Citation: Xu Jun, Zhang Shujing, Guo Baohua. Insights from polymer crystallization: Chirality, recognition and competition[J]. Chinese Chemical Letters, ;2017, 28(11): 2092-2098. doi: 10.1016/j.cclet.2017.10.012 shu

Insights from polymer crystallization: Chirality, recognition and competition

  • Corresponding author: Xu Jun, jun-xu@mail.tsinghua.edu.cn
  • Received Date: 31 August 2017
    Revised Date: 27 September 2017
    Accepted Date: 12 October 2017
    Available Online: 16 November 2017

Figures(11)

  • Crystallization of flexible polymer chains reveals distinct characters compared to small molecules, which provides a platform to study molecular self-assembly and morphogenesis. In this review, some examples, e.g., twisting chirality of polymer lamellar crystals, recognition of different chain units and competitive nucleation of different polymorphs and different lamellar thicknesses are briefly discussed. It is shown that the polymer crystallization process far from equilibrium is in practically minimization of the system free energy in local space and finite time, leading to formation of twisted crystals, metastable polymorphism and lamellar crystals with finite thickness. Though each molecule is blind to others, the peculiar ordered configurations with stronger long-range interactions are chosen from the enormous random trials. At the end, we list some remaining questions and outlook the perspectives.
  • The intracellular pH, an important metabolic and cellular factor, plays critical roles in chemical reactions and biological processes such as cell proliferation, apoptosis, enzymatic activity and tumor growth [1]. In particular, the abnormal cellular pH values are considered to be closely related to cellular functional changes and some serious diseases such as stroke, Alzheimer disease and cancer [2-4]. Nowadays, cancer is still the leading cause of deaths worldwide. Early diagnosis of cancer which provides efficient remedy is very important for corresponding therapy and recovery. It is worth noting that the pH values of lysosomes in cancer cells is slightly lower than that in normal cells [5, 6]. This difference can be employed to distinguish cancer cells from normal cells, exhibiting great significance for the early diagnosis of cancer.

    In recent years, fluorescent probes have been developed to be an important imaging tool for the measurement of intracellular pH, owing to their excellent selectivity, high sensitivity, operational simplicity, low cost and real time monitoring [7-9]. Among the common fluorophores that can be used to design pH probes, the rhodamine based fluorophore exhibits particular photophysical advantages in biological applications, due to its high fluorescence quantum yield, large molar extinction coefficient and good photostability etc. [10-15]. Based on the structure change between spirocyclic and open-cycle form, rhodamine-based fluorescent probes can distinguish a target from other species efficiently [16-18]. Normally, these spirocyclic compounds are non-fluorescent and colorless under neutral and basic conditions, while, under acid conditions, the spirocyclic form is open to restore the fluorescence intensity upon binding to H+, because the spirocyclic structure is highly sensitive to the environmental pH [19, 20]. Taking these advantages, in 2014, Yu's et al. synthesized two rhodamine-based pH probes via the click reaction [21]; Han's et al. reported N-(rhodamine B)-benzimidazole, featuring an intramolecular spirobenzimidazole, for selective sensing of protons via opening of the spiro-ring to give fluorescent and colored species [22]; Tan's et al. designed a rhodamine-morpholine fluorescent probe to detect lysosomal pH changes [23]; Zhao's et al. constructed a rhodamine– rhodamine-based pH probe [24]; Later in 2015, they further developed a rhodamine B-based fluorescent probe for lysosomal pH through integrating a 4-(2-aminoethyl)morpholine moiety, a lysosome-targetable group, into a rhodamine B fluorophore [25]. Though many rhodamine-based pH probes have been exploited, none of them can distinguish cancer cells from normal cells through a cellular pH aroused different fluorescent response. In 2015, Ge's et al. developed a pyridineium-2-yl Darrow Red analogue with a pKa of 2.4 for the selective detection of cancer cells [6]. Unfortunately, the status of normal cells cannot be visualized due to the absence of emission when the pH exceeds 4.0. A probe which can work well both in cancer and normal cells, and meanwhile can easily distinguish different cells on the basis of a cellular pH aroused different fluorescent response is highly desirable.

    To fulfill this, a rhodamine B-based lysosomal pH probe was synthesized in our previous work [26], which can distinguish cancer cells from normal cells and detect tumors based on different fluorescent response. However, it should be noted that singleemission probe is easily affected by environmental factors such as laser intensity, temperature, viscosity, solvent polarity and concentration of analytes etc. To overcome this obstacle, ratiometric detection, which records the fluorescence output signal at two wavelengths simultaneously is emerging and their ratio is calculated for correlating with the concentration of analytes. Especially, ratiometric measurement can provide better accuracy with the built-in correction of two emission bands in a quantitative manner than that obtained by single-emission measurement, even in complicated biological samples [27-29]. In our previous work, ratiometric fluorescent detection of Pd2+ and cyanide ion have been performed [30, 31]. In recent years, some rhodamine-based ratiometric fluorescent probes have also been developed for pH detection. For instance, Liu et al. reported a rhodamine 6G hydrazide derivative that acted as a colorimetric and fluorescent "off-on" probe for the detection of pH [32]; Zhao's et al. developed a ratiometric lysosomal pH probe based on the coumarin–rhodamine fluorescence resonance energy transfer (FRET) system [33]; Tan et al. constructed an "off–on" colorimetric and fluorescent piperazine-rhodamine based pH chemosensor for extreme acidity [34]. Although most of them work well for lysosome imaging, none of them are able to distinguish normal and cancer cells through a cellular pH induced fluorescent response, because the intracellular pH difference between normal and cancer cells is not pretty much.

    To continue our research, we designed and synthesized a new naphthalimide-rhodamine ratiometric pH probe RBN based on FRET in Scheme 1. The reason why naphthalimide was chosen here is that it has high electron affinity, excellent photostability, high fluorescent quantum yield, large Stoke's shift, and therefore has been widely used in many fields such as bioimaging [35]. Moreover, the emission spectrum of naphthalimide and the excitation spectrum of rhodamine have substantial overlap, which would fulfill a favourable platform for the FRET process [36]. In 2015, Zhao et al. designed a ratiometric lysosomal pH probe based on the naphthalimide-rhodamine system, which could provide ratiometric measurements of pH in the range of 4.50–5.50 [7]. Unfortunately, the pKa of the probe was 4.82 which was not suitable to distinguish the slight difference of lysosome pH between cancer and normal cell. To keep the fine pKa of 4.1 in our previous work [26], naphthalimide was grafted to rhodamine moiety through a simple acylation reaction (Scheme S1 in Supporting information). In this way, RBN was obtained with a pKa of 4.2. The emission intensity ratios of the naphthalimide moiety and the rhodamine moiety of RBN exhibited strong pHdependent performance and responded linearly to minor pH fluctuations within the range of 4.02–4.63, which provides more precise detection of cellular pH in a ratiometric manner. In particular, RBN not only showed excellent water solubility and low cell toxicity, but also displayed strong fluorescence in cancer cells while very weak fluorescence in normal cells, which can be employed to distinguish cancer cells from normal cells, indicating that RBN is indeed a ponderable probe.

    Scheme 1

    图 Scheme 1  The proposed mechanism of RBN for sensing H+.
    Scheme 1.  The proposed mechanism of RBN for sensing H+.

    Probe RBN was readily synthesized via the reaction of compounds 1 and 2 (Scheme S1). The final compound was fully characterized by 1H NMR, 13C NMR and HRMS (Figs. S1–S3 in Supporting information). RBN was designed as a ratiometric pH probe based on the FRET mechanism, comprising of a naphthalimide donor and a rhodamine acceptor. For an efficient FRET system, the spectral overlap between the emission spectrum of a donor and the absorption spectrum of an acceptor was essentially important. The absorption spectra and the emission spectra of RBN (5 μmol/L) at different pH values are shown in Fig. S4 (Supporting information) and Fig. 1a. Notably, the naphthalimide donor in RBN exhibited a broad emission band in the visible region (450– 650 nm) and maximum emission at 540 nm when excited at 480 nm. Moreover, the rhodamine acceptor showed the absorption region (500–650 nm) with the maximum absorption peak at 560 nm, overlapping with the donor emission spectrum significantly. Thus, the substantial spectral overlap would fulfill a favorable condition for the FRET process. Under neutral and basic conditions, the rhodamine moiety existed in the non-fluorescent spirocyclic form, so the fluorescence of RBN was completely attributed to the naphthalimide donor. On the other hand, RBN was ring-opened under acid conditions and the fluorescence of the naphthalimide donor would transfer to the rhodamine acceptor through FRET. As shown in Fig. S5 (Supporting information), RBN shows excellent water solubility, which is quite significant for potential biological applications.

    图 1

    图 1  (a) Fluorescence spectra of RBN (5 μmol/L) in the B-R-E solution (BrittonRobinson buffer, which was mixed by 40 mmol/L acetic acid, boric acid, and phosphoric acid) at different pH values; and (b) the plot of the emission ratios (I577/I540) versus pH values. λex = 480 nm.
    Figure 1.  (a) Fluorescence spectra of RBN (5 μmol/L) in the B-R-E solution (BrittonRobinson buffer, which was mixed by 40 mmol/L acetic acid, boric acid, and phosphoric acid) at different pH values; and (b) the plot of the emission ratios (I577/I540) versus pH values. λex = 480 nm.

    Optical properties of RBN were further studied. As indicated in Fig. S4, no absorption was noticed over 500 nm under neutral and basic conditions. While under acid conditions, obvious absorption peak of the rhodamine moiety at 560 nm can be observed. The results of fluorescence spectra at diverse pH values of RBN were consistent with the results of absorption spectra (Fig. 1a). Under neutral and basic conditions, RBN exhibited the stable fluorescence of naphthalimide at 540 nm (λex = 480 nm), which was not influenced by different pH values. Whereas, as the pH value decreased from 7.39, the emission band of naphthalimide centred at 540 nm decreased gradually. Meanwhile, a strikingly new peak evolved at 577 nm and increased gradually. The observation could be ascribed to the structure change of the rhodamine moiety at different pH values. The rhodamine moiety existed in the non-fluorescent spirocyclic form under neutral and basic conditions. As the pH value decreased, the spirocyclic form is converted to the fluorescent ring-opening form due to the H-bonding interaction [25, 38] between protonated piperazine N, rhodamine lactam O and naphthalimide carbonyl O, which was investigated using 1H NMR spectroscopy (Fig. S6 in Supporting information). The ring-opening form of rhodamine was an effective energy acceptor, and the FRET process from the naphthalimide donor to the rhodamine acceptor occurred accordingly. Thus, the emission peak of rhodamine increased concomitantly (Scheme 1). Ratios of the fluorescence emission intensities (I577/I540) as a function of pH are described in Fig. 1b. The ratio showed a good linear relation from pH 4.63–4.02. The pKa of the probe was calculated to be 4.2 using the HendersonHasselbalch equation [37], indicating its capability of biological application.

    To check the practical application of RBN, the interference experiment was performed to estimate the influence caused by various metal ions (Ag+, Al3+, Ba2+, Ca2+, Cd2+, Ce3+, Co2+, Cr3+, Cu2+, Fe2+, Fe3+, Hg2+, K+, Li+, Mg2+, Mn2+, Na+, Ni2+, Pb2+, Zn2+), which may be present in the systems being analyzed. Moreover, some other anions (Br-, CH3COO-, Cl-, ClO4-, CO32-, F-, HCO3-, I-, NO2-, NO3-, P2O74-, S2-, S2O32-, SCN-, SO42-, SO32-) were also tested. At pH 4.63, the addition of those analytes caused no appreciable spectroscopic changes under the testing conditions (Fig. S7 in Supporting information). Similarly, the probe had no response to the above mentioned co-existing analytes at pH 7.39 (Fig. S8 in Supporting information). Therefore, probe RBN could be used to respond to acidic pH without interference from the complex intracellular environment.

    Then, Fluorescence imaging and distribution of RBN was studied in living cells. Firstly, to evaluate the cell membrane permeability of RBN, imaging was monitored in the red channel with a 559 nm laser irradiation under a confocal laser scanning microscope. As shown in Fig. S9 (Supporting information), the probe can stain the human liver carcinoma cells (HepG-2 cells) in 30 min and focused mainly in the cytoplasm, demonstrating its good membrane permeability.

    To further study the subcellular distribution of RBN, we used commercial Lyso Tracker Green to co-stain with the probe. After incubating with 5 μmol/L RBN for 30 min, HepG-2 cells were further stained with 1 μmol/L Lyso Tracker Green for 10 min. As shown in Fig. 2, the red emission of probe was almost overlapped with the green emission of Lyso Tracker Green. Further, human breast adenocarcinoma cells (MCF-7 cells) were also tested obtaining the consistent results (Fig. S10 in Supporting information).

    图 2

    图 2  Co-localization experiments of HepG-2 cells incubated with RBN for 30 min and then incubated with LysoTracker Green for 10 min. (a) Confocal image from RBN on red channel (λ = 559 nm); (b) Confocal image from LysoTracker Green on green channel (λ = 488 nm); (c) Bright field; (d) Merged image of a–c. Scale bar: 20 μm.
    Figure 2.  Co-localization experiments of HepG-2 cells incubated with RBN for 30 min and then incubated with LysoTracker Green for 10 min. (a) Confocal image from RBN on red channel (λ = 559 nm); (b) Confocal image from LysoTracker Green on green channel (λ = 488 nm); (c) Bright field; (d) Merged image of a–c. Scale bar: 20 μm.

    Furthermore, confocal fluorescent imaging was performed in HepG-2 cells and human normal liver cells (HL-7702 cells) using RBN. As shown in Fig. 3, RBN showed very intense red emission in HepG-2 cells, while only slightly weaker emission was observed in HL-7702 cells. To provide further evidence, cancer cell lines (MCF-7, PC-3) and normal cell lines (HUVEC) were used to repeat imaging (Fig. S11–S13 in Supporting information). The results indicate that for normal cells, such as HUVEC and HL-7702, only weak emission was found after incubation for 30 min, while, strong red emission can be observed for the above mentioned cancer cells in 30 min.

    图 3

    图 3  CLSM images of HepG-2 cells and HL-7702 cells incubated with RBN for 30 min: (a) and (d) fluorescence of probe; (b) and (e) bright field; (c) and (f) merged image. Scale bar: 20 μm.
    Figure 3.  CLSM images of HepG-2 cells and HL-7702 cells incubated with RBN for 30 min: (a) and (d) fluorescence of probe; (b) and (e) bright field; (c) and (f) merged image. Scale bar: 20 μm.

    In addition, to monitor lysosomal pH, RBN was incubated with five different cell lines for cellular imaging, and both green channel (490–550 nm) and red channel (550–610 nm) were recorded (Fig. S14a in Supporting information) respectively. Take HepG-2 cells and HL-7702 cells as examples, to compare the corresponding intensity, six arbitrarily fluorescent areas in every image were chosen to represent the lysosomal regions of the HepG-2 cells and HL-7702 cells, respectively. The values obtained were subsequently averaged for each case (Fig. S14b in Supporting information). And the results indicated that the intensity ratio (Iredchannel/Igreenchannel) of HepG-2 cells was indeed higher than that of HL-7702 cells (Fig. S14c in Supporting information), demonstrating that the acidity of lysosomes in cancer cells is lower than that in normal cells which is consistent with the results reported in previous literature [6]. The different fluorescent responses of RBN can be employed to separate cancer cells from normal cells. Moreover, the relative errors of the intensity ratio (Iredchannel/Igreenchannel) of both HepG2 cells and HL-7702 cells were much lower than that of the corresponding fluorescence intensity obtained from either red channel or green channel alone. The same trend can be observed in the case of the other cell lines (Fig. S14d and e in Supporting information), indicating that ratiometric measurement can provide better accuracy with the built-in correction of two emission bands in a quantitative manner than that obtained by single-emission measurement, even in complicated biological samples.

    Besides, the effect of RBN on the cell viability of HepG-2 cells was investigated (Fig. S15 in Supporting information). After 24 h of cellular internalization of the probe RBN at the concentration of 2.5 μmol/L, 5 μmol/L, 10 μmol/L and 20 μmol/L, the cell viability was measured by MTT assay respectively. It could be concluded that the probe was not toxic to cells under the experimental conditions.

    In summary, a FRET-based ratiometric pH probe RBN was developed. It could provide ratiometric measurements of pH in the range of 4.02–4.63. The probe showed low cytotoxicity and excellent water solubility. Especially, RBN can distinguish cancer cells from normal cell through a cellular pH induced different fluorescent response, which is quite significant for potential caner diagnose and therapy.

    This work was financially supported by the National Natural Science Foundation of China (Nos. 21272030, 21472016, 21306019, 21576042).

    Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.cclet.2017.09.014.

    1. [1]

      W. B. Hu, Principles of Polymer Crystallization (in Chinese), 1st ed., Chemical Industry Press, Beijing, 2013.

    2. [2]

      M.C. Zhang, B.H. Guo, J. Xu, Crystals 7(2017) 4.

    3. [3]

      A. Keller, Rep. Prog. Phys. 31(1968) 623-704.  doi: 10.1088/0034-4885/31/2/304

    4. [4]

      G. Reiter, Chem. Soc. Rev. 43(2014) 2055-2065.  doi: 10.1039/C3CS60306G

    5. [5]

      B. Crist, J.M. Schultz, Prog. Polym. Sci. 56(2016) 1-63.  doi: 10.1016/j.progpolymsci.2015.11.006

    6. [6]

      B. Lotz, A. Gonthier-Vassal, A. Brack, J. Magoshi, J. Mol. Biol. 156(1982) 345-357.  doi: 10.1016/0022-2836(82)90333-3

    7. [7]

      C.Y. Li, S.Z.D. Cheng, J.J. Ge, et al., Phys. Rev. Lett. 83(1999) 4558-4561.  doi: 10.1103/PhysRevLett.83.4558

    8. [8]

      J. Xu, B.H. Guo, Z.M. Zhang, et al., Macromolecules 37(2004) 4118-4123.  doi: 10.1021/ma0499122

    9. [9]

      J. Xu, H. Ye, S. Zhang, B. Guo, Crystals 7(2017) 241.  doi: 10.3390/cryst7080241

    10. [10]

      S.H. Yu, H. Cölfen, K. Tauer, M. Antonietti, Nat. Mater. 4(2005) 51-55.
       

    11. [11]

      J.M. García-Ruiz, E. Melero-García, S.T. Hyde, Science 323(2009) 362-365.  doi: 10.1126/science.1165349

    12. [12]

      A.G. Shtukenberg, Y.O. Punin, A. Gujral, B. Kahr, Angew. Chem. Int. Ed. 53(2014) 672-699.  doi: 10.1002/anie.201301223

    13. [13]

      M.Q. Zhao, Q. Zhang, G.L. Tian, F. Wei, Nanoscale 6(2014) 9339-9354.  doi: 10.1039/C4NR00271G

    14. [14]

      T. Ishida, S. Thitamadee, T. Hashimoto, J. Plant Res. 120(2007) 61-70.  doi: 10.1007/s10265-006-0039-y

    15. [15]

      D.R. Smyth, Development 143(2016) 3272-3282.  doi: 10.1242/dev.134064

    16. [16]

      J. Zhu, H. Peng, A. Marshall, et al., Nat. Nanotechnol. 3(2008) 477-481.  doi: 10.1038/nnano.2008.179

    17. [17]

      J.M. Schultz, D. Kinloch, Polymer 10(1969) 271-278.  doi: 10.1016/0032-3861(69)90039-1

    18. [18]

      D.C. Bassett, A.M. Hodge, Proc. R. Soc. A 377(1981) 61-71.  doi: 10.1098/rspa.1981.0115

    19. [19]

      H.D. Keith, F.J. Padden, Polymer 25(1984) 28-42.  doi: 10.1016/0032-3861(84)90264-7

    20. [20]

      B. Lotz, S.Z.D. Cheng, Polymer 46(2005) 577-610.  doi: 10.1016/j.polymer.2004.07.042

    21. [21]

      Y.O. Punin, J. Struct. Chem. 35(1994) 616-624.  doi: 10.1007/BF02578330

    22. [22]

      A.G. Shtukenberg, J. Freudenthal, B. Kahr, J. Am. Chem. Soc. 132(2010) 9341-9349.  doi: 10.1021/ja101491n

    23. [23]

      A.G. Shtukenberg, Y.O. Punin, E. Gunn, B. Kahr, Chem. Rev. 112(2012) 1805-1838.  doi: 10.1021/cr200297f

    24. [24]

      W. Jiang, M.S. Pacella, D. Athanasiadou, et al., Nat. Commun. 8(2017) 15066.  doi: 10.1038/ncomms15066

    25. [25]

      K.J. Singfield, J.K. Hobbs, A. Keller, J. Cryst. Growth 183(1998) 683-689.  doi: 10.1016/S0022-0248(97)00522-8

    26. [26]

      D. Maillard, R.E. Prud'homme, Macromolecules 41(2008) 1705-1712.  doi: 10.1021/ma071306u

    27. [27]

      K.J. Singfield, J.M. Klass, G.R. Brown, Macromolecules 28(1995) 8006-8015.  doi: 10.1021/ma00128a006

    28. [28]

      I. Saracovan, H.D. Keith, R.St.J. Manley, G.R. Brown, Macromolecules 32(1999) 8918-8922.  doi: 10.1021/ma9911602

    29. [29]

      Y. Wang, J.F. Mano, J. Appl. Polym. Sci. 107(2008) 1621-1627.  doi: 10.1002/(ISSN)1097-4628

    30. [30]

      C.C. Chao, C.K. Chen, Y.W. Chiang, R.M. Ho, Macromolecules 41(2008) 3949-3956.  doi: 10.1021/ma702416n

    31. [31]

      H. Tsuji, K. Tashiro, L. Bouapao, M. Hanesaka, Polymer 53(2012) 747-754.  doi: 10.1016/j.polymer.2011.12.023

    32. [32]

      H.F. Wang, C.H. Chiang, W.C. Hsu, et al., Macromolecules 50(2017) 5466-5475.  doi: 10.1021/acs.macromol.7b00318

    33. [33]

      I. Saracovan, J. Cox, J.F. Revol, R.St.J. Manley, G.R. Brown, Macromolecules 32(1999) 717-725.  doi: 10.1021/ma971874h

    34. [34]

      C.Y. Li, S.Z.D. Cheng, X. Weng, et al., J. Am. Chem. Soc. 123(2001) 2462-2463.  doi: 10.1021/ja005805l

    35. [35]

      H.M. Ye, J. Xu, B.H. Guo, T. Iwata, Macromolecules 42(2009) 694-701.  doi: 10.1021/ma801653p

    36. [36]

      H.M. Ye, J.S. Wang, S. Tang, et al., Macromolecules 43(2010) 5762-5770.  doi: 10.1021/ma100920u

    37. [37]

      D. Maillard, R.E. Prud'homme, Macromolecules 39(2006) 4272-4275.  doi: 10.1021/ma060316c

    38. [38]

      X. Wang, R.E. Prud'homme, Macromolecules 47(2014) 668-676.  doi: 10.1021/ma4012208

    39. [39]

      T. Iwata, Y. Doi, S.I. Nakayama, H. Sasatsuki, S. Teramachi, Int. J. Boil. Macromol. 25(1999) 169-176.  doi: 10.1016/S0141-8130(99)00031-8

    40. [40]

      J.S. Wang, H.M. Ye, Q.H. Qin, J. Xu, X.Q. Feng, Proc. R. Soc. A-Math. Phys. Eng. Sci 468(2012) 609-633.  doi: 10.1098/rspa.2011.0451

    41. [41]

      H.M. Ye, R.D. Wang, J. Liu, J. Xu, B.H. Guo, Macromolecules 45(2012) 5667-5675.  doi: 10.1021/ma300685f

    42. [42]

      G. Nata, Macromol. Chem. Phys. 35(1960) 94-131.
       

    43. [43]

      G. Natta, P. Corradini, D. Sianesi, D. Morero, J. Polym. Sci. 51(1961) 527-539.  doi: 10.1002/pol.1961.1205115610

    44. [44]

      G. Allegra, I. Bassi, Adv. Polym. Sci. 6(1969) 549-574.
       

    45. [45]

      F. Meng, Z. Qiu, RSC Adv. 5(2015) 96290-96296.  doi: 10.1039/C5RA21297A

    46. [46]

      H.M. Ye, Y.R. Tang, J. Xu, B.H. Guo, Ind. Eng. Chem. Res. 52(2013) 10682-10689.  doi: 10.1021/ie4010018

    47. [47]

      Y.R. Tang, Y. Gao, J. Xu, B.H. Guo, CrystEngComm 17(2015) 6467-6470.  doi: 10.1039/C5CE01175B

    48. [48]

      H.M. Ye, Y.R. Tang, Y.Y. Song, et al., Polymer 55(2014) 5811-5820.  doi: 10.1016/j.polymer.2014.09.029

    49. [49]

      W. Hu, D. Frenkel, V.B. Mathot, Macromolecules 36(2003) 8178-8183.  doi: 10.1021/ma0344285

    50. [50]

      Z. Gan, H. Abe, Macromol. Chem. Phys. 203(2002) 2369-2374.  doi: 10.1002/macp.200290007

    51. [51]

      L. Zhao, X. Wang, L. Li, Z. Gan, Polymer 48(2007) 6152-6161.  doi: 10.1016/j.polymer.2007.07.055

    52. [52]

      J. Liu, H.M. Ye, J. Xu, B.H. Guo, Polymer 52(2011) 4619-4630.  doi: 10.1016/j.polymer.2011.08.001

    53. [53]

      M. Wang, S. Vantasin, J. Wang, et al., Macromolecules 50(2017) 3377-3387.  doi: 10.1021/acs.macromol.7b00139

    54. [54]

      L. Yu, J. Am. Chem. Soc. 125(2003) 6380-6381.  doi: 10.1021/ja0351544

    55. [55]

      S. Chen, H. Xi, L. Yu, J. Am. Chem. Soc. 127(2005) 17439-17444.  doi: 10.1021/ja056072d

    56. [56]

      J. Bernstein, R.J. Davey, J.O. Henck, Angew. Chem. Int. Ed. 38(1999) 3440-3461.  doi: 10.1002/(SICI)1521-3773(19991203)38:23<>1.0.CO;2-U

    57. [57]

      R. Minke, J. Blackwell, J. Macromol. Sci. Part B 16(1979) 407-417.  doi: 10.1080/00222347908212305

    58. [58]

      Z. Gan, K. Kuwabara, H. Abe, T. Iwata, Y. Doi, Biomacromolecules 5(2004) 371-378.  doi: 10.1021/bm0343850

    59. [59]

      M. Wang, K. Tashiro, Y. Ozaki, Macromolecules 50(2017) 3883-3889.  doi: 10.1021/acs.macromol.7b00598

    60. [60]

      Y.Y. Song, H.M. Ye, J. Xu, et al., Polymer 55(2014) 3054-3061.  doi: 10.1016/j.polymer.2014.05.011

    61. [61]

      Y.R. Tang, J. Xu, B.H. Guo, Ind. Eng. Chem. Res. 54(2015) 1832-1841.  doi: 10.1021/ie504593z

    62. [62]

      J.I. Lauritzen, J.D. Hoffman, J. Res. Natl. Bur. Stand. A 64(1960) 73-102.
       

    63. [63]

      J. D. Hoffman, G. T. Davis, J. I. Lauritzen Jr., The rate of crystallization of linear polymers with chain folding, in: N. B. Hannay (Eds. ), Treatise on Solid State Chemistry, Plenum Press, New York, 1976, pp. 497-614.

    64. [64]

      F. Frank, M. Tosi, Proc. R. Soc. A-Math. Phys. Eng. Sci 263(1961) 323-339.  doi: 10.1098/rspa.1961.0163

    65. [65]

      J.J. Point, Faraday Discuss. Chem. Soc. 68(1979) 167-176.  doi: 10.1039/dc9796800167

    66. [66]

      D. Sadler, G. Gilmer, Polymer 25(1984) 1446-1452.  doi: 10.1016/0032-3861(84)90108-3

    67. [67]

      G. Strobl, Phys. J. E3(2000) 165-183.
       

    68. [68]

      G. Strobl, Rev. Mod. Phys. 81(2009) 1287-1300.  doi: 10.1103/RevModPhys.81.1287

    69. [69]

      K.L. Xu, B.H. Guo, R. Reiter, G. Reiter, J. Xu, Chin. Chem. Lett. 26(2015) 1105-1108.  doi: 10.1016/j.cclet.2015.06.002

    70. [70]

      J.D. Hoffman, J.J. Weeks, J. Res. Natl. Bur. Stand A 66(1962) 13-28.

    71. [71]

      J. Xu, B. Heck, H.M. Ye, et al., Macromolecules 49(2016) 2206-2215.  doi: 10.1021/acs.macromol.5b02123

    72. [72]

      Z.Y. Lv, M.C. Zhang, Y. Zhang, B.H. Guo, J. Xu, Chin. J. Polym Sci. (2017), doi:http://dx.doi.org/10.1007/s10118-017-1986-6.  doi: 10.1007/s10118-017-1986-6

    73. [73]

      B. Li, C.Y. Li, J. Am. Chem. Soc. 129(2007) 12-13.  doi: 10.1021/ja0668318

    74. [74]

      B. Wang, B. Li, B. Zhao, C.Y. Li, J. Am. Chem. Soc. 130(2008) 11594-11595.  doi: 10.1021/ja804192e

    75. [75]

      J. Xu, Y. Ma, W. Hu, M. Rehahn, G. Reiter, Nat. Mater. 8(2009) 348-353.  doi: 10.1038/nmat2405

    76. [76]

      E. Schrödinger, What Is Life? Cambridge University Press, Cambridge, 2002.

    1. [1]

      W. B. Hu, Principles of Polymer Crystallization (in Chinese), 1st ed., Chemical Industry Press, Beijing, 2013.

    2. [2]

      M.C. Zhang, B.H. Guo, J. Xu, Crystals 7(2017) 4.

    3. [3]

      A. Keller, Rep. Prog. Phys. 31(1968) 623-704.  doi: 10.1088/0034-4885/31/2/304

    4. [4]

      G. Reiter, Chem. Soc. Rev. 43(2014) 2055-2065.  doi: 10.1039/C3CS60306G

    5. [5]

      B. Crist, J.M. Schultz, Prog. Polym. Sci. 56(2016) 1-63.  doi: 10.1016/j.progpolymsci.2015.11.006

    6. [6]

      B. Lotz, A. Gonthier-Vassal, A. Brack, J. Magoshi, J. Mol. Biol. 156(1982) 345-357.  doi: 10.1016/0022-2836(82)90333-3

    7. [7]

      C.Y. Li, S.Z.D. Cheng, J.J. Ge, et al., Phys. Rev. Lett. 83(1999) 4558-4561.  doi: 10.1103/PhysRevLett.83.4558

    8. [8]

      J. Xu, B.H. Guo, Z.M. Zhang, et al., Macromolecules 37(2004) 4118-4123.  doi: 10.1021/ma0499122

    9. [9]

      J. Xu, H. Ye, S. Zhang, B. Guo, Crystals 7(2017) 241.  doi: 10.3390/cryst7080241

    10. [10]

      S.H. Yu, H. Cölfen, K. Tauer, M. Antonietti, Nat. Mater. 4(2005) 51-55.
       

    11. [11]

      J.M. García-Ruiz, E. Melero-García, S.T. Hyde, Science 323(2009) 362-365.  doi: 10.1126/science.1165349

    12. [12]

      A.G. Shtukenberg, Y.O. Punin, A. Gujral, B. Kahr, Angew. Chem. Int. Ed. 53(2014) 672-699.  doi: 10.1002/anie.201301223

    13. [13]

      M.Q. Zhao, Q. Zhang, G.L. Tian, F. Wei, Nanoscale 6(2014) 9339-9354.  doi: 10.1039/C4NR00271G

    14. [14]

      T. Ishida, S. Thitamadee, T. Hashimoto, J. Plant Res. 120(2007) 61-70.  doi: 10.1007/s10265-006-0039-y

    15. [15]

      D.R. Smyth, Development 143(2016) 3272-3282.  doi: 10.1242/dev.134064

    16. [16]

      J. Zhu, H. Peng, A. Marshall, et al., Nat. Nanotechnol. 3(2008) 477-481.  doi: 10.1038/nnano.2008.179

    17. [17]

      J.M. Schultz, D. Kinloch, Polymer 10(1969) 271-278.  doi: 10.1016/0032-3861(69)90039-1

    18. [18]

      D.C. Bassett, A.M. Hodge, Proc. R. Soc. A 377(1981) 61-71.  doi: 10.1098/rspa.1981.0115

    19. [19]

      H.D. Keith, F.J. Padden, Polymer 25(1984) 28-42.  doi: 10.1016/0032-3861(84)90264-7

    20. [20]

      B. Lotz, S.Z.D. Cheng, Polymer 46(2005) 577-610.  doi: 10.1016/j.polymer.2004.07.042

    21. [21]

      Y.O. Punin, J. Struct. Chem. 35(1994) 616-624.  doi: 10.1007/BF02578330

    22. [22]

      A.G. Shtukenberg, J. Freudenthal, B. Kahr, J. Am. Chem. Soc. 132(2010) 9341-9349.  doi: 10.1021/ja101491n

    23. [23]

      A.G. Shtukenberg, Y.O. Punin, E. Gunn, B. Kahr, Chem. Rev. 112(2012) 1805-1838.  doi: 10.1021/cr200297f

    24. [24]

      W. Jiang, M.S. Pacella, D. Athanasiadou, et al., Nat. Commun. 8(2017) 15066.  doi: 10.1038/ncomms15066

    25. [25]

      K.J. Singfield, J.K. Hobbs, A. Keller, J. Cryst. Growth 183(1998) 683-689.  doi: 10.1016/S0022-0248(97)00522-8

    26. [26]

      D. Maillard, R.E. Prud'homme, Macromolecules 41(2008) 1705-1712.  doi: 10.1021/ma071306u

    27. [27]

      K.J. Singfield, J.M. Klass, G.R. Brown, Macromolecules 28(1995) 8006-8015.  doi: 10.1021/ma00128a006

    28. [28]

      I. Saracovan, H.D. Keith, R.St.J. Manley, G.R. Brown, Macromolecules 32(1999) 8918-8922.  doi: 10.1021/ma9911602

    29. [29]

      Y. Wang, J.F. Mano, J. Appl. Polym. Sci. 107(2008) 1621-1627.  doi: 10.1002/(ISSN)1097-4628

    30. [30]

      C.C. Chao, C.K. Chen, Y.W. Chiang, R.M. Ho, Macromolecules 41(2008) 3949-3956.  doi: 10.1021/ma702416n

    31. [31]

      H. Tsuji, K. Tashiro, L. Bouapao, M. Hanesaka, Polymer 53(2012) 747-754.  doi: 10.1016/j.polymer.2011.12.023

    32. [32]

      H.F. Wang, C.H. Chiang, W.C. Hsu, et al., Macromolecules 50(2017) 5466-5475.  doi: 10.1021/acs.macromol.7b00318

    33. [33]

      I. Saracovan, J. Cox, J.F. Revol, R.St.J. Manley, G.R. Brown, Macromolecules 32(1999) 717-725.  doi: 10.1021/ma971874h

    34. [34]

      C.Y. Li, S.Z.D. Cheng, X. Weng, et al., J. Am. Chem. Soc. 123(2001) 2462-2463.  doi: 10.1021/ja005805l

    35. [35]

      H.M. Ye, J. Xu, B.H. Guo, T. Iwata, Macromolecules 42(2009) 694-701.  doi: 10.1021/ma801653p

    36. [36]

      H.M. Ye, J.S. Wang, S. Tang, et al., Macromolecules 43(2010) 5762-5770.  doi: 10.1021/ma100920u

    37. [37]

      D. Maillard, R.E. Prud'homme, Macromolecules 39(2006) 4272-4275.  doi: 10.1021/ma060316c

    38. [38]

      X. Wang, R.E. Prud'homme, Macromolecules 47(2014) 668-676.  doi: 10.1021/ma4012208

    39. [39]

      T. Iwata, Y. Doi, S.I. Nakayama, H. Sasatsuki, S. Teramachi, Int. J. Boil. Macromol. 25(1999) 169-176.  doi: 10.1016/S0141-8130(99)00031-8

    40. [40]

      J.S. Wang, H.M. Ye, Q.H. Qin, J. Xu, X.Q. Feng, Proc. R. Soc. A-Math. Phys. Eng. Sci 468(2012) 609-633.  doi: 10.1098/rspa.2011.0451

    41. [41]

      H.M. Ye, R.D. Wang, J. Liu, J. Xu, B.H. Guo, Macromolecules 45(2012) 5667-5675.  doi: 10.1021/ma300685f

    42. [42]

      G. Nata, Macromol. Chem. Phys. 35(1960) 94-131.
       

    43. [43]

      G. Natta, P. Corradini, D. Sianesi, D. Morero, J. Polym. Sci. 51(1961) 527-539.  doi: 10.1002/pol.1961.1205115610

    44. [44]

      G. Allegra, I. Bassi, Adv. Polym. Sci. 6(1969) 549-574.
       

    45. [45]

      F. Meng, Z. Qiu, RSC Adv. 5(2015) 96290-96296.  doi: 10.1039/C5RA21297A

    46. [46]

      H.M. Ye, Y.R. Tang, J. Xu, B.H. Guo, Ind. Eng. Chem. Res. 52(2013) 10682-10689.  doi: 10.1021/ie4010018

    47. [47]

      Y.R. Tang, Y. Gao, J. Xu, B.H. Guo, CrystEngComm 17(2015) 6467-6470.  doi: 10.1039/C5CE01175B

    48. [48]

      H.M. Ye, Y.R. Tang, Y.Y. Song, et al., Polymer 55(2014) 5811-5820.  doi: 10.1016/j.polymer.2014.09.029

    49. [49]

      W. Hu, D. Frenkel, V.B. Mathot, Macromolecules 36(2003) 8178-8183.  doi: 10.1021/ma0344285

    50. [50]

      Z. Gan, H. Abe, Macromol. Chem. Phys. 203(2002) 2369-2374.  doi: 10.1002/macp.200290007

    51. [51]

      L. Zhao, X. Wang, L. Li, Z. Gan, Polymer 48(2007) 6152-6161.  doi: 10.1016/j.polymer.2007.07.055

    52. [52]

      J. Liu, H.M. Ye, J. Xu, B.H. Guo, Polymer 52(2011) 4619-4630.  doi: 10.1016/j.polymer.2011.08.001

    53. [53]

      M. Wang, S. Vantasin, J. Wang, et al., Macromolecules 50(2017) 3377-3387.  doi: 10.1021/acs.macromol.7b00139

    54. [54]

      L. Yu, J. Am. Chem. Soc. 125(2003) 6380-6381.  doi: 10.1021/ja0351544

    55. [55]

      S. Chen, H. Xi, L. Yu, J. Am. Chem. Soc. 127(2005) 17439-17444.  doi: 10.1021/ja056072d

    56. [56]

      J. Bernstein, R.J. Davey, J.O. Henck, Angew. Chem. Int. Ed. 38(1999) 3440-3461.  doi: 10.1002/(SICI)1521-3773(19991203)38:23<>1.0.CO;2-U

    57. [57]

      R. Minke, J. Blackwell, J. Macromol. Sci. Part B 16(1979) 407-417.  doi: 10.1080/00222347908212305

    58. [58]

      Z. Gan, K. Kuwabara, H. Abe, T. Iwata, Y. Doi, Biomacromolecules 5(2004) 371-378.  doi: 10.1021/bm0343850

    59. [59]

      M. Wang, K. Tashiro, Y. Ozaki, Macromolecules 50(2017) 3883-3889.  doi: 10.1021/acs.macromol.7b00598

    60. [60]

      Y.Y. Song, H.M. Ye, J. Xu, et al., Polymer 55(2014) 3054-3061.  doi: 10.1016/j.polymer.2014.05.011

    61. [61]

      Y.R. Tang, J. Xu, B.H. Guo, Ind. Eng. Chem. Res. 54(2015) 1832-1841.  doi: 10.1021/ie504593z

    62. [62]

      J.I. Lauritzen, J.D. Hoffman, J. Res. Natl. Bur. Stand. A 64(1960) 73-102.
       

    63. [63]

      J. D. Hoffman, G. T. Davis, J. I. Lauritzen Jr., The rate of crystallization of linear polymers with chain folding, in: N. B. Hannay (Eds. ), Treatise on Solid State Chemistry, Plenum Press, New York, 1976, pp. 497-614.

    64. [64]

      F. Frank, M. Tosi, Proc. R. Soc. A-Math. Phys. Eng. Sci 263(1961) 323-339.  doi: 10.1098/rspa.1961.0163

    65. [65]

      J.J. Point, Faraday Discuss. Chem. Soc. 68(1979) 167-176.  doi: 10.1039/dc9796800167

    66. [66]

      D. Sadler, G. Gilmer, Polymer 25(1984) 1446-1452.  doi: 10.1016/0032-3861(84)90108-3

    67. [67]

      G. Strobl, Phys. J. E3(2000) 165-183.
       

    68. [68]

      G. Strobl, Rev. Mod. Phys. 81(2009) 1287-1300.  doi: 10.1103/RevModPhys.81.1287

    69. [69]

      K.L. Xu, B.H. Guo, R. Reiter, G. Reiter, J. Xu, Chin. Chem. Lett. 26(2015) 1105-1108.  doi: 10.1016/j.cclet.2015.06.002

    70. [70]

      J.D. Hoffman, J.J. Weeks, J. Res. Natl. Bur. Stand A 66(1962) 13-28.

    71. [71]

      J. Xu, B. Heck, H.M. Ye, et al., Macromolecules 49(2016) 2206-2215.  doi: 10.1021/acs.macromol.5b02123

    72. [72]

      Z.Y. Lv, M.C. Zhang, Y. Zhang, B.H. Guo, J. Xu, Chin. J. Polym Sci. (2017), doi:http://dx.doi.org/10.1007/s10118-017-1986-6.  doi: 10.1007/s10118-017-1986-6

    73. [73]

      B. Li, C.Y. Li, J. Am. Chem. Soc. 129(2007) 12-13.  doi: 10.1021/ja0668318

    74. [74]

      B. Wang, B. Li, B. Zhao, C.Y. Li, J. Am. Chem. Soc. 130(2008) 11594-11595.  doi: 10.1021/ja804192e

    75. [75]

      J. Xu, Y. Ma, W. Hu, M. Rehahn, G. Reiter, Nat. Mater. 8(2009) 348-353.  doi: 10.1038/nmat2405

    76. [76]

      E. Schrödinger, What Is Life? Cambridge University Press, Cambridge, 2002.

  • 加载中
    1. [1]

      Jianmei Guo Yupeng Zhao Lei Ma Yongtao Wang . Ultra-long room temperature phosphorescence, intrinsic mechanisms and application based on host-guest doping systems. Chinese Journal of Structural Chemistry, 2024, 43(9): 100335-100335. doi: 10.1016/j.cjsc.2024.100335

    2. [2]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    3. [3]

      Yu HongYuqian JiangChenhuan YuanDecai WangYimeng SunJian Jiang . Unraveling temperature-dependent supramolecular polymorphism of naphthalimide-substituted benzene-1,3,5-tricarboxamide derivatives. Chinese Chemical Letters, 2024, 35(12): 109909-. doi: 10.1016/j.cclet.2024.109909

    4. [4]

      Yanting YangGuorong WangKangjing LiWen YangJing ZhangJian ZhangShili LiXianming Zhang . Tuning up of chromism, luminescence in cadmium-viologen complexes through polymorphism strategy: Inkless erasable printing application. Chinese Chemical Letters, 2025, 36(1): 110123-. doi: 10.1016/j.cclet.2024.110123

    5. [5]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    6. [6]

      Yarui Li Huangjie Lu Yingzhe Du Jie Qiu Peng Lin Jian Lin . Highly efficient separation of high-valent actinide ions from lanthanides via fractional crystallization. Chinese Journal of Structural Chemistry, 2025, 44(4): 100562-100562. doi: 10.1016/j.cjsc.2025.100562

    7. [7]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    8. [8]

      Ali DaiZhiguo ZhengLiusheng DuanJian WuWeiming Tan . Small molecule chemical scaffolds in plant growth regulators for the development of agrochemicals. Chinese Chemical Letters, 2025, 36(4): 110462-. doi: 10.1016/j.cclet.2024.110462

    9. [9]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    10. [10]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    11. [11]

      Yang LiuYan LiuKaiyin YangZhiruo ZhangWenbo ZhangBingyou YangHua LiLixia Chen . A selective HK2 degrader suppresses SW480 cancer cell growth by degrading HK2. Chinese Chemical Letters, 2024, 35(8): 109264-. doi: 10.1016/j.cclet.2023.109264

    12. [12]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    13. [13]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    14. [14]

      Chuyu HuangZhishan LiuLinping ZhaoZuxiao ChenRongrong ZhengXiaona RaoYuxuan WeiXin ChenShiying Li . Metal-coordinated oxidative stress amplifier to suppress tumor growth combined with M2 macrophage elimination. Chinese Chemical Letters, 2024, 35(12): 109696-. doi: 10.1016/j.cclet.2024.109696

    15. [15]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    16. [16]

      Jiayi LuYizhang LiHao JiangZhiwen ZhuFengru ZhengQiang Sun . Preparing sub-monolayer metals with continuous coverage spread for high-throughput growth of metal-organic frameworks. Chinese Chemical Letters, 2025, 36(3): 110394-. doi: 10.1016/j.cclet.2024.110394

    17. [17]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    18. [18]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    19. [19]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    20. [20]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

Metrics
  • PDF Downloads(2)
  • Abstract views(1033)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return