Neumann, etal., Nat.Methods14(2017)1198-1204.  doi: 10.1038/nmeth.4435

    108. [108]

      Q.Y. Li, N.B. Xie, J. Xiong, B.F. Yuan, Y.Q. Feng, Anal. Chem. 90(2018) 14622-14628.  doi: 10.1021/acs.analchem.8b04833

    109. [109]

      E.K. Schutsky, J.E. DeNizio, P. Hu, et al., Nat. Biotechnol. 36(2018) 1083-1090.  doi: 10.1038/nbt.4204

    110. [110]

      S.U. Siriwardena, K. Chen, A.S. Bhagwat, Chem. Rev.116(2016) 12688-12710.  doi: 10.1021/acs.chemrev.6b00296

    111. [111]

      A.E. Cozen, E. Quartley, A.D. Holmes, et al., Nat. Methods 12(2015) 879-884.  doi: 10.1038/nmeth.3508

    112. [112]

      T. Hong, Y. Yuan, Z. Chen, et al., J. Am. Chem. Soc. 140(2018) 5886-5889.  doi: 10.1021/jacs.7b13633

    113. [113]

      J. Aschenbrenner, S. Werner, V. Marchand, et al., Angew. Chem. Int. Ed. Engl. 57(2018) 417-421.  doi: 10.1002/anie.201710209

    114. [114]

      D.P. Morse, B.L. Bass, Biochemistry 36(1997) 8429-8434.  doi: 10.1021/bi9709607

    115. [115]

      X. Zhao, Y.T. Yu, RNA 10(2004) 996-1002.  doi: 10.1261/rna.7110804

    116. [116]

      Y.T. Yu, M.D. Shu, J.A. Steitz, RNA 3(1997) 324-331.
       

    117. [117]

      N. Liu, M. Parisien, Q. Dai, et al., RNA 19(2013) 1848-1856.  doi: 10.1261/rna.041178.113

    118. [118]

      P. Ryvkin, Y.Y. Leung, I.M. Silverman, et al., RNA 19(2013) 1684-1692.  doi: 10.1261/rna.036806.112

    119. [119]

      C. Gustafsson, B.C. Persson, J. Bacteriol. 180(1998) 359-365.
       

    120. [120]

      D. Lafontaine, J. Vandenhaute, D. Tollervey, Gene Dev. 9(1995) 2470-2481.  doi: 10.1101/gad.9.20.2470

    121. [121]

      Z.W. Dong, P. Shao, L.T. Diao, et al., Nucleic Acids Res. 40 (2012) e157.

    122. [122]

      A. Bakin, J. Ofengand, Biochemistry 32(1993) 9754-9762.  doi: 10.1021/bi00088a030

    123. [123]

      B.A. Flusberg, D.R. Webster, J.H. Lee, et al., Nat. Methods 7(2010) 461-465.  doi: 10.1038/nmeth.1459

    124. [124]

      C. Zhou, C. Wang, H. Liu, et al., Nat. Plants 4(2018) 554-563.  doi: 10.1038/s41477-018-0214-x

    125. [125]

      Z. Liang, L. Shen, X. Cui, et al., Dev. Cell 45(2018) 406-416.  doi: 10.1016/j.devcel.2018.03.012

    126. [126]

      C.X. Song, T.A. Clark, X.Y. Lu, et al., Nat. Methods 9(2012) 75-77.  doi: 10.1038/nmeth.1779

    127. [127]

      I.D. Vilfan, Y.C. Tsai, T.A. Clark, et al., J. Nanobiotechnol. 11 (2013) 8.

    128. [128]

      B.M. Venkatesan, R. Bashir, Nat. Nanotechnol. 6(2011) 615-624.  doi: 10.1038/nnano.2011.129

    129. [129]

      J. Clarke, H.C. Wu, L. Jayasinghe, et al., Nat. Nanotechnol. 4(2009) 265-270.  doi: 10.1038/nnano.2009.12

    130. [130]

      U. Mirsaidov, W. Timp, X. Zou, et al., Biophys. J. 96 (2009) L32-L34. 

    131. [131]

      M. Wanunu, D. Cohen-Karni, R.R. Johnson, et al., J. Am. Chem. Soc.133(2011) 486-492.  doi: 10.1021/ja107836t

    132. [132]

      X. Lu, C. He, ChemBioChem 14(2013) 1289-1290.  doi: 10.1002/cbic.201300342

    133. [133]

      W.W. Li, L. Gong, H. Bayley, Angew. Chem. Int. Ed. Engl. 52(2013) 4350-4355.  doi: 10.1002/anie.201300413

    134. [134]

      M. Ayub, H. Bayley, Nano Lett. 12(2012) 5637-5643.  doi: 10.1021/nl3027873

    135. [135]

      D. Elmlund, H. Elmlund, Annu. Rev. Biochem. 84(2015) 499-517.  doi: 10.1146/annurev-biochem-060614-034226

    136. [136]

      S.K. Natchiar, A.G. Myasnikov, H. Kratzat, I. Hazemann, B.P. Klaholz, Nature 551(2017) 472-477.  doi: 10.1038/nature24482

    137. [137]

      F. Su, L. Wang, Y. Sun, et al., Chem. Commun. (Camb.) 51(2015) 3371-3374.  doi: 10.1039/C4CC07688E

    138. [138]

      Z.Y. Wang, L.J. Wang, Q. Zhang, B. Tang, C.Y. Zhang, Chem. Sci. 9(2018) 1330-1338.  doi: 10.1039/C7SC04813K

  • 加载中
    1. [1]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    2. [2]

      Qiongqiong WanYanan XiaoGuifang FengXin DongWenjing NieMing GaoQingtao MengSuming Chen . Visible-light-activated aziridination reaction enables simultaneous resolving of C=C bond location and the sn-position isomers in lipids. Chinese Chemical Letters, 2024, 35(4): 108775-. doi: 10.1016/j.cclet.2023.108775

    3. [3]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    4. [4]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    5. [5]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    6. [6]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    7. [7]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    8. [8]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    9. [9]

      Yao-Hua GuYu ChenQing LiNeng-Bin XieXue XingJun XiongMin HuTian-Zhou LiKe-Yu YuanYu LiuTang TangFan HeBi-Feng Yuan . Metabolome profiling by widely-targeted metabolomics and biomarker panel selection using machine-learning for patients in different stages of chronic kidney disease. Chinese Chemical Letters, 2024, 35(11): 109627-. doi: 10.1016/j.cclet.2024.109627

    10. [10]

      Yimin GuoYiting LuoShuwen HuaChuan-Fan DingYinghua Yan . Application of magnetic nanomaterials in peptidomics: A review in the past decade. Chinese Chemical Letters, 2025, 36(6): 110070-. doi: 10.1016/j.cclet.2024.110070

    11. [11]

      Wei Shao Wanqun Zhang Pingping Zhu Wanqun Hu Qiang Zhou Weiwei Li Kaiping Yang Xisheng Wang . Design and Practice of Ideological and Political Cases in the Course of Instrument Analysis Experiment: Taking the GC-MS Experiment as an Example. University Chemistry, 2024, 39(2): 147-154. doi: 10.3866/PKU.DXHX202309048

    12. [12]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    13. [13]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    14. [14]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    15. [15]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    16. [16]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    17. [17]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    18. [18]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    19. [19]

      Jing GuoZhi-Guo LuRui-Chen ZhaoBao-Ku LiXin Zhang . Nucleic acid therapy for metabolic-related diseases. Chinese Chemical Letters, 2025, 36(3): 109875-. doi: 10.1016/j.cclet.2024.109875

    20. [20]

      Hao GuRui LiQiuying LiSheng LuYahui ChenXiaoning YangHuili MaZhijun XuXiaoqiang Chen . Multi-dimensional hydrogen bonds regulated emissions of single-molecule system enabling surficial hydrophobicity/hydrophilicity mapping. Chinese Chemical Letters, 2025, 36(5): 110116-. doi: 10.1016/j.cclet.2024.110116

Metrics
  • PDF Downloads(6)
  • Abstract views(1063)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return