Citation: Liu Hao, Cheng Xiao, Bian Zhengyi, Ye Kaiqi, Zhang Hongyu. Four organic crystals displaying distinctively different emission colors based on an ESIPT-active organic molecule[J]. Chinese Chemical Letters, ;2018, 29(10): 1537-1540. doi: 10.1016/j.cclet.2018.08.003 shu

Four organic crystals displaying distinctively different emission colors based on an ESIPT-active organic molecule

  • Corresponding author: Ye Kaiqi, yekq@jlu.edu.cn Zhang Hongyu, hongyuzhang@jlu.edu.cn
  • Received Date: 11 July 2018
    Revised Date: 2 August 2018
    Accepted Date: 6 August 2018
    Available Online: 8 October 2018

Figures(5)

  • Four crystals A-D based on a structurally simple ESIPT-active molecule 4MPP were obtained by subtly controlling the crystallization conditions. Notably, crystals A and C display single emission bands, which correspond to the keto* (K*) and enol* (E*) emission, respectively. B and D exhibit dual emission with different proportion of E*/K* emissions while D sucessfully achieves white emssion. The distinctively different emission properties of A-D is mainly because of the change in crystal structures. In addition, A displays amplified spontaneous emission, which indicates its potential as single crystal lasers.

    1. [1]

      (a) D. Li, H. Zhang, Y. Wang, Chem. Soc. Rev. 42(2013) 8416-8433;
      (b)Y. Xua, M. Tian, H. Zhang, et al., Chin. Chem. Lett. 29(2018) 1093-1097;
      (c)Y. Luo, Z. Lu, Y. Huang, Chin. Chem. Lett. 27(2016) 1223-1230;
      (d)M. Bio, P. Rajaputra, G. Nkepang, Y. You, J. Med. Chem. 57(2014) 3401-3409;
      (e)H. Mizuno, I. Ohnishi, H. Yanagi, F. Sasaki, S. Hotta, Adv. Mater. 24(2012) 2404-2408;
      (f)H. Liu, Y. Li, Q. Gao, Z. Liu, H. Fu, Chin. Chem. Lett. 29(2018) 209-212;
      (g)B. Tang, Z. Zhang, H. Liu, H. Zhang, Chin. Chem. Lett. 28(2017) 2129-2132;
      (h)P. Audebert, F. Miomandre, Chem. Sci. 4(2013) 575-584;
      (i)K. Nagura, S. Saito, H. Yusa, et al., J. Am. Chem. Soc. 135(2013) 10322-10325;
      (k)L. Wang, K. Ye, H. Zhang, Chin. Chem. Lett. 27(2016) 1367-1375.

    2. [2]

      (a) B.K. An, S.H. Gihm, J.W. Chung, et al., J. Am. Chem. Soc. 131(2009) 3950-3957;
      (b)P. Biegger, S. Stolz, S.N. Intorp, et al., J. Org. Chem. 80(2015) 582-589.

    3. [3]

      (a) M. Shimizu, R. Kaki, Y. Takeda, et al., Angew. Chem. Int. Ed. 51(2012) 4095-4099;
      (b)S.H. Liao, J.R. Shiu, S.W. Liu, et al., J. Am. Chem. Soc. 131(2009) 763-777.

    4. [4]

      (a) Y. Tao, Q. Wang, C. Yang, et al., Angew. Chem. Int. Ed. 120(2008) 8224-8227;
      (b)D.H. Kim, N.S. Cho, H.Y. Oh, et al., Adv. Mater. 23(2011) 2721-2726;
      (c)H.H. Chou, C.H. Cheng, Adv. Mater. 22(2010) 2468-2471;
      (d)H. Fukagawa, T. Shimizu, H. Hanashima, et al., Adv. Mater. 24(2012) 5099-5103;
      (e)Y. Cho, J. Lee, Adv. Mater. 23(2011) 4568-4572.

    5. [5]

      C. Borek, K. Hanson, P.I. Djurovich, et al., Angew. Chem. 119(2007) 1127-1130.  doi: 10.1002/(ISSN)1521-3757

    6. [6]

      (a) K. Wang, H. Zhang, S. Chen, et al., Adv. Mater. 26(2014) 6168-6173;
      (b)X. Cheng, F. Li, S. Han, et al., Sci. Rep. 5(2015) 9140;
      (c) T. Seki, S. Kurenuma, H. Ito, Chem.-Eur. J. 19(2013) 16214-16220;
      (d)T. Shida, T. Mutai, K. Araki, CrystEngComm 15(2013) 10179-10182;
      (e) E.Q. Procopio, M. Mauro, M. Panigati, et al., J. Am. Chem. Soc. 132(2010) 14397-14399;
      (f)M.A. Malwitz, S.H. Lim, R.L. White-Morris, et al., J. Am. Chem. Soc. 134(2012) 10885-10893.

    7. [7]

      K.C. Tang, M.J. Chang, T.Y. Lin, et al., J. Am. Chem. Soc. 133(2011) 17738-17745.  doi: 10.1021/ja2062693

    8. [8]

      (a) T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe, K. Araki, Angew. Chem. Int. Ed. 47(2008) 9522-9524;
      (b)R. Wei, P. Song, A. Tong, J. Phys. Chem. C 117(2013) 3467-3474.

    9. [9]

      H. Liu, X. Cheng, H. Zhang, Y. Wang, S. Yamaguchi, Chem. Commun. 53(2017) 7832-7835.  doi: 10.1039/C7CC03758A

    1. [1]

      (a) D. Li, H. Zhang, Y. Wang, Chem. Soc. Rev. 42(2013) 8416-8433;
      (b)Y. Xua, M. Tian, H. Zhang, et al., Chin. Chem. Lett. 29(2018) 1093-1097;
      (c)Y. Luo, Z. Lu, Y. Huang, Chin. Chem. Lett. 27(2016) 1223-1230;
      (d)M. Bio, P. Rajaputra, G. Nkepang, Y. You, J. Med. Chem. 57(2014) 3401-3409;
      (e)H. Mizuno, I. Ohnishi, H. Yanagi, F. Sasaki, S. Hotta, Adv. Mater. 24(2012) 2404-2408;
      (f)H. Liu, Y. Li, Q. Gao, Z. Liu, H. Fu, Chin. Chem. Lett. 29(2018) 209-212;
      (g)B. Tang, Z. Zhang, H. Liu, H. Zhang, Chin. Chem. Lett. 28(2017) 2129-2132;
      (h)P. Audebert, F. Miomandre, Chem. Sci. 4(2013) 575-584;
      (i)K. Nagura, S. Saito, H. Yusa, et al., J. Am. Chem. Soc. 135(2013) 10322-10325;
      (k)L. Wang, K. Ye, H. Zhang, Chin. Chem. Lett. 27(2016) 1367-1375.

    2. [2]

      (a) B.K. An, S.H. Gihm, J.W. Chung, et al., J. Am. Chem. Soc. 131(2009) 3950-3957;
      (b)P. Biegger, S. Stolz, S.N. Intorp, et al., J. Org. Chem. 80(2015) 582-589.

    3. [3]

      (a) M. Shimizu, R. Kaki, Y. Takeda, et al., Angew. Chem. Int. Ed. 51(2012) 4095-4099;
      (b)S.H. Liao, J.R. Shiu, S.W. Liu, et al., J. Am. Chem. Soc. 131(2009) 763-777.

    4. [4]

      (a) Y. Tao, Q. Wang, C. Yang, et al., Angew. Chem. Int. Ed. 120(2008) 8224-8227;
      (b)D.H. Kim, N.S. Cho, H.Y. Oh, et al., Adv. Mater. 23(2011) 2721-2726;
      (c)H.H. Chou, C.H. Cheng, Adv. Mater. 22(2010) 2468-2471;
      (d)H. Fukagawa, T. Shimizu, H. Hanashima, et al., Adv. Mater. 24(2012) 5099-5103;
      (e)Y. Cho, J. Lee, Adv. Mater. 23(2011) 4568-4572.

    5. [5]

      C. Borek, K. Hanson, P.I. Djurovich, et al., Angew. Chem. 119(2007) 1127-1130.  doi: 10.1002/(ISSN)1521-3757

    6. [6]

      (a) K. Wang, H. Zhang, S. Chen, et al., Adv. Mater. 26(2014) 6168-6173;
      (b)X. Cheng, F. Li, S. Han, et al., Sci. Rep. 5(2015) 9140;
      (c) T. Seki, S. Kurenuma, H. Ito, Chem.-Eur. J. 19(2013) 16214-16220;
      (d)T. Shida, T. Mutai, K. Araki, CrystEngComm 15(2013) 10179-10182;
      (e) E.Q. Procopio, M. Mauro, M. Panigati, et al., J. Am. Chem. Soc. 132(2010) 14397-14399;
      (f)M.A. Malwitz, S.H. Lim, R.L. White-Morris, et al., J. Am. Chem. Soc. 134(2012) 10885-10893.

    7. [7]

      K.C. Tang, M.J. Chang, T.Y. Lin, et al., J. Am. Chem. Soc. 133(2011) 17738-17745.  doi: 10.1021/ja2062693

    8. [8]

      (a) T. Mutai, H. Tomoda, T. Ohkawa, Y. Yabe, K. Araki, Angew. Chem. Int. Ed. 47(2008) 9522-9524;
      (b)R. Wei, P. Song, A. Tong, J. Phys. Chem. C 117(2013) 3467-3474.

    9. [9]

      H. Liu, X. Cheng, H. Zhang, Y. Wang, S. Yamaguchi, Chem. Commun. 53(2017) 7832-7835.  doi: 10.1039/C7CC03758A

  • 加载中
    1. [1]

      Haixian RenYuting DuXiaojing YangFangjun HuoLe ZhangCaixia Yin . Development of ESIPT-based specific fluorescent probes for bioactive species based on the protection-deprotection of the hydroxyl. Chinese Chemical Letters, 2025, 36(2): 109867-. doi: 10.1016/j.cclet.2024.109867

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    4. [4]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    5. [5]

      Yu-Jie LongXiao-Ni HanYing HanChuan-Feng Chen . Recent advances in supramolecular luminescent materials based on macrocyclic arenes. Chinese Chemical Letters, 2025, 36(6): 110600-. doi: 10.1016/j.cclet.2024.110600

    6. [6]

      Min LiuBin FengFeiyi ChuDuoyang FanFan ZhengFei ChenWenbin Zeng . An ESIPT-boosted NIR nanoprobe for ratiometric sensing of carbon monoxide via activatable aggregation-induced dual-color fluorescence. Chinese Chemical Letters, 2025, 36(5): 110043-. doi: 10.1016/j.cclet.2024.110043

    7. [7]

      Jun-Yi Wang Jue-Yu Bao Zheng-Guang Wu Zheng-Yin Du Xunwen Xiao Xu-Feng Luo . Recent progress in steric modulation of MR-TADF materials and doping concentration independent OLEDs with narrowband emission. Chinese Journal of Structural Chemistry, 2025, 44(1): 100451-100451. doi: 10.1016/j.cjsc.2024.100451

    8. [8]

      Hanghang ZhaoWenbo QiXin TanXing XuFengmin SongXianzhao Shao . Metal single-atom catalysts derived from silicon-based materials for advanced oxidation applications. Chinese Chemical Letters, 2025, 36(6): 110898-. doi: 10.1016/j.cclet.2025.110898

    9. [9]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

    10. [10]

      Guangying WangQinglong QiaoWenhao JiaYiyan RuanKai AnWenchao JiangXuelian ZhouZhaochao Xu . Adaptive emission profile of transformable fluorescent probes as fingerprints: A typical application in distinguishing different surfactants. Chinese Chemical Letters, 2025, 36(5): 110130-. doi: 10.1016/j.cclet.2024.110130

    11. [11]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    12. [12]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    13. [13]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    14. [14]

      Chuanfeng FanJian GaoYingkai GaoXintong YangGaoning LiXiaochun WangFei LiJin ZhouHaifeng YuYi HuangJin ChenYingying ShanLi Chen . A non-peptide-based chymotrypsin-targeted long-wavelength emission fluorescent probe with large Stokes shift and its application in bioimaging. Chinese Chemical Letters, 2024, 35(10): 109838-. doi: 10.1016/j.cclet.2024.109838

    15. [15]

      Wenping DongMo MaJingkang LiLanlan XuDejiang GaoPinyi MaDaqian Song . Near-infrared fluorescent probe with large Stokes shift and long emission wavelength for rapid diagnosis of lung cancer via aerosol inhalation delivery. Chinese Chemical Letters, 2025, 36(5): 110147-. doi: 10.1016/j.cclet.2024.110147

    16. [16]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    17. [17]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    18. [18]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    19. [19]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    20. [20]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

Metrics
  • PDF Downloads(1)
  • Abstract views(926)
  • HTML views(78)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return