Applications of low temperature calorimetry in material research
- Corresponding author: Shi Quan, shiquan@dicp.ac.cn; shiquandicp@gmail.com
Citation:
Liu Xin, Luo Jipeng, Yin Nan, Tan Zhi-Cheng, Shi Quan. Applications of low temperature calorimetry in material research[J]. Chinese Chemical Letters,
;2018, 29(5): 664-670.
doi:
10.1016/j.cclet.2017.10.021
E.S.R. Gopal, Specific, Heats at Low Temperatures, International Cryogenics Monograph Series, Plenum Press, New York, 1966.
A. Tari, The Specific Heat of Matter at Low Temperatures, Imperial College Press, London, 2003.
H. Suga, Thermochim. Acta 355(2000) 69-82.
doi: 10.1016/S0040-6031(00)00438-X
H. Suga, Thermochim. Acta 377(2001) 35-49.
doi: 10.1016/S0040-6031(01)00540-8
M. Sorai, M. Nakano, Y. Miyazaki, Chem. Rev. 106(2006) 976-1031.
doi: 10.1021/cr960049g
H. Suga, Thermochim. Acta 328(1999) 9-17.
doi: 10.1016/S0040-6031(98)00618-2
H. Suga, J. Therm. Anal. Calorim. 80(2005) 49-55.
doi: 10.1007/s10973-005-0612-y
W. Zielenkiewicz, Pure Appl. Chem. 61(1989) 989-991.
doi: 10.1351/pac198961060989
T. Matsuo, O. Yamamuro, Thermochim. Acta 330(1999) 155-165.
doi: 10.1016/S0040-6031(99)00030-1
C. Schick, Eur. Phys. J. Spec. Top. 189(2010) 3-36.
doi: 10.1140/epjst/e2010-01307-y
J. McHugh, P. Fideu, A. Herrmann, W. Stark, Polym. Test. 29(2010) 759-765.
doi: 10.1016/j.polymertesting.2010.04.004
U. Zammit, M. Marinelli, F. Mercuri, S. Paoloni, F. Scudieri, Rev. Sci. Instrum. 82(2011) 121101.
doi: 10.1063/1.3663970
B. Zhao, L. Li, F. Lu, et al., Thermochim. Acta 603(2015) 2-23.
doi: 10.1016/j.tca.2014.09.005
E. Gmelin, J. Therm. Anal. Calorim. 56(1999) 655-671.
doi: 10.1023/A:1010133517896
B. Wunderlich, Thermochim. Acta 300(1997) 43-65.
doi: 10.1016/S0040-6031(96)03126-7
Y. Nakazawa, S. Yamashita, Chem. Lett. 42(2013) 1446-1454.
doi: 10.1246/cl.130656
M. Sorai, Y. Nakazawa, M. Nakano, Y. Miyazaki, Chem. Rev. 113(2013) PR41-PR122.
doi: 10.1021/cr300156s
R.D. Weir, E.F. Westrum Jr., J. Chem. Thermodyn. 73(2014) 31-35.
doi: 10.1016/j.jct.2013.07.006
J.M. Schliesser, B.F. Woodfield, J. Phys.:Condens. Matter. 27(2015) 285402.
doi: 10.1088/0953-8984/27/28/285402
J.M. Schliesser, B.F. Woodfield, Phys. Rev. B 91(2015) 024109.
doi: 10.1103/PhysRevB.91.024109
N.E. Phillips, Crt. Rev Solid State Sci. 2(1971) 467-533.
doi: 10.1080/10408437108243546
B.F. Woodfield, M.L. Wilson, J.M. Byers, Phys. Rev. Lett. 78(1997) 3201-3204.
doi: 10.1103/PhysRevLett.78.3201
B. Mihaila, C.P. Opeil, F.R. Drymiotis, et al., Phys. Rev. Lett. 96(2006) 076401.
doi: 10.1103/PhysRevLett.96.076401
C.L. Snow, Q. Shi, J. Boerio-Goates, B.F. Woodfield, J. Phys. Chem. C 114(2010) 21100-21108.
doi: 10.1021/jp1072704
A.H. Zittlau, Q. Shi, J. Boerio-Goates, B.F. Woodfield, J. Majzlan, Chemie der Erde 73(2013) 39-50.
doi: 10.1016/j.chemer.2012.12.002
Z. Tan, A. Yin, S. Chen, et al., Thermochim. Acta 123(1988) 105-111.
doi: 10.1016/0040-6031(88)80014-5
F. Li, Thermochim. Acta 253(1995) 189-194.
doi: 10.1016/0040-6031(94)02039-Q
Z. Tan, J. Ye, Y. Sun, et al., Thermochim. Acta 183(1991) 29-38.
doi: 10.1016/0040-6031(91)80442-L
Z. Tan, Q. Shi, B. Liu, et al., J. Therm. Anal. Calorim. 92(2008) 367-374.
doi: 10.1007/s10973-007-8954-2
J.C. Lashley, M.F. Hundley, A. Migliori, et al., Cryogenics 43(2003) 369-378.
doi: 10.1016/S0011-2275(03)00092-4
E. Dachs, C. Bertoldi, Eur. J. Miner. 17(2005) 251-261.
doi: 10.1127/0935-1221/2005/0017-0251
C.A. Kennedy, M. Stancescu, R.A. Marriott, et al., Cryogenics 47(2007) 107-112.
doi: 10.1016/j.cryogenics.2006.10.001
Q. Shi, C.L. Snow, J. Boerio-Goates, et al., J. Chem. Thermodyn. 42(2010) 1107-1115.
doi: 10.1016/j.jct.2010.04.008
Q. Shi, C.L. Snow, J. Boerio-Goates, B.F. Woodfield, J. Chem. Thermodyn. 43(2011) 1263-1269.
doi: 10.1016/j.jct.2011.03.018
T.H.K. Barron, G.K. White, Heat Capacity and Thermal Expansion at Low Temperatures, Kluwer Adademic/Plenum Publishers, New York, 1999.
J.B. Ott, J. Boerio-Goates, Chemical Thermodynamics:Principles and Applications, Academic Press, London, 2000.
W. Nernst, Sitzber. Preuss. Akad. Wiss. Berlin 12(1910) 261-292.
H.M. Huffman, Chem. Rev. 40(1) (1947) 1-14.
doi: 10.1021/cr60125a001
E.F. Westrum, J.B. Hatcher, S.W. Osborne, J. Chem. Phys. 21(1953) 419-423.
doi: 10.1063/1.1698923
T. Shinoda, H. Chihara, S. Seki, J. Phys. Soc. Jpn. 19(1964) 1637-1648.
doi: 10.1143/JPSJ.19.1637
G.T. Furukawa, M.L. Reily, J. Res. Natl. Bureau Stand. A Phys. Chem. 74(1970) 617-629.
M. Ueda, T.J. Matsuo, H. Suga, J. Phys. Chem. Solids 43(1982) 1165-1172.
doi: 10.1016/0022-3697(82)90145-7
J. Boerio-Goates, B.F. Woodfield, Can. J. Chem. 66(1988) 645-650.
doi: 10.1139/v88-111
T. Matsuo, Thermochim. Acta 163(1990) 57-70.
doi: 10.1016/0040-6031(90)80379-D
R.M. Varushchenko, A.I. Druzhinina, E.L. Sorkin, J. Chem. Thermodyn. 29(1997) 623-637.
doi: 10.1006/jcht.1996.0173
I.E. Paukov, I.A. Belitsky, Y.A. Kovaevskaya, J. Chem. Thermodyn. 33(2000) 1687-1696.
A.V. Blokhin, Y.U. Paulechka, G.J. Kabo, J. Chem. Eng. Data 51(2006) 1377-1388.
doi: 10.1021/je060094d
B.E. Lang, J. Boerio-Goates, B.F. Woodfield, J. Chem. Thermodyn. 38(2006) 1655-1663.
doi: 10.1016/j.jct.2006.03.016
Z. Tan, L. Wang, Q. Shi, Pure Appl. Chem. 81(2009) 1871-1880.
doi: 10.1351/PAC-CON-08-09-15
J. Boerio-Goates, G. Li, L. Li, et al., Nano Lett. 6(2006) 750-754.
doi: 10.1021/nl0600169
Q. Shi, J. Boerio-Goates, B.F. Woodfield, et al., J. Phys. Chem. C 116(2012) 3910-3917.
doi: 10.1021/jp2088862
J. Boerio-Goates, S.J. Smith, S.F. Liu, et al., J. Phys. Chem. C 117(2013) 4544-4550.
doi: 10.1021/jp310993w
L. Zhang, M.E. Schlesinger, R.K. Brow, J. Am. Ceram. Soc. 94(2011) 1605-1610.
doi: 10.1111/jace.2011.94.issue-5
L. Zhang, R.K. Brow, J. Am. Ceram. Soc. 94(2011) 3123-3130.
doi: 10.1111/jace.2011.94.issue-9
L. Zhang, R.K. Brow, M.E. Schlesinger, L. Ghussn, E.D. Zanotto, J. Non-Cryst. Solids 356(2010) 1252-1257.
doi: 10.1016/j.jnoncrysol.2010.04.019
L. Zhang, L. Ghussn, M.L. Schmitt, et al., J. Non-Cryst. Solids 356(2010) 2965-2968.
doi: 10.1016/j.jnoncrysol.2010.03.044
Q. Shi, L.Y. Zhang, M.E. Schlesinger, et al., J. Chem. Thermodyn. 62(2013) 35-42.
doi: 10.1016/j.jct.2013.02.017
Q. Shi, L.Y. Zhang, M.E. Schlesinger, et al., J. Chem. Thermodyn. 62(2013) 86-91.
doi: 10.1016/j.jct.2013.02.023
Q. Shi, L.Y. Zhang, M.E. Schlesinger, et al., J. Chem. Thermodyn. 61(2013) 53-57.
J. Haetge, C. Suchomski, T. Brezesinski, Inorg. Chem. 49(2010) 11619-11626.
doi: 10.1021/ic102052r
C. Yao, Q. Zeng, G.F. Goya, et al., Phys. Chem. C 111(2007) 12274-12278.
doi: 10.1021/jp0732763
M.R. Anantharaman, S. Jagatheesan, K.A. Malini, et al., J. Magn. Magn. Mater. 189(1998) 83-88.
doi: 10.1016/S0304-8853(98)00171-1
Y.N. Zhang, Q. Shi, J. Schliesser, et al., Inorg. Chem. 53(2014) 10463-10470.
doi: 10.1021/ic501487c
E.F. Westrum, D.M. Grimes, J. Phys. Chem. Solids 3(1957) 44-49.
doi: 10.1016/0022-3697(57)90046-X
X. Liu, J. Liu, S.H. Zhang, et al., J. Phys. Chem. C 120(2016) 1328-1334.
doi: 10.1021/acs.jpcc.5b10618
S. Kang, H. Zheng, T. Liu, et al., Nat. Commun. 6(2015) 5955.
doi: 10.1038/ncomms6955
T. Liu, H. Zheng, S. Kang, et al., Nat. Commun. 4(2013) 2826.
T. Nakamoto, Z.C. Tan, M. Sorai, Inorg. Chem. 40(2001) 3805-3809.
doi: 10.1021/ic010073z
M. Sorai, S. Seki, J. Phys. Chem. Solids 35(1974) 555-570.
doi: 10.1016/S0022-3697(74)80010-7
S.P. Chen, Q. Shi, Z.Q. Xia, et al., J. Chem. Thermodyn. 74(2014) 247-254.
doi: 10.1016/j.jct.2014.02.006
B.F. Woodfield, J.L. Shariro, R. Stevens, Rhys. Rev. B 60(1999) 7335-7340.
doi: 10.1103/PhysRevB.60.7335
Y.Z. Zheng, M. Evangelisti, F. Tuna, et al., J. Am. Chem. Soc. 134(2012) 1057-1065.
doi: 10.1021/ja208367k
P.S. Bechthold, S. Haussühl, E. Michael, et al., Phys. Lett. 65A (1978) 453-454.
A. Halliyal, A.S. Bhalla, S.A. Markgraf, L.E. Cross, R.E. Newnham, Ferroelectrics 62(1985) 27-38.
doi: 10.1080/00150198508017915
Z. Ding, Y. Zhao, W. Wang, Y. Huang, J. Non-Cryst. Solids 112(1989) 258-262.
doi: 10.1016/0022-3093(89)90532-2
Q. Shi, T.J. Park, J. Schliesser, et al., J. Chem. Thermodyn. 72(2014) 77-84.
doi: 10.1016/j.jct.2014.01.021
W.N. Lawless, Phys. Rev. B 25(1982) 1730-1733.
doi: 10.1103/PhysRevB.25.1730
E. Gmelin, G. Burns, Phys. Rev. B 38(1988) 442-444.
doi: 10.1103/PhysRevB.38.442
D. Zhou, C.Y. Zhao, Y. Tian, Appl. Energy 92(2012) 593-605.
doi: 10.1016/j.apenergy.2011.08.025
D.C. Hyun, N.S. Levinson, U. Jeong, Y. Xia, Angew. Chem. Int. Ed. Engl. 53(2014) 3780-3795.
doi: 10.1002/anie.201305201
D.F. Lu, Y.Y. Di, D.H. He, Renew. Energy 50(2013) 498-505.
doi: 10.1016/j.renene.2012.07.016
Z.C. Tan, J.C. Ye, A.X. Yin, et al., Chin. Sci. Bull. 32(1987) 240-246.
Q. Shi, Z.C. Tan, Y.Y. Di, et al., J. Chem. Eng. Data 52(2007) 941-947.
doi: 10.1021/je6005423
T. Park, F. Ronning, H.Q. Yuan, et al., Nature 440(2006) 65-68.
doi: 10.1038/nature04571
J. Kinast, A. Turlapov, J.E. Thomas, et al., Science 307(2005) 1296-1299.
doi: 10.1126/science.1109220
A.W. Rost, R.S. Perry, J.F. Mercure, et al., Science 325(2009) 1360-1363.
doi: 10.1126/science.1176627
Fangzhou Wang , Wentong Gao , Chenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305
Mahmoud Sayed , Han Li , Chuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117
Xiangyue Li , Dexin Zhu , Kunmin Pan , Xiaoye Zhou , Jiaming Zhu , Yingxue Wang , Yongpeng Ren , Hong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870
Bo-Bo Zou , Hong-Jie Peng . Phase diagram as a lens for unveiling thermodynamics trends in lithium–sulfur batteries. Chinese Chemical Letters, 2025, 36(7): 110986-. doi: 10.1016/j.cclet.2025.110986
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Ying-Yu Zhang , Jia-Qi Luo , Yan Han , Wan-Ying Zhang , Yi Zhang , Hai-Feng Lu , Da-Wei Fu . Bistable switch molecule DPACdCl4 showing four physical channels and high phase transition temperature. Chinese Chemical Letters, 2025, 36(1): 109530-. doi: 10.1016/j.cclet.2024.109530
Jiayin Zhou , Depeng Liu , Longqiang Li , Min Qi , Guangqiang Yin , Tao Chen . Responsive organic room-temperature phosphorescence materials for spatial-time-resolved anti-counterfeiting. Chinese Chemical Letters, 2024, 35(11): 109929-. doi: 10.1016/j.cclet.2024.109929
Xinyu Yu , Fei Wu , Xianglang Sun , Linna Zhu , Baoyu Xia , Zhong'an Li . Low-cost dopant-free fluoranthene-based branched hole transporting materials for efficient and stable n-i-p perovskite solar cells. Chinese Chemical Letters, 2024, 35(10): 109821-. doi: 10.1016/j.cclet.2024.109821
Linjing Li , Wenlai Xu , Jianyong Ning , Yaping Zhong , Chuyue Zhang , Jiane Zuo , Zhicheng Pan . Revealing the intrinsic mechanisms for accelerating nitrogen removal efficiency in the Anammox reactor by adding Fe(II) at low temperature. Chinese Chemical Letters, 2024, 35(8): 109243-. doi: 10.1016/j.cclet.2023.109243
Mengxiao Yang , Haicheng Huang , Shiyi Shen , Xinxin Liu , Mengyu Liu , Jiahua Guo , Fenghui Yang , Baoli Zha , Jiansheng Wu , Sheng Li , Fengwei Huo . Flexible aqueous zinc-ion battery with low-temperature resistant leather gel electrolyte. Chinese Chemical Letters, 2025, 36(6): 109988-. doi: 10.1016/j.cclet.2024.109988
Shaohua Zhang , Liyao Liu , Yingqiao Ma , Chong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749
Junjie Wang , Yan Wang , Zhengdong Li , Changqiang Xie , Musammir Khan , Xingzhou Peng , Fabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Chao Ma , Cong Lin , Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209
Yuhan Wu , Qing Zhao , Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Gaojie Zhu , Zhen Yang , Shijun Li , Weihua Zhu , Rui Cao , Junlong Zhang , Jianzhang Zhao , Jonathan L. Sessler , Xunjin Zhu , Jianxin Song , Yongshu Xie , Jianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535