Carbonyl polymeric electrode materials for metal-ion batteries
- Corresponding author: Wang Erjing, wangej@hubu.edu.cn Wang Chengliang, angewan@iccas.ac.cn; clwang@hust.edu.cn 1 M.Tang and H.Li contributed equally to this work
Citation:
Tang Mi, Li Hongyang, Wang Erjing, Wang Chengliang. Carbonyl polymeric electrode materials for metal-ion batteries[J]. Chinese Chemical Letters,
;2018, 29(2): 232-244.
doi:
10.1016/j.cclet.2017.09.005
Quinoxalin-2(1H)-one, as a significant heterocyclic unit, has been found important applications in synthetic chemistry, materials, natural products and pharmaceuticals because of their innate outstanding biological activities and excellent chemical characters [1], and their biological activities can be significantly influenced if the substituents is introduced into the N1- and C3-positions of the quinoxalin-2(1H)-one [2]. In particular, 3-substituted quinoxalin-2(1H)-ones have been developed into powerful drugs due to their strong pharmacological effects [3], such as ataquimast, antinicrobial, anticancer, Fxa coagulation inhibitors and glycogen phosphorylase inhibitor (Fig. 1) [4]. Therefore, a number of methods have been developed for their synthesis [5]. Generally, they are synthesized by cyclization of derivatives of aniline or 1, 2-diaminobenzene with suitable partners. However, the disadvantages including pre-functionalization of the partners and multi-step synthesis limit its application [6]. In recent years, direct C-H bond functionalization at the C3-position of quinoxalin-2(1H)-one has become a straightforward access to the 3-substituted quinoxalin-2(1H)-one derivatives, and various remarkable work has been achieved [7-12]. For instances, our group in 2019 reported a first example of oxidative C-H fluoroalkoxylation of quinoxalinones with fluoroalkyl alcohols under transition-metal and solvent-free conditions [8b]. This method can also be extended to the facile and efficient synthesis of histamine-4 receptor. The same year, Sun's group presented an efficient electrochemical approach for the C(sp2)–H phosphonation of quinoxalin-2(1H)-ones and C(sp3)–H phosphonation of xanthenes [9a]. More interestingly, the group of Pan disclosed a photocatalyst-free visible-light-promoted sulfenylation of quinoxalinones with thiols via cross-dehydrogenative coupling [10b]. Shortly after this discovery, He's group demonstrated a visible-light-promoted amidation of quinoxalin-2(1H)-ones [11b]. In a very recent contribution, a mild and eco-friendly visible-light-induced decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo carboxylic acids using ambient air as the sole oxidant at room temperature was also established by the same group [12a]. In sharp contrast, the alkenylation of quinoxalin-2(1H)-ones was rarely reported.
Photocatalysis has become a powerful strategy for organic synthesis due to the advantages of low energy consumption and environmental protection [13]. For example, MacMillan et al. in 2016 reported a photocatalyzed C-H arylation of aliphatic amines with aryl bromides, providing a complement to existing cross-coupling technologies [13a]. In 2021, He' group developed the first example of visible-light induced one-pot tandem reaction of arylacrylamides, CHF2CO2H and PhI(OAc)2, affording an eco-friendly and practical method to access various difluoromethylated oxindoles [13b]. The same year, Jin and coworkers developed photocatalyst-free radical tandem cyclization of quinazolinones containing an unactivated alkene moiety with difluoro bromides under illumination, giving a practical method for the synthesis of fluorine-containing ring-fused quinazolinones [13f]. In recent years, with increasing attention to renewable energy, considerable efforts have been switched to the development of photocatalytic reactions that excited by the sunlight, which is known as a renewable and simple accessible light source [14]. Our research interests focus on the development of novel and effective methodologies for the direct modification ofN-containing heterocycles [15], herein, we demonstrated a direct alkenylation reaction between quinoxalin-2(1H)-ones and methyl ketones. Compared with our previous work [15a], this transformation was achieved through a combination of Mannich-type reaction and solar photocatalysis, which could be completed within 15min, providing a green and efficient solution for the synthesis of potentially bioactive compounds that containing a 3, 4-dihydroquinoxalin-2(1H)-one structure (Scheme 1b).
1-Methylquinoxalin-2(1H)-one (1a) and acetone (2a) were chosen as starting materials to screen the reaction conditions. The target product (3a) was obtained in 80% yield when the reaction was performed by using 25mol% of CH3SO3H as a catalyst under the irradiation of sunlight for 15min (Table 1, entry 1). Other acid catalyst, such as CF3COOH and HBF4 gave the relative lower yield under the same conditions (Table 1, entries 2 and 3). No product was obtained in the absence of any acid catalyst (Table 1, entry 4). When used MeCN or DMF as solvent and 2.0 equiv. of acetone as substrate, 76% or 52% yield was obtained respectively (Table 1, entries 5 and 6). Extended reaction time to 30min did not enhanced product yield (Table 1, entry 7). There was no desired product generated when the reaction was carried out under dark condition (Table 1, entry 8).
With the optimum reaction conditions in hands, we then examined the substrate scope of the reaction by employing various quinoxalin-2(1H)-ones (1) with acetone (2a) (Scheme 2). Firstly, the N-substituted groups such as N-methyl, N-ethyl, N-cyclopropylmethyl, N-keto and N-ester were well compatible under the standard conditions, giving the desired products (3a-e) in 72%–80% yields. It is worth mentioning that quinoxalin-2(1H)-one with a sensitive allyl group, which could be further functionalized, also could give the product (3f) in 69% yield. A wide range of quinoxalin-2(1H)-ones with different benzyl groups, bearing both electron-donating and electron-withdrawing substituents at ortho-, meta-, or para-position could undergo the reaction smoothly, affording the corresponding products (3g–n) in 40%–72% yields. Importantly, the N-free quinoxalin-2(1H)-one could undergo the reaction smoothly, providing the product (3o) in 45% yield. Besides, plenty of quinoxalin-2(1H)-ones that bear the functional groups including methyl, halogen, tert-butyl, methoxy or trifluoromethyl at C5-, C6- or C7-position also gave the desired products in satisfactory yield (3p-3w). To expand the substrate scope of N-heterocycles, we also tested quinoline, isoquinoline, quinoxaline, benzimidazole and benzothiazole under standard conditions, however, no corresponding product was obtained (see Supporting information).
Subsequently, we evaluated the substrate scope of methyl ketones for the reaction (Scheme 3). To reduce the dosage of reactant, the reactions were performed with 2.0 equiv. of methyl ketones by using acetonitrile as solvent. To our delight, both long-chain and cycloalkyl methyl ketones could undergo the reaction smoothly, giving the corresponding products (3x–3ad) in 58%–79% yields. The molecular structure of 3y was confirmed by X-ray crystallographic analysis (CCDC: 2060383). It was found that the molecular structure was more stable in (Z)-configuration probably because the effect of hydrogen bond interaction between amine and carbonyl group. Then, we found that cyclopentanone skeleton could also react with quinoxalin-2(1H)-one smoothly to deliver the target products (3ae and 3af) in moderate yield. The subsequent exploration found that the aryl methyl ketones, such as acetophenone, 1-(furan-2-yl)ethan-1-one and 1-(thiophen-2-yl)ethan-1-one were also could be converted into target products (3ag-3ai) in acceptable yields. Unfortunately, the substrates like ethyl acetate, acetonitrile, nitromethane, ethyl acetoacetate, and acetylacetone were not compatible under standard conditions (Supporting information).
To show the synthetic utility of this protocol, a gram-scale synthesis experiment was performed to give the target product (3a) in 75% yield (Scheme 4). Interestingly, the anticancer compound (3aj) and antimicrobial compound (3ak) were obtained in moderate yields by using our strategy [16]. Moreover, since the molecules that bearing a 3, 4 dihydroquinoxalin-2(1H)-one framework are a promising class of biologically active compounds, in this regard, several bioactive molecules such as naproxen derivative, frambinone, ibuprofen derivative, vanillylacetone, nabumetone and pregnenolone acetate were selected to react with 1-methylquinoxalin-2(1H)-one directly, providing the potentially active molecules (3al-3aq) in 52%–70% yields.
To study the reaction mechanism, a series of control experiments were carried out. Product 4 was generated instead of target product 3a when the reaction was performed under nitrogen atmosphere (Scheme 5). This result showed that oxygen in air was included in the subsequent oxidation process. To confirm the assumption, the oxidation process of compound 4 was studied. First, target product 3 was formed in 0%, 79% and 82% yields when the reaction performed under nitrogen, air or oxygen atmosphere respectively (Scheme 5). Second, the reaction was inhibited when singlet oxygen inhibitor (NaN3) was involved in the transformation (Scheme 5). Furthermore, compound 4 could not be converted into target product 3 when the reaction was performed in dark condition (Scheme 5). These experimental results strongly supported that the singlet oxygen 1O2, which was generated from triplet oxygen 3O2 through photocatalysis, serves as the real oxidant.
On the basis of above results and previous reports [8-12], we proposed a possible mechanism for this reaction (Scheme 6). Firstly, substrate 1a was transformed into intermediate A through a protonation process. Meanwhile, acetone 2a was converted to the enol form B under acidic condition. Then, a Mannich-type reaction took place between intermediates A and B to give the intermediate C, which underwent a deprotonation process to provide the key compound 4. It was found that organic molecules that containing a quinoxalin-2(1H)-one skeleton could act as a photosensitizer to generate 1O2 from O2 under the irradiation of visible light [12p]. In this regard, compounds1a, 4 or 3a was excited by visible light to provide the excited-species 1a*, 4* or 3a*, which acted as a photosensitizer and underwent an energy transfer (ET) process with O2 to give 1O2, along with the regeneration of ground-state compounds 1a, 4 or 3a. Finally, compound 4 underwent the single-electron-transfer (SET) process with 1O2 to give the desired product with the generation of H2O2, which was detected by H2O2 test paper (Supporting information) [12a] [17]. We proposed that the electron-withdrawing effects of carbonyl group that exists in quinoxalin-2(1H)-one skeleton lower down the electron cloud density of the enamine moiety, making it difficult to be oxidized and can survive under this H2O2 oxidation conditions.
In conclusion, this study described a novel strategy for the olefination of quinoxalin-2(1H)-ones with methyl ketones. Various substrates were compatible under standard condition, providing the corresponding products in moderate to good yields. Control experiments revealed that a Mannich-type reaction and oxidative process were involved in the transformation.
The authors declare that they have no conflict of interest.
We thank the Natural Science Foundation of Zhejiang Province (No. LY21B060009) and the National Natural Science Foundation of China (No. 21871071) for financial support.
Supplementary material related to this article can befound, in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.04.016.
T.B.Schon, B.T.McAllister, P.F.Li, D.S.Seferos, Chem.Soc.Rev.45(2016) 6345-6404.
doi: 10.1039/C6CS00173D
D.O.Akinyele, R.K.Rayudu, Sustain.Energy Technol.Assess.8(2014) 74-91.
M.Armand, J.M.Tarascon, Nature 451(2008) 652-657.
doi: 10.1038/451652a
B.Dunn, H.Kamath, J.M.Tarascon, Science 334(2011) 928-935.
doi: 10.1126/science.1212741
Z.Song, H.Zhou, Energy Environ.Sci.6(2013) 2280.
doi: 10.1039/c3ee40709h
S.H.Woo, Y.Park, W.Y.Choi, et al., J.Electrochem.Soc.159(2012) A2016-A2023.
doi: 10.1149/2.009301jes
Y.Wang, X.Yu, S.Xu, X.Huang, et al., Nat.Commun.4(2013) 2365.
Y.Sun, L.Zhao, H.Pan, et al., Nat.Commun.4(2013) 1870.
doi: 10.1038/ncomms2878
Q.Sun, Q.Q.Ren, H.Li, Z.W.Fu, Electrochem.Commun.13(2011) 1462-1464.
doi: 10.1016/j.elecom.2011.09.020
P.Senguttuvan, G.Rousse, V.Seznec, J.M.Tarascon, M.R.Palacin, Chem.Mater.23(2011) 4109-4111.
doi: 10.1021/cm202076g
Z.Gong, Y.Yang, Energ Environ.Sci.4(2011) 3223-3242.
doi: 10.1039/c0ee00713g
C.Masquelier, L.Croguennec, Chem.Rev.113(2013) 6552-6591.
doi: 10.1021/cr3001862
Y.Xu, Y.Zhu, Y.Liu, C.Wang, Adv.Energy Mater.3(2013) 128-133.
doi: 10.1002/aenm.201200346
A.Darwiche, C.Marino, M.T.Sougrati, et al., J.Am.Chem.Soc.134(2012) 20805-20811.
doi: 10.1021/ja310347x
H.Zhu, Z.Jia, Y.Chen, et al., Nano Lett.13(2013) 3093-3100.
doi: 10.1021/nl400998t
Y.Shao, J.Xiao, W.Wang, et al., Nano Lett.13(2013) 3909-3914.
doi: 10.1021/nl401995a
S.Komaba, W.Murata, T.Ishikawa, et al., Adv.Funct.Mater.21(2011) 3859-3867.
doi: 10.1002/adfm.v21.20
Y.Cao, L.Xiao, M.L.Sushko, et al., Nano Lett.12(2012) 3783-3787.
doi: 10.1021/nl3016957
Y.Kim, Y.Park, A.Choi, et al., Adv.Mater.25(2013) 3045-3049.
doi: 10.1002/adma.v25.22
J.Qian, X.Wu, Y.Cao, X.Ai, H.Yang, Angew.Chem.125(2013) 4731-4734.
doi: 10.1002/ange.201209689
Q.L.Jiang, K.Du, Y.B.Cao, et al., Chin.Chem.Lett.21(2010) 1382-1386.
doi: 10.1016/j.cclet.2010.04.039
P.Novák, K.Müller, K.Santhanam, O.Haas, Chem.Rev.97(1997) 207-282.
doi: 10.1021/cr941181o
P.J.Nigrey, D.MacInnes, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Electrochem.Soc.128(1981) 1651-1654.
doi: 10.1149/1.2127704
D.MacInnes, M.A.Druy, P.J.Nigrey, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1981) 317-319.
B.Häupler, A.Wild, U.S.Schubert, Adv.Energy Mater.5(2015) 1402034.
doi: 10.1002/aenm.201402034
Y.Wu, R.Zeng, J.Nan, et al., Adv.Energy Mater.(2017) 1700278.
H.Nishide, K.Oyaizu, Science 319(2008) 737-738.
doi: 10.1126/science.1151831
C.Wang, Y.Fang, Y.Xu, et al., Adv.Funct.Mater.26(2016) 1777-1786.
doi: 10.1002/adfm.v26.11
C.Wang, C.Jiang, Y.Xu, et al., Adv.Mater.28(2016) 9182-9187.
doi: 10.1002/adma.201603240
C.Luo, J.Wang, X.Fan, et al., Nano Energy 13(2015) 537-545.
doi: 10.1016/j.nanoen.2015.03.041
D.Monti, E.Jónsson, M.R.Palacín, P.Johansson, J.Power Sources 245(2014) 630-636.
doi: 10.1016/j.jpowsour.2013.06.153
Z.Zhu, M.Hong, D.Guo, et al., J.Am.Chem.Soc.136(2014) 16461-16464.
doi: 10.1021/ja507852t
H.Shirakawa, E.J.Louis, A.G.MacDiarmid, C.K.Chiang, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1977) 578-580.
C.Chiang, Polymer 22(1981) 1454-1456.
doi: 10.1016/0032-3861(81)90309-8
G.C.Farrington, R.Huq, J.Power Sources 14(1985) 3-9.
doi: 10.1016/0378-7753(85)88002-2
T.Nagatomo, C.Ichikawa, O.Omoto, J.Electrochem.Soc.134(1987) 305-308.
doi: 10.1149/1.2100451
L.Zhu, A.Lei, Y.Cao, X.Ai, H.Yang, Chem.Commun.49(2013) 567-569.
doi: 10.1039/C2CC36622C
M.Dubois, A.Naji, D.Billaud, Electrochim.Acta 46(2001) 4301-4307.
doi: 10.1016/S0013-4686(01)00663-6
N.Ravet, C.Michot, M.Armand, Mater.Res.Soc.Symp.Proc.496(1997) 263.
doi: 10.1557/PROC-496-263
X.Guo, M.D.Watson, Macromolecules 44(2011) 6711-6716.
doi: 10.1021/ma2009063
K.Cua See, H.E.Zatz, Transparent Electronics, John Wiley & Sons Ltd., 2010, pp.403-415.
Z.Wang, C.Kim, A.Facchetti, T.J.Marks, J.Am.Chem.Soc.129(2007) 13362-13363.
doi: 10.1021/ja073306f
C.Huang, S.Barlow, S.R.Marder, J.Org.Chem.76(2011) 2386-2407.
doi: 10.1021/jo2001963
D.W.Leedy, D.L.Muck, J.Am.Chem.Soc.93(1971) 4264-4270.
doi: 10.1021/ja00746a029
K.Oyaizu, A.Hatemata, W.Choi, H.Nishide, J.Mater.Chem.20(2010) 5404-5410.
doi: 10.1039/c0jm00042f
Z.Song, H.Zhan, Y.Zhou, Angew.Chem.122(2010) 8622-8626.
doi: 10.1002/ange.201002439
P.Sharma, D.Damien, K.Nagarajan, M.M.Shaijumon, M.Hariharan, J.Phys.Chem.Lett.4(2013) 3192-3197.
doi: 10.1021/jz4017359
D.Tian, H.Z.Zhang, D.S.Zhang, et al., RSC Adv.4(2014) 7506-7510.
doi: 10.1039/c3ra45563g
H.Wu, Q.Yang, Q.Meng, et al., J.Mater.Chem.A 4(2016) 2115-2121.
doi: 10.1039/C5TA07246H
C.Wang, H.Dong, W.Hu, Y.Liu, D.Zhu, Chem.Rev.112(2011) 2208-2267.
Z.Song, T.Xu, M.L.Gordin, et al., Nano Lett.12(2012) 2205-2211.
doi: 10.1021/nl2039666
H.Wu, K.Wang, Y.Meng, K.Lu, Z.Wei, J.Mater.Chem.A 1(2013) 6366-6372.
doi: 10.1039/c3ta10473g
H.Wu, Q.Meng, Q.Yang, et al., Adv.Mater.27(2015) 6504-6510.
doi: 10.1002/adma.201502241
H.Wu, S.A.Shevlin, Q.Meng, et al., Adv.Mater.26(2014) 3338-3343.
doi: 10.1002/adma.v26.20
Y.Meng, H.Wu, Y.Zhang, Z.Wei, J.Mater.Chem.A 2(2014) 10842-10846.
doi: 10.1039/C4TA00364K
C.Guo, K.Zhang, Q.Zhao, L.Pei, J.Chen, Chem.Commun.51(2015) 10244-10247.
doi: 10.1039/C5CC02251G
Z.Zhu, J.Chen, J.Electrochem.Soc.162(2015) A2393-A2405.
doi: 10.1149/2.0031514jes
P.Bu, S.Liu, Y.Lu, et al., Int.J.Electrochem.Sci 7(2012) 4617-4624.
S.Muench, A.Wild, C.Friebe, et al., Chem.Rev.116(2016) 9438-9484.
doi: 10.1021/acs.chemrev.6b00070
Z.Song, Y.Qian, M.Otani, H.Zhou, Adv.Energy Mater.6(2016) 1501780.
doi: 10.1002/aenm.201501780
D.Williams, J.Byrne, J.Driscoll, J.Electrochem.Soc.116(1969) 2-4.
doi: 10.1149/1.2411755
J.Foos, S.Erker, L.Rembetsy, J.Electrochem.Soc.133(1986) 836-841.
doi: 10.1149/1.2108689
W.Xu, A.Read, P.K.Koech, et al., J.Mater.Chem.22(2012) 4032-4039.
doi: 10.1039/c2jm15764k
D.Häringer, P.Novák, O.Haas, B.Piro, M.C.Pham, J.Electrochem.Soc.146(1999) 2393-2396.
doi: 10.1149/1.1391947
L.Zhao, W.Wang, A.Wang, et al., J.Power Sources 233(2013) 23-27.
doi: 10.1016/j.jpowsour.2013.01.103
Z.Song, Y.Qian, M.L.Gordin, et al., Angew.Chem.Int.Ed.54(2015) 13947-13951.
doi: 10.1002/anie.201506673
Z.Song, Y.Qian, X.Liu, et al., Energy Environ.Sci.7(2014) 4077-4086.
doi: 10.1039/C4EE02575J
Z.Song, Y.Qian, T.Zhang, M.Otani, H.Zhou, Adv.Sci.2(2015) 1500124.
doi: 10.1002/advs.201500124
B.Häupler, T.Hagemann, C.Friebe, A.Wild, U.S.Schubert, ACS Appl.Mater.Inter.7(2015) 3473-3479.
doi: 10.1021/am5060959
J.Xie, Z.Wang, P.Gu, et al., Sci.China Mater.59(2016) 6-11.
doi: 10.1007/s40843-016-0112-3
T.Nokami, T.Matsuo, Y.Inatomi, et al., J.Am.Chem.Soc.134(2012) 19694-19700.
doi: 10.1021/ja306663g
P.Krishnan, S.G.Advani, A.K.Prasad, J.Power Sources 196(2011) 7755-7759.
doi: 10.1016/j.jpowsour.2011.04.048
H.Qin, Z.Song, H.Zhan, Y.Zhou, J.Power Sources 249(2014) 367-372.
doi: 10.1016/j.jpowsour.2013.10.091
Z.Guo, L.Chen, Y.Wang, C.Wang, Y.Xia, ACS Sustain.Chem.Eng.5(2017) 1503-1508.
doi: 10.1021/acssuschemeng.6b02127
K.Oyaizu, W.Choi, H.Nishide, Polym.Adv.Technol.22(2011) 1242-1247.
doi: 10.1002/pat.v22.8
Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. (2017)http://dx.doi.org/10.1038/nmat4919.
J.Wu, X.Rui, C.Wang, et al., Adv.Energy Mater.5(2015) 1402189.
doi: 10.1002/aenm.201402189
Q.Liao, H.Hou, J.Duan, et al., J.Appl.Polym.Sci.134(2017) 44935.
J.B.Goodenough, Y.Kim, Chem.Mater.22(2010) 587-603.
doi: 10.1021/cm901452z
N.Yabuuchi, K.Kubota, M.Dahbi, S.Komaba, Chem.Rev.114(2014) 11636-11682.
doi: 10.1021/cr500192f
V.Palomares, P.Serras, I.Villaluenga, et al., Energ Environ.Sci.5(2012) 5884-5901.
doi: 10.1039/c2ee02781j
Y.Liang, Z.Tao, J.Chen, Adv.Energy Mater.2(2012) 742-769.
doi: 10.1002/aenm.201100795
L.Chen, W.Li, Y.Wang, C.Wang, Y.Xia, RSC Adv.4(2014) 25369-25373.
doi: 10.1039/C4RA03473B
H.Wang, S.Yuan, D.Ma, et al., Adv.Energy Mater.4(2014) 1301651.
doi: 10.1002/aenm.201301651
F.Xu, J.Xia, W.Shi, Electrochem.Commun.60(2015) 117-120.
doi: 10.1016/j.elecom.2015.08.027
F.Xu, H.Wang, J.Lin, et al., J.Mater Chem.A 4(2016) 11491-11497.
doi: 10.1039/C6TA03956A
F.Xu, J.Xia, W.Shi, S.A.Cao, Mater.Chem.Phys.169(2016) 192-197.
doi: 10.1016/j.matchemphys.2015.12.004
H.Banda, D.Damien, K.Nagarajan, M.Hariharan, M.M.Shaijumon, J.Mater.Chem.A 3(2015) 10453-10458.
doi: 10.1039/C5TA02043C
W.Deng, X.Liang, X.Wu, et al., Sci.Rep.3(2013) 2671.
doi: 10.1038/srep02671
T.Sun, Z.Li, H.G.Wang, et al., Angew.Chem.128(2016) 10820-10824.
doi: 10.1002/ange.201604519
T.Liu, K.C.Kim, B.Lee, et al., Energ Environ.Sci.10(2017) 205-215.
doi: 10.1039/C6EE02641A
C.Wang, Y.Xu, Y.Fang, et al., J.Am.Chem.Soc.137(2015) 3124-3130.
doi: 10.1021/jacs.5b00336
E.Castillo-Martínez, J.Carretero-González, M.Armand, Angew.Chem.Int.Ed.53(2014) 5341-5345.
doi: 10.1002/anie.v53.21
B.Pan, D.Zhou, J.Huang, et al., J.Electrochem.Soc.163(2016) A580-A583.
doi: 10.1149/2.0021605jes
Y.NuLi, Z.Guo, H.Liu, J.Yang, Electrochem.Commun.9(2007) 1913-1917.
doi: 10.1016/j.elecom.2007.05.009
J.Bitenc, K.Pirnat, T.Banci 9 c, et al., ChemSusChem 8(2015) 41289-4132.
B.Pan, J.Huang, Z.Feng, et al., Adv.Energy Mater.6(2016) 1600140.
doi: 10.1002/aenm.201600140
Y.Zhang, J.Wang, S.N.Riduan, J.Mater.Chem.A 4(2016) 14902-14914.
doi: 10.1039/C6TA05231B
T.B.Schon, B.T.McAllister, P.F.Li, D.S.Seferos, Chem.Soc.Rev.45(2016) 6345-6404.
doi: 10.1039/C6CS00173D
D.O.Akinyele, R.K.Rayudu, Sustain.Energy Technol.Assess.8(2014) 74-91.
M.Armand, J.M.Tarascon, Nature 451(2008) 652-657.
doi: 10.1038/451652a
B.Dunn, H.Kamath, J.M.Tarascon, Science 334(2011) 928-935.
doi: 10.1126/science.1212741
Z.Song, H.Zhou, Energy Environ.Sci.6(2013) 2280.
doi: 10.1039/c3ee40709h
S.H.Woo, Y.Park, W.Y.Choi, et al., J.Electrochem.Soc.159(2012) A2016-A2023.
doi: 10.1149/2.009301jes
Y.Wang, X.Yu, S.Xu, X.Huang, et al., Nat.Commun.4(2013) 2365.
Y.Sun, L.Zhao, H.Pan, et al., Nat.Commun.4(2013) 1870.
doi: 10.1038/ncomms2878
Q.Sun, Q.Q.Ren, H.Li, Z.W.Fu, Electrochem.Commun.13(2011) 1462-1464.
doi: 10.1016/j.elecom.2011.09.020
P.Senguttuvan, G.Rousse, V.Seznec, J.M.Tarascon, M.R.Palacin, Chem.Mater.23(2011) 4109-4111.
doi: 10.1021/cm202076g
Z.Gong, Y.Yang, Energ Environ.Sci.4(2011) 3223-3242.
doi: 10.1039/c0ee00713g
C.Masquelier, L.Croguennec, Chem.Rev.113(2013) 6552-6591.
doi: 10.1021/cr3001862
Y.Xu, Y.Zhu, Y.Liu, C.Wang, Adv.Energy Mater.3(2013) 128-133.
doi: 10.1002/aenm.201200346
A.Darwiche, C.Marino, M.T.Sougrati, et al., J.Am.Chem.Soc.134(2012) 20805-20811.
doi: 10.1021/ja310347x
H.Zhu, Z.Jia, Y.Chen, et al., Nano Lett.13(2013) 3093-3100.
doi: 10.1021/nl400998t
Y.Shao, J.Xiao, W.Wang, et al., Nano Lett.13(2013) 3909-3914.
doi: 10.1021/nl401995a
S.Komaba, W.Murata, T.Ishikawa, et al., Adv.Funct.Mater.21(2011) 3859-3867.
doi: 10.1002/adfm.v21.20
Y.Cao, L.Xiao, M.L.Sushko, et al., Nano Lett.12(2012) 3783-3787.
doi: 10.1021/nl3016957
Y.Kim, Y.Park, A.Choi, et al., Adv.Mater.25(2013) 3045-3049.
doi: 10.1002/adma.v25.22
J.Qian, X.Wu, Y.Cao, X.Ai, H.Yang, Angew.Chem.125(2013) 4731-4734.
doi: 10.1002/ange.201209689
Q.L.Jiang, K.Du, Y.B.Cao, et al., Chin.Chem.Lett.21(2010) 1382-1386.
doi: 10.1016/j.cclet.2010.04.039
P.Novák, K.Müller, K.Santhanam, O.Haas, Chem.Rev.97(1997) 207-282.
doi: 10.1021/cr941181o
P.J.Nigrey, D.MacInnes, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Electrochem.Soc.128(1981) 1651-1654.
doi: 10.1149/1.2127704
D.MacInnes, M.A.Druy, P.J.Nigrey, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1981) 317-319.
B.Häupler, A.Wild, U.S.Schubert, Adv.Energy Mater.5(2015) 1402034.
doi: 10.1002/aenm.201402034
Y.Wu, R.Zeng, J.Nan, et al., Adv.Energy Mater.(2017) 1700278.
H.Nishide, K.Oyaizu, Science 319(2008) 737-738.
doi: 10.1126/science.1151831
C.Wang, Y.Fang, Y.Xu, et al., Adv.Funct.Mater.26(2016) 1777-1786.
doi: 10.1002/adfm.v26.11
C.Wang, C.Jiang, Y.Xu, et al., Adv.Mater.28(2016) 9182-9187.
doi: 10.1002/adma.201603240
C.Luo, J.Wang, X.Fan, et al., Nano Energy 13(2015) 537-545.
doi: 10.1016/j.nanoen.2015.03.041
D.Monti, E.Jónsson, M.R.Palacín, P.Johansson, J.Power Sources 245(2014) 630-636.
doi: 10.1016/j.jpowsour.2013.06.153
Z.Zhu, M.Hong, D.Guo, et al., J.Am.Chem.Soc.136(2014) 16461-16464.
doi: 10.1021/ja507852t
H.Shirakawa, E.J.Louis, A.G.MacDiarmid, C.K.Chiang, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1977) 578-580.
C.Chiang, Polymer 22(1981) 1454-1456.
doi: 10.1016/0032-3861(81)90309-8
G.C.Farrington, R.Huq, J.Power Sources 14(1985) 3-9.
doi: 10.1016/0378-7753(85)88002-2
T.Nagatomo, C.Ichikawa, O.Omoto, J.Electrochem.Soc.134(1987) 305-308.
doi: 10.1149/1.2100451
L.Zhu, A.Lei, Y.Cao, X.Ai, H.Yang, Chem.Commun.49(2013) 567-569.
doi: 10.1039/C2CC36622C
M.Dubois, A.Naji, D.Billaud, Electrochim.Acta 46(2001) 4301-4307.
doi: 10.1016/S0013-4686(01)00663-6
N.Ravet, C.Michot, M.Armand, Mater.Res.Soc.Symp.Proc.496(1997) 263.
doi: 10.1557/PROC-496-263
X.Guo, M.D.Watson, Macromolecules 44(2011) 6711-6716.
doi: 10.1021/ma2009063
K.Cua See, H.E.Zatz, Transparent Electronics, John Wiley & Sons Ltd., 2010, pp.403-415.
Z.Wang, C.Kim, A.Facchetti, T.J.Marks, J.Am.Chem.Soc.129(2007) 13362-13363.
doi: 10.1021/ja073306f
C.Huang, S.Barlow, S.R.Marder, J.Org.Chem.76(2011) 2386-2407.
doi: 10.1021/jo2001963
D.W.Leedy, D.L.Muck, J.Am.Chem.Soc.93(1971) 4264-4270.
doi: 10.1021/ja00746a029
K.Oyaizu, A.Hatemata, W.Choi, H.Nishide, J.Mater.Chem.20(2010) 5404-5410.
doi: 10.1039/c0jm00042f
Z.Song, H.Zhan, Y.Zhou, Angew.Chem.122(2010) 8622-8626.
doi: 10.1002/ange.201002439
P.Sharma, D.Damien, K.Nagarajan, M.M.Shaijumon, M.Hariharan, J.Phys.Chem.Lett.4(2013) 3192-3197.
doi: 10.1021/jz4017359
D.Tian, H.Z.Zhang, D.S.Zhang, et al., RSC Adv.4(2014) 7506-7510.
doi: 10.1039/c3ra45563g
H.Wu, Q.Yang, Q.Meng, et al., J.Mater.Chem.A 4(2016) 2115-2121.
doi: 10.1039/C5TA07246H
C.Wang, H.Dong, W.Hu, Y.Liu, D.Zhu, Chem.Rev.112(2011) 2208-2267.
Z.Song, T.Xu, M.L.Gordin, et al., Nano Lett.12(2012) 2205-2211.
doi: 10.1021/nl2039666
H.Wu, K.Wang, Y.Meng, K.Lu, Z.Wei, J.Mater.Chem.A 1(2013) 6366-6372.
doi: 10.1039/c3ta10473g
H.Wu, Q.Meng, Q.Yang, et al., Adv.Mater.27(2015) 6504-6510.
doi: 10.1002/adma.201502241
H.Wu, S.A.Shevlin, Q.Meng, et al., Adv.Mater.26(2014) 3338-3343.
doi: 10.1002/adma.v26.20
Y.Meng, H.Wu, Y.Zhang, Z.Wei, J.Mater.Chem.A 2(2014) 10842-10846.
doi: 10.1039/C4TA00364K
C.Guo, K.Zhang, Q.Zhao, L.Pei, J.Chen, Chem.Commun.51(2015) 10244-10247.
doi: 10.1039/C5CC02251G
Z.Zhu, J.Chen, J.Electrochem.Soc.162(2015) A2393-A2405.
doi: 10.1149/2.0031514jes
P.Bu, S.Liu, Y.Lu, et al., Int.J.Electrochem.Sci 7(2012) 4617-4624.
S.Muench, A.Wild, C.Friebe, et al., Chem.Rev.116(2016) 9438-9484.
doi: 10.1021/acs.chemrev.6b00070
Z.Song, Y.Qian, M.Otani, H.Zhou, Adv.Energy Mater.6(2016) 1501780.
doi: 10.1002/aenm.201501780
D.Williams, J.Byrne, J.Driscoll, J.Electrochem.Soc.116(1969) 2-4.
doi: 10.1149/1.2411755
J.Foos, S.Erker, L.Rembetsy, J.Electrochem.Soc.133(1986) 836-841.
doi: 10.1149/1.2108689
W.Xu, A.Read, P.K.Koech, et al., J.Mater.Chem.22(2012) 4032-4039.
doi: 10.1039/c2jm15764k
D.Häringer, P.Novák, O.Haas, B.Piro, M.C.Pham, J.Electrochem.Soc.146(1999) 2393-2396.
doi: 10.1149/1.1391947
L.Zhao, W.Wang, A.Wang, et al., J.Power Sources 233(2013) 23-27.
doi: 10.1016/j.jpowsour.2013.01.103
Z.Song, Y.Qian, M.L.Gordin, et al., Angew.Chem.Int.Ed.54(2015) 13947-13951.
doi: 10.1002/anie.201506673
Z.Song, Y.Qian, X.Liu, et al., Energy Environ.Sci.7(2014) 4077-4086.
doi: 10.1039/C4EE02575J
Z.Song, Y.Qian, T.Zhang, M.Otani, H.Zhou, Adv.Sci.2(2015) 1500124.
doi: 10.1002/advs.201500124
B.Häupler, T.Hagemann, C.Friebe, A.Wild, U.S.Schubert, ACS Appl.Mater.Inter.7(2015) 3473-3479.
doi: 10.1021/am5060959
J.Xie, Z.Wang, P.Gu, et al., Sci.China Mater.59(2016) 6-11.
doi: 10.1007/s40843-016-0112-3
T.Nokami, T.Matsuo, Y.Inatomi, et al., J.Am.Chem.Soc.134(2012) 19694-19700.
doi: 10.1021/ja306663g
P.Krishnan, S.G.Advani, A.K.Prasad, J.Power Sources 196(2011) 7755-7759.
doi: 10.1016/j.jpowsour.2011.04.048
H.Qin, Z.Song, H.Zhan, Y.Zhou, J.Power Sources 249(2014) 367-372.
doi: 10.1016/j.jpowsour.2013.10.091
Z.Guo, L.Chen, Y.Wang, C.Wang, Y.Xia, ACS Sustain.Chem.Eng.5(2017) 1503-1508.
doi: 10.1021/acssuschemeng.6b02127
K.Oyaizu, W.Choi, H.Nishide, Polym.Adv.Technol.22(2011) 1242-1247.
doi: 10.1002/pat.v22.8
Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. (2017)http://dx.doi.org/10.1038/nmat4919.
J.Wu, X.Rui, C.Wang, et al., Adv.Energy Mater.5(2015) 1402189.
doi: 10.1002/aenm.201402189
Q.Liao, H.Hou, J.Duan, et al., J.Appl.Polym.Sci.134(2017) 44935.
J.B.Goodenough, Y.Kim, Chem.Mater.22(2010) 587-603.
doi: 10.1021/cm901452z
N.Yabuuchi, K.Kubota, M.Dahbi, S.Komaba, Chem.Rev.114(2014) 11636-11682.
doi: 10.1021/cr500192f
V.Palomares, P.Serras, I.Villaluenga, et al., Energ Environ.Sci.5(2012) 5884-5901.
doi: 10.1039/c2ee02781j
Y.Liang, Z.Tao, J.Chen, Adv.Energy Mater.2(2012) 742-769.
doi: 10.1002/aenm.201100795
L.Chen, W.Li, Y.Wang, C.Wang, Y.Xia, RSC Adv.4(2014) 25369-25373.
doi: 10.1039/C4RA03473B
H.Wang, S.Yuan, D.Ma, et al., Adv.Energy Mater.4(2014) 1301651.
doi: 10.1002/aenm.201301651
F.Xu, J.Xia, W.Shi, Electrochem.Commun.60(2015) 117-120.
doi: 10.1016/j.elecom.2015.08.027
F.Xu, H.Wang, J.Lin, et al., J.Mater Chem.A 4(2016) 11491-11497.
doi: 10.1039/C6TA03956A
F.Xu, J.Xia, W.Shi, S.A.Cao, Mater.Chem.Phys.169(2016) 192-197.
doi: 10.1016/j.matchemphys.2015.12.004
H.Banda, D.Damien, K.Nagarajan, M.Hariharan, M.M.Shaijumon, J.Mater.Chem.A 3(2015) 10453-10458.
doi: 10.1039/C5TA02043C
W.Deng, X.Liang, X.Wu, et al., Sci.Rep.3(2013) 2671.
doi: 10.1038/srep02671
T.Sun, Z.Li, H.G.Wang, et al., Angew.Chem.128(2016) 10820-10824.
doi: 10.1002/ange.201604519
T.Liu, K.C.Kim, B.Lee, et al., Energ Environ.Sci.10(2017) 205-215.
doi: 10.1039/C6EE02641A
C.Wang, Y.Xu, Y.Fang, et al., J.Am.Chem.Soc.137(2015) 3124-3130.
doi: 10.1021/jacs.5b00336
E.Castillo-Martínez, J.Carretero-González, M.Armand, Angew.Chem.Int.Ed.53(2014) 5341-5345.
doi: 10.1002/anie.v53.21
B.Pan, D.Zhou, J.Huang, et al., J.Electrochem.Soc.163(2016) A580-A583.
doi: 10.1149/2.0021605jes
Y.NuLi, Z.Guo, H.Liu, J.Yang, Electrochem.Commun.9(2007) 1913-1917.
doi: 10.1016/j.elecom.2007.05.009
J.Bitenc, K.Pirnat, T.Banci 9 c, et al., ChemSusChem 8(2015) 41289-4132.
B.Pan, J.Huang, Z.Feng, et al., Adv.Energy Mater.6(2016) 1600140.
doi: 10.1002/aenm.201600140
Y.Zhang, J.Wang, S.N.Riduan, J.Mater.Chem.A 4(2016) 14902-14914.
doi: 10.1039/C6TA05231B
Xinyu Ren , Hong Liu , Jingang Wang , Jiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282
Tao Long , Peng Chen , Bin Feng , Caili Yang , Kairong Wang , Yulei Wang , Can Chen , Yaping Wang , Ruotong Li , Meng Wu , Minhuan Lan , Wei Kong Pang , Jian-Fang Wu , Yuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267
Ningning Zhao , Yuyan Liang , Wenjie Huo , Xinyan Zhu , Zhangxing He , Zekun Zhang , Youtuo Zhang , Xianwen Wu , Lei Dai , Jing Zhu , Ling Wang , Qiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332
Jian Wang , Baohui Wang , Pin Ma , Yifei Zhang , Honghong Gong , Biyun Peng , Sen Liang , Yunchuan Xie , Hailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714
Shuangliang Xie , Yuyue Chen , Qing He , Liang Chen , Jikun Yang , Shiqing Deng , Yimei Zhu , He Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871
Xiping Dong , Xuan Wang , Zhixiu Lu , Qinhao Shi , Zhengyi Yang , Xuan Yu , Wuliang Feng , Xingli Zou , Yang Liu , Yufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605
Fan Wu , Shaoyang Wu , Xin Ye , Yurong Ren , Peng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851
Xiangyue Li , Dexin Zhu , Kunmin Pan , Xiaoye Zhou , Jiaming Zhu , Yingxue Wang , Yongpeng Ren , Hong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870
Xin Li , Ling Zhang , Yunyan Fan , Shaojing Lin , Yong Lin , Yongsheng Ying , Meijiao Hu , Haiying Gao , Xianri Xu , Zhongbiao Xia , Xinchuan Lin , Junjie Lu , Xiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Guihuang Fang , Ying Liu , Yangyang Feng , Ying Pan , Hongwei Yang , Yongchuan Liu , Maoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385
Yanxue Wu , Xijun Xu , Shanshan Shi , Fangkun Li , Shaomin Ji , Jingwei Zhao , Jun Liu , Yanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Shengyu Zhao , Xuan Yu , Yufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933
Xuan Wang , Peng Sun , Siteng Yuan , Lu Yue , Yufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Yang LIU , Lijun WANG , Hongyu WANG , Zhidong CHEN , Lin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015
Ying Li , Yanjun Xu , Xingqi Han , Di Han , Xuesong Wu , Xinlong Wang , Zhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189
Fanjun Kong , Yixin Ge , Shi Tao , Zhengqiu Yuan , Chen Lu , Zhida Han , Lianghao Yu , Bin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552
Huixin Chen , Chen Zhao , Hongjun Yue , Guiming Zhong , Xiang Han , Liang Yin , Ding Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650