Citation: Tang Mi, Li Hongyang, Wang Erjing, Wang Chengliang. Carbonyl polymeric electrode materials for metal-ion batteries[J]. Chinese Chemical Letters, ;2018, 29(2): 232-244. doi: 10.1016/j.cclet.2017.09.005 shu

Carbonyl polymeric electrode materials for metal-ion batteries

  • Corresponding author: Wang Erjing, wangej@hubu.edu.cn Wang Chengliang, angewan@iccas.ac.cn; clwang@hust.edu.cn
  • 1 M.Tang and H.Li contributed equally to this work
  • Received Date: 23 June 2017
    Revised Date: 4 August 2017
    Accepted Date: 4 September 2017
    Available Online: 6 February 2017

Figures(9)

  • Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility, lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode materials are promising candidates for the next generation of sustainable energy resources and have attracted extensive attention for the foreseeable large scale applications.The conductive polymers have been utilized as electrode materials in the pioneer reports, which, however, have the disadvantages of low stability, low reversibility and slope voltage due to the delocalization of charges in the whole conjugated systems.The discovery of carbonyl materials aroused the interest of organic and polymeric materials for batteries again.This review presents the recent progress in carbonyl polymeric electrode materials for lithium-ion batteries, sodium-ion batteries and magnesium-ion batteries.This comprehensive review is expected to be helpful forarousing more interest of organic materials for metal-ion batteries and designing novel battery materials with high performance.
  • Quinoxalin-2(1H)-one, as a significant heterocyclic unit, has been found important applications in synthetic chemistry, materials, natural products and pharmaceuticals because of their innate outstanding biological activities and excellent chemical characters [1], and their biological activities can be significantly influenced if the substituents is introduced into the N1- and C3-positions of the quinoxalin-2(1H)-one [2]. In particular, 3-substituted quinoxalin-2(1H)-ones have been developed into powerful drugs due to their strong pharmacological effects [3], such as ataquimast, antinicrobial, anticancer, Fxa coagulation inhibitors and glycogen phosphorylase inhibitor (Fig. 1) [4]. Therefore, a number of methods have been developed for their synthesis [5]. Generally, they are synthesized by cyclization of derivatives of aniline or 1, 2-diaminobenzene with suitable partners. However, the disadvantages including pre-functionalization of the partners and multi-step synthesis limit its application [6]. In recent years, direct C-H bond functionalization at the C3-position of quinoxalin-2(1H)-one has become a straightforward access to the 3-substituted quinoxalin-2(1H)-one derivatives, and various remarkable work has been achieved [7-12]. For instances, our group in 2019 reported a first example of oxidative C-H fluoroalkoxylation of quinoxalinones with fluoroalkyl alcohols under transition-metal and solvent-free conditions [8b]. This method can also be extended to the facile and efficient synthesis of histamine-4 receptor. The same year, Sun's group presented an efficient electrochemical approach for the C(sp2)–H phosphonation of quinoxalin-2(1H)-ones and C(sp3)–H phosphonation of xanthenes [9a]. More interestingly, the group of Pan disclosed a photocatalyst-free visible-light-promoted sulfenylation of quinoxalinones with thiols via cross-dehydrogenative coupling [10b]. Shortly after this discovery, He's group demonstrated a visible-light-promoted amidation of quinoxalin-2(1H)-ones [11b]. In a very recent contribution, a mild and eco-friendly visible-light-induced decarboxylative acylation of quinoxalin-2(1H)-ones with α-oxo carboxylic acids using ambient air as the sole oxidant at room temperature was also established by the same group [12a]. In sharp contrast, the alkenylation of quinoxalin-2(1H)-ones was rarely reported.

    Figure 1

    Figure 1.  Examples of quinoxalin-2(1H)-one skeleton-based bioactive molecules.

    Photocatalysis has become a powerful strategy for organic synthesis due to the advantages of low energy consumption and environmental protection [13]. For example, MacMillan et al. in 2016 reported a photocatalyzed C-H arylation of aliphatic amines with aryl bromides, providing a complement to existing cross-coupling technologies [13a]. In 2021, He' group developed the first example of visible-light induced one-pot tandem reaction of arylacrylamides, CHF2CO2H and PhI(OAc)2, affording an eco-friendly and practical method to access various difluoromethylated oxindoles [13b]. The same year, Jin and coworkers developed photocatalyst-free radical tandem cyclization of quinazolinones containing an unactivated alkene moiety with difluoro bromides under illumination, giving a practical method for the synthesis of fluorine-containing ring-fused quinazolinones [13f]. In recent years, with increasing attention to renewable energy, considerable efforts have been switched to the development of photocatalytic reactions that excited by the sunlight, which is known as a renewable and simple accessible light source [14]. Our research interests focus on the development of novel and effective methodologies for the direct modification ofN-containing heterocycles [15], herein, we demonstrated a direct alkenylation reaction between quinoxalin-2(1H)-ones and methyl ketones. Compared with our previous work [15a], this transformation was achieved through a combination of Mannich-type reaction and solar photocatalysis, which could be completed within 15min, providing a green and efficient solution for the synthesis of potentially bioactive compounds that containing a 3, 4-dihydroquinoxalin-2(1H)-one structure (Scheme 1b).

    Scheme 1

    Scheme 1.  Modification of quinoxalin-2(1H)-ones by C-H functionalization.

    1-Methylquinoxalin-2(1H)-one (1a) and acetone (2a) were chosen as starting materials to screen the reaction conditions. The target product (3a) was obtained in 80% yield when the reaction was performed by using 25mol% of CH3SO3H as a catalyst under the irradiation of sunlight for 15min (Table 1, entry 1). Other acid catalyst, such as CF3COOH and HBF4 gave the relative lower yield under the same conditions (Table 1, entries 2 and 3). No product was obtained in the absence of any acid catalyst (Table 1, entry 4). When used MeCN or DMF as solvent and 2.0 equiv. of acetone as substrate, 76% or 52% yield was obtained respectively (Table 1, entries 5 and 6). Extended reaction time to 30min did not enhanced product yield (Table 1, entry 7). There was no desired product generated when the reaction was carried out under dark condition (Table 1, entry 8).

    Table 1

    Table 1.  Screening of reaction conditions.a
    DownLoad: CSV

    With the optimum reaction conditions in hands, we then examined the substrate scope of the reaction by employing various quinoxalin-2(1H)-ones (1) with acetone (2a) (Scheme 2). Firstly, the N-substituted groups such as N-methyl, N-ethyl, N-cyclopropylmethyl, N-keto and N-ester were well compatible under the standard conditions, giving the desired products (3a-e) in 72%–80% yields. It is worth mentioning that quinoxalin-2(1H)-one with a sensitive allyl group, which could be further functionalized, also could give the product (3f) in 69% yield. A wide range of quinoxalin-2(1H)-ones with different benzyl groups, bearing both electron-donating and electron-withdrawing substituents at ortho-, meta-, or para-position could undergo the reaction smoothly, affording the corresponding products (3g–n) in 40%–72% yields. Importantly, the N-free quinoxalin-2(1H)-one could undergo the reaction smoothly, providing the product (3o) in 45% yield. Besides, plenty of quinoxalin-2(1H)-ones that bear the functional groups including methyl, halogen, tert-butyl, methoxy or trifluoromethyl at C5-, C6- or C7-position also gave the desired products in satisfactory yield (3p-3w). To expand the substrate scope of N-heterocycles, we also tested quinoline, isoquinoline, quinoxaline, benzimidazole and benzothiazole under standard conditions, however, no corresponding product was obtained (see Supporting information).

    Scheme 2

    Scheme 2.  Substrate scope of quinoxalin-2(1H)-ones. Reaction conditions: 1 (0.2 mmol), 2a (1.0 mL), CH3SO3H (25 mol%), open flask, sunlight, room temperature, 15 min. Isolated yields. a Reaction was performed on a 1 mmol scale.

    Subsequently, we evaluated the substrate scope of methyl ketones for the reaction (Scheme 3). To reduce the dosage of reactant, the reactions were performed with 2.0 equiv. of methyl ketones by using acetonitrile as solvent. To our delight, both long-chain and cycloalkyl methyl ketones could undergo the reaction smoothly, giving the corresponding products (3x3ad) in 58%–79% yields. The molecular structure of 3y was confirmed by X-ray crystallographic analysis (CCDC: 2060383). It was found that the molecular structure was more stable in (Z)-configuration probably because the effect of hydrogen bond interaction between amine and carbonyl group. Then, we found that cyclopentanone skeleton could also react with quinoxalin-2(1H)-one smoothly to deliver the target products (3ae and 3af) in moderate yield. The subsequent exploration found that the aryl methyl ketones, such as acetophenone, 1-(furan-2-yl)ethan-1-one and 1-(thiophen-2-yl)ethan-1-one were also could be converted into target products (3ag-3ai) in acceptable yields. Unfortunately, the substrates like ethyl acetate, acetonitrile, nitromethane, ethyl acetoacetate, and acetylacetone were not compatible under standard conditions (Supporting information).

    Scheme 3

    Scheme 3.  Substrate scope of methyl ketones. Reaction conditions: 1a (0.2 mmol), 2 (2.0 equiv.), CH3SO3H (25 mol%), MeCN (1.0 mL), open flask, sunlight, room temperature, 15min. Isolated yields.

    To show the synthetic utility of this protocol, a gram-scale synthesis experiment was performed to give the target product (3a) in 75% yield (Scheme 4). Interestingly, the anticancer compound (3aj) and antimicrobial compound (3ak) were obtained in moderate yields by using our strategy [16]. Moreover, since the molecules that bearing a 3, 4 dihydroquinoxalin-2(1H)-one framework are a promising class of biologically active compounds, in this regard, several bioactive molecules such as naproxen derivative, frambinone, ibuprofen derivative, vanillylacetone, nabumetone and pregnenolone acetate were selected to react with 1-methylquinoxalin-2(1H)-one directly, providing the potentially active molecules (3al-3aq) in 52%–70% yields.

    Scheme 4

    Scheme 4.  Gram-scale synthesis and application. Reaction conditions: 1a (0.2mmol), 2 (2.0 equiv.), CH3SO3H (25mol%), MeCN (1.0mL), open flask, sunlight, room temperature, 15min. Isolated yields.

    To study the reaction mechanism, a series of control experiments were carried out. Product 4 was generated instead of target product 3a when the reaction was performed under nitrogen atmosphere (Scheme 5). This result showed that oxygen in air was included in the subsequent oxidation process. To confirm the assumption, the oxidation process of compound 4 was studied. First, target product 3 was formed in 0%, 79% and 82% yields when the reaction performed under nitrogen, air or oxygen atmosphere respectively (Scheme 5). Second, the reaction was inhibited when singlet oxygen inhibitor (NaN3) was involved in the transformation (Scheme 5). Furthermore, compound 4 could not be converted into target product 3 when the reaction was performed in dark condition (Scheme 5). These experimental results strongly supported that the singlet oxygen 1O2, which was generated from triplet oxygen 3O2 through photocatalysis, serves as the real oxidant.

    Scheme 5

    Scheme 5.  Control experiments.

    On the basis of above results and previous reports [8-12], we proposed a possible mechanism for this reaction (Scheme 6). Firstly, substrate 1a was transformed into intermediate A through a protonation process. Meanwhile, acetone 2a was converted to the enol form B under acidic condition. Then, a Mannich-type reaction took place between intermediates A and B to give the intermediate C, which underwent a deprotonation process to provide the key compound 4. It was found that organic molecules that containing a quinoxalin-2(1H)-one skeleton could act as a photosensitizer to generate 1O2 from O2 under the irradiation of visible light [12p]. In this regard, compounds1a, 4 or 3a was excited by visible light to provide the excited-species 1a*, 4* or 3a*, which acted as a photosensitizer and underwent an energy transfer (ET) process with O2 to give 1O2, along with the regeneration of ground-state compounds 1a, 4 or 3a. Finally, compound 4 underwent the single-electron-transfer (SET) process with 1O2 to give the desired product with the generation of H2O2, which was detected by H2O2 test paper (Supporting information) [12a] [17]. We proposed that the electron-withdrawing effects of carbonyl group that exists in quinoxalin-2(1H)-one skeleton lower down the electron cloud density of the enamine moiety, making it difficult to be oxidized and can survive under this H2O2 oxidation conditions.

    Scheme 6

    Scheme 6.  Plausible mechanism.

    In conclusion, this study described a novel strategy for the olefination of quinoxalin-2(1H)-ones with methyl ketones. Various substrates were compatible under standard condition, providing the corresponding products in moderate to good yields. Control experiments revealed that a Mannich-type reaction and oxidative process were involved in the transformation.

    The authors declare that they have no conflict of interest.

    We thank the Natural Science Foundation of Zhejiang Province (No. LY21B060009) and the National Natural Science Foundation of China (No. 21871071) for financial support.

    Supplementary material related to this article can befound, in the online version, at doi:https://doi.org/10.1016/j.cclet.2021.04.016.


    1. [1]

      T.B.Schon, B.T.McAllister, P.F.Li, D.S.Seferos, Chem.Soc.Rev.45(2016) 6345-6404.  doi: 10.1039/C6CS00173D

    2. [2]

      D.O.Akinyele, R.K.Rayudu, Sustain.Energy Technol.Assess.8(2014) 74-91.
       

    3. [3]

      M.Armand, J.M.Tarascon, Nature 451(2008) 652-657.  doi: 10.1038/451652a

    4. [4]

      B.Dunn, H.Kamath, J.M.Tarascon, Science 334(2011) 928-935.  doi: 10.1126/science.1212741

    5. [5]

      Z.Song, H.Zhou, Energy Environ.Sci.6(2013) 2280.  doi: 10.1039/c3ee40709h

    6. [6]

      S.H.Woo, Y.Park, W.Y.Choi, et al., J.Electrochem.Soc.159(2012) A2016-A2023.  doi: 10.1149/2.009301jes

    7. [7]

      Y.Wang, X.Yu, S.Xu, X.Huang, et al., Nat.Commun.4(2013) 2365.
       

    8. [8]

      Y.Sun, L.Zhao, H.Pan, et al., Nat.Commun.4(2013) 1870.  doi: 10.1038/ncomms2878

    9. [9]

      Q.Sun, Q.Q.Ren, H.Li, Z.W.Fu, Electrochem.Commun.13(2011) 1462-1464.  doi: 10.1016/j.elecom.2011.09.020

    10. [10]

      P.Senguttuvan, G.Rousse, V.Seznec, J.M.Tarascon, M.R.Palacin, Chem.Mater.23(2011) 4109-4111.  doi: 10.1021/cm202076g

    11. [11]

      Z.Gong, Y.Yang, Energ Environ.Sci.4(2011) 3223-3242.  doi: 10.1039/c0ee00713g

    12. [12]

      C.Masquelier, L.Croguennec, Chem.Rev.113(2013) 6552-6591.  doi: 10.1021/cr3001862

    13. [13]

      Y.Xu, Y.Zhu, Y.Liu, C.Wang, Adv.Energy Mater.3(2013) 128-133.  doi: 10.1002/aenm.201200346

    14. [14]

      A.Darwiche, C.Marino, M.T.Sougrati, et al., J.Am.Chem.Soc.134(2012) 20805-20811.  doi: 10.1021/ja310347x

    15. [15]

      H.Zhu, Z.Jia, Y.Chen, et al., Nano Lett.13(2013) 3093-3100.  doi: 10.1021/nl400998t

    16. [16]

      Y.Shao, J.Xiao, W.Wang, et al., Nano Lett.13(2013) 3909-3914.  doi: 10.1021/nl401995a

    17. [17]

      S.Komaba, W.Murata, T.Ishikawa, et al., Adv.Funct.Mater.21(2011) 3859-3867.  doi: 10.1002/adfm.v21.20

    18. [18]

      Y.Cao, L.Xiao, M.L.Sushko, et al., Nano Lett.12(2012) 3783-3787.  doi: 10.1021/nl3016957

    19. [19]

      Y.Kim, Y.Park, A.Choi, et al., Adv.Mater.25(2013) 3045-3049.  doi: 10.1002/adma.v25.22

    20. [20]

      J.Qian, X.Wu, Y.Cao, X.Ai, H.Yang, Angew.Chem.125(2013) 4731-4734.  doi: 10.1002/ange.201209689

    21. [21]

      Q.L.Jiang, K.Du, Y.B.Cao, et al., Chin.Chem.Lett.21(2010) 1382-1386.  doi: 10.1016/j.cclet.2010.04.039

    22. [22]

      P.Novák, K.Müller, K.Santhanam, O.Haas, Chem.Rev.97(1997) 207-282.  doi: 10.1021/cr941181o

    23. [23]

      P.J.Nigrey, D.MacInnes, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Electrochem.Soc.128(1981) 1651-1654.  doi: 10.1149/1.2127704

    24. [24]

      D.MacInnes, M.A.Druy, P.J.Nigrey, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1981) 317-319.

    25. [25]

      B.Häupler, A.Wild, U.S.Schubert, Adv.Energy Mater.5(2015) 1402034.  doi: 10.1002/aenm.201402034

    26. [26]

      Y.Wu, R.Zeng, J.Nan, et al., Adv.Energy Mater.(2017) 1700278.
       

    27. [27]

      H.Nishide, K.Oyaizu, Science 319(2008) 737-738.  doi: 10.1126/science.1151831

    28. [28]

      C.Wang, Y.Fang, Y.Xu, et al., Adv.Funct.Mater.26(2016) 1777-1786.  doi: 10.1002/adfm.v26.11

    29. [29]

      C.Wang, C.Jiang, Y.Xu, et al., Adv.Mater.28(2016) 9182-9187.  doi: 10.1002/adma.201603240

    30. [30]

      C.Luo, J.Wang, X.Fan, et al., Nano Energy 13(2015) 537-545.  doi: 10.1016/j.nanoen.2015.03.041

    31. [31]

      D.Monti, E.Jónsson, M.R.Palacín, P.Johansson, J.Power Sources 245(2014) 630-636.  doi: 10.1016/j.jpowsour.2013.06.153

    32. [32]

      Z.Zhu, M.Hong, D.Guo, et al., J.Am.Chem.Soc.136(2014) 16461-16464.  doi: 10.1021/ja507852t

    33. [33]

      H.Shirakawa, E.J.Louis, A.G.MacDiarmid, C.K.Chiang, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1977) 578-580.
       

    34. [34]

      C.Chiang, Polymer 22(1981) 1454-1456.  doi: 10.1016/0032-3861(81)90309-8

    35. [35]

      G.C.Farrington, R.Huq, J.Power Sources 14(1985) 3-9.  doi: 10.1016/0378-7753(85)88002-2

    36. [36]

      T.Nagatomo, C.Ichikawa, O.Omoto, J.Electrochem.Soc.134(1987) 305-308.  doi: 10.1149/1.2100451

    37. [37]

      L.Zhu, A.Lei, Y.Cao, X.Ai, H.Yang, Chem.Commun.49(2013) 567-569.  doi: 10.1039/C2CC36622C

    38. [38]

      M.Dubois, A.Naji, D.Billaud, Electrochim.Acta 46(2001) 4301-4307.  doi: 10.1016/S0013-4686(01)00663-6

    39. [39]

      N.Ravet, C.Michot, M.Armand, Mater.Res.Soc.Symp.Proc.496(1997) 263.  doi: 10.1557/PROC-496-263

    40. [40]

      X.Guo, M.D.Watson, Macromolecules 44(2011) 6711-6716.  doi: 10.1021/ma2009063

    41. [41]

      K.Cua See, H.E.Zatz, Transparent Electronics, John Wiley & Sons Ltd., 2010, pp.403-415.
       

    42. [42]

      Z.Wang, C.Kim, A.Facchetti, T.J.Marks, J.Am.Chem.Soc.129(2007) 13362-13363.  doi: 10.1021/ja073306f

    43. [43]

      C.Huang, S.Barlow, S.R.Marder, J.Org.Chem.76(2011) 2386-2407.  doi: 10.1021/jo2001963

    44. [44]

      D.W.Leedy, D.L.Muck, J.Am.Chem.Soc.93(1971) 4264-4270.  doi: 10.1021/ja00746a029

    45. [45]

      K.Oyaizu, A.Hatemata, W.Choi, H.Nishide, J.Mater.Chem.20(2010) 5404-5410.  doi: 10.1039/c0jm00042f

    46. [46]

      Z.Song, H.Zhan, Y.Zhou, Angew.Chem.122(2010) 8622-8626.  doi: 10.1002/ange.201002439

    47. [47]

      P.Sharma, D.Damien, K.Nagarajan, M.M.Shaijumon, M.Hariharan, J.Phys.Chem.Lett.4(2013) 3192-3197.  doi: 10.1021/jz4017359

    48. [48]

      D.Tian, H.Z.Zhang, D.S.Zhang, et al., RSC Adv.4(2014) 7506-7510.  doi: 10.1039/c3ra45563g

    49. [49]

      H.Wu, Q.Yang, Q.Meng, et al., J.Mater.Chem.A 4(2016) 2115-2121.  doi: 10.1039/C5TA07246H

    50. [50]

      C.Wang, H.Dong, W.Hu, Y.Liu, D.Zhu, Chem.Rev.112(2011) 2208-2267.

    51. [51]

      Z.Song, T.Xu, M.L.Gordin, et al., Nano Lett.12(2012) 2205-2211.  doi: 10.1021/nl2039666

    52. [52]

      H.Wu, K.Wang, Y.Meng, K.Lu, Z.Wei, J.Mater.Chem.A 1(2013) 6366-6372.  doi: 10.1039/c3ta10473g

    53. [53]

      H.Wu, Q.Meng, Q.Yang, et al., Adv.Mater.27(2015) 6504-6510.  doi: 10.1002/adma.201502241

    54. [54]

      H.Wu, S.A.Shevlin, Q.Meng, et al., Adv.Mater.26(2014) 3338-3343.  doi: 10.1002/adma.v26.20

    55. [55]

      Y.Meng, H.Wu, Y.Zhang, Z.Wei, J.Mater.Chem.A 2(2014) 10842-10846.  doi: 10.1039/C4TA00364K

    56. [56]

      C.Guo, K.Zhang, Q.Zhao, L.Pei, J.Chen, Chem.Commun.51(2015) 10244-10247.  doi: 10.1039/C5CC02251G

    57. [57]

      Z.Zhu, J.Chen, J.Electrochem.Soc.162(2015) A2393-A2405.  doi: 10.1149/2.0031514jes

    58. [58]

      P.Bu, S.Liu, Y.Lu, et al., Int.J.Electrochem.Sci 7(2012) 4617-4624.
       

    59. [59]

      S.Muench, A.Wild, C.Friebe, et al., Chem.Rev.116(2016) 9438-9484.  doi: 10.1021/acs.chemrev.6b00070

    60. [60]

      Z.Song, Y.Qian, M.Otani, H.Zhou, Adv.Energy Mater.6(2016) 1501780.  doi: 10.1002/aenm.201501780

    61. [61]

      D.Williams, J.Byrne, J.Driscoll, J.Electrochem.Soc.116(1969) 2-4.  doi: 10.1149/1.2411755

    62. [62]

      J.Foos, S.Erker, L.Rembetsy, J.Electrochem.Soc.133(1986) 836-841.  doi: 10.1149/1.2108689

    63. [63]

      Z.Song, H.Zhan, Y.Zhou, Chem.Commun.(2009) 448-450.
       

    64. [64]

      W.Xu, A.Read, P.K.Koech, et al., J.Mater.Chem.22(2012) 4032-4039.  doi: 10.1039/c2jm15764k

    65. [65]

      D.Häringer, P.Novák, O.Haas, B.Piro, M.C.Pham, J.Electrochem.Soc.146(1999) 2393-2396.  doi: 10.1149/1.1391947

    66. [66]

      L.Zhao, W.Wang, A.Wang, et al., J.Power Sources 233(2013) 23-27.  doi: 10.1016/j.jpowsour.2013.01.103

    67. [67]

      Z.Song, Y.Qian, M.L.Gordin, et al., Angew.Chem.Int.Ed.54(2015) 13947-13951.  doi: 10.1002/anie.201506673

    68. [68]

      Z.Song, Y.Qian, X.Liu, et al., Energy Environ.Sci.7(2014) 4077-4086.  doi: 10.1039/C4EE02575J

    69. [69]

      Z.Song, Y.Qian, T.Zhang, M.Otani, H.Zhou, Adv.Sci.2(2015) 1500124.  doi: 10.1002/advs.201500124

    70. [70]

      B.Häupler, T.Hagemann, C.Friebe, A.Wild, U.S.Schubert, ACS Appl.Mater.Inter.7(2015) 3473-3479.  doi: 10.1021/am5060959

    71. [71]

      J.Xie, Z.Wang, P.Gu, et al., Sci.China Mater.59(2016) 6-11.  doi: 10.1007/s40843-016-0112-3

    72. [72]

      T.Nokami, T.Matsuo, Y.Inatomi, et al., J.Am.Chem.Soc.134(2012) 19694-19700.  doi: 10.1021/ja306663g

    73. [73]

      P.Krishnan, S.G.Advani, A.K.Prasad, J.Power Sources 196(2011) 7755-7759.  doi: 10.1016/j.jpowsour.2011.04.048

    74. [74]

      H.Qin, Z.Song, H.Zhan, Y.Zhou, J.Power Sources 249(2014) 367-372.  doi: 10.1016/j.jpowsour.2013.10.091

    75. [75]

      Z.Guo, L.Chen, Y.Wang, C.Wang, Y.Xia, ACS Sustain.Chem.Eng.5(2017) 1503-1508.  doi: 10.1021/acssuschemeng.6b02127

    76. [76]

      K.Oyaizu, W.Choi, H.Nishide, Polym.Adv.Technol.22(2011) 1242-1247.  doi: 10.1002/pat.v22.8

    77. [77]

      Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. (2017)http://dx.doi.org/10.1038/nmat4919.

    78. [78]

      J.Wu, X.Rui, C.Wang, et al., Adv.Energy Mater.5(2015) 1402189.  doi: 10.1002/aenm.201402189

    79. [79]

      Q.Liao, H.Hou, J.Duan, et al., J.Appl.Polym.Sci.134(2017) 44935.
       

    80. [80]

      J.B.Goodenough, Y.Kim, Chem.Mater.22(2010) 587-603.  doi: 10.1021/cm901452z

    81. [81]

      N.Yabuuchi, K.Kubota, M.Dahbi, S.Komaba, Chem.Rev.114(2014) 11636-11682.  doi: 10.1021/cr500192f

    82. [82]

      V.Palomares, P.Serras, I.Villaluenga, et al., Energ Environ.Sci.5(2012) 5884-5901.  doi: 10.1039/c2ee02781j

    83. [83]

      Y.Liang, Z.Tao, J.Chen, Adv.Energy Mater.2(2012) 742-769.  doi: 10.1002/aenm.201100795

    84. [84]

      L.Chen, W.Li, Y.Wang, C.Wang, Y.Xia, RSC Adv.4(2014) 25369-25373.  doi: 10.1039/C4RA03473B

    85. [85]

      H.Wang, S.Yuan, D.Ma, et al., Adv.Energy Mater.4(2014) 1301651.  doi: 10.1002/aenm.201301651

    86. [86]

      F.Xu, J.Xia, W.Shi, Electrochem.Commun.60(2015) 117-120.  doi: 10.1016/j.elecom.2015.08.027

    87. [87]

      F.Xu, H.Wang, J.Lin, et al., J.Mater Chem.A 4(2016) 11491-11497.  doi: 10.1039/C6TA03956A

    88. [88]

      F.Xu, J.Xia, W.Shi, S.A.Cao, Mater.Chem.Phys.169(2016) 192-197.  doi: 10.1016/j.matchemphys.2015.12.004

    89. [89]

      H.Banda, D.Damien, K.Nagarajan, M.Hariharan, M.M.Shaijumon, J.Mater.Chem.A 3(2015) 10453-10458.  doi: 10.1039/C5TA02043C

    90. [90]

      W.Deng, X.Liang, X.Wu, et al., Sci.Rep.3(2013) 2671.  doi: 10.1038/srep02671

    91. [91]

      T.Sun, Z.Li, H.G.Wang, et al., Angew.Chem.128(2016) 10820-10824.  doi: 10.1002/ange.201604519

    92. [92]

      T.Liu, K.C.Kim, B.Lee, et al., Energ Environ.Sci.10(2017) 205-215.  doi: 10.1039/C6EE02641A

    93. [93]

      C.Wang, Y.Xu, Y.Fang, et al., J.Am.Chem.Soc.137(2015) 3124-3130.  doi: 10.1021/jacs.5b00336

    94. [94]

      E.Castillo-Martínez, J.Carretero-González, M.Armand, Angew.Chem.Int.Ed.53(2014) 5341-5345.  doi: 10.1002/anie.v53.21

    95. [95]

      B.Pan, D.Zhou, J.Huang, et al., J.Electrochem.Soc.163(2016) A580-A583.  doi: 10.1149/2.0021605jes

    96. [96]

      Y.NuLi, Z.Guo, H.Liu, J.Yang, Electrochem.Commun.9(2007) 1913-1917.  doi: 10.1016/j.elecom.2007.05.009

    97. [97]

      J.Bitenc, K.Pirnat, T.Banci 9 c, et al., ChemSusChem 8(2015) 41289-4132.

    98. [98]

      B.Pan, J.Huang, Z.Feng, et al., Adv.Energy Mater.6(2016) 1600140.  doi: 10.1002/aenm.201600140

    99. [99]

      Y.Zhang, J.Wang, S.N.Riduan, J.Mater.Chem.A 4(2016) 14902-14914.  doi: 10.1039/C6TA05231B

    1. [1]

      T.B.Schon, B.T.McAllister, P.F.Li, D.S.Seferos, Chem.Soc.Rev.45(2016) 6345-6404.  doi: 10.1039/C6CS00173D

    2. [2]

      D.O.Akinyele, R.K.Rayudu, Sustain.Energy Technol.Assess.8(2014) 74-91.
       

    3. [3]

      M.Armand, J.M.Tarascon, Nature 451(2008) 652-657.  doi: 10.1038/451652a

    4. [4]

      B.Dunn, H.Kamath, J.M.Tarascon, Science 334(2011) 928-935.  doi: 10.1126/science.1212741

    5. [5]

      Z.Song, H.Zhou, Energy Environ.Sci.6(2013) 2280.  doi: 10.1039/c3ee40709h

    6. [6]

      S.H.Woo, Y.Park, W.Y.Choi, et al., J.Electrochem.Soc.159(2012) A2016-A2023.  doi: 10.1149/2.009301jes

    7. [7]

      Y.Wang, X.Yu, S.Xu, X.Huang, et al., Nat.Commun.4(2013) 2365.
       

    8. [8]

      Y.Sun, L.Zhao, H.Pan, et al., Nat.Commun.4(2013) 1870.  doi: 10.1038/ncomms2878

    9. [9]

      Q.Sun, Q.Q.Ren, H.Li, Z.W.Fu, Electrochem.Commun.13(2011) 1462-1464.  doi: 10.1016/j.elecom.2011.09.020

    10. [10]

      P.Senguttuvan, G.Rousse, V.Seznec, J.M.Tarascon, M.R.Palacin, Chem.Mater.23(2011) 4109-4111.  doi: 10.1021/cm202076g

    11. [11]

      Z.Gong, Y.Yang, Energ Environ.Sci.4(2011) 3223-3242.  doi: 10.1039/c0ee00713g

    12. [12]

      C.Masquelier, L.Croguennec, Chem.Rev.113(2013) 6552-6591.  doi: 10.1021/cr3001862

    13. [13]

      Y.Xu, Y.Zhu, Y.Liu, C.Wang, Adv.Energy Mater.3(2013) 128-133.  doi: 10.1002/aenm.201200346

    14. [14]

      A.Darwiche, C.Marino, M.T.Sougrati, et al., J.Am.Chem.Soc.134(2012) 20805-20811.  doi: 10.1021/ja310347x

    15. [15]

      H.Zhu, Z.Jia, Y.Chen, et al., Nano Lett.13(2013) 3093-3100.  doi: 10.1021/nl400998t

    16. [16]

      Y.Shao, J.Xiao, W.Wang, et al., Nano Lett.13(2013) 3909-3914.  doi: 10.1021/nl401995a

    17. [17]

      S.Komaba, W.Murata, T.Ishikawa, et al., Adv.Funct.Mater.21(2011) 3859-3867.  doi: 10.1002/adfm.v21.20

    18. [18]

      Y.Cao, L.Xiao, M.L.Sushko, et al., Nano Lett.12(2012) 3783-3787.  doi: 10.1021/nl3016957

    19. [19]

      Y.Kim, Y.Park, A.Choi, et al., Adv.Mater.25(2013) 3045-3049.  doi: 10.1002/adma.v25.22

    20. [20]

      J.Qian, X.Wu, Y.Cao, X.Ai, H.Yang, Angew.Chem.125(2013) 4731-4734.  doi: 10.1002/ange.201209689

    21. [21]

      Q.L.Jiang, K.Du, Y.B.Cao, et al., Chin.Chem.Lett.21(2010) 1382-1386.  doi: 10.1016/j.cclet.2010.04.039

    22. [22]

      P.Novák, K.Müller, K.Santhanam, O.Haas, Chem.Rev.97(1997) 207-282.  doi: 10.1021/cr941181o

    23. [23]

      P.J.Nigrey, D.MacInnes, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Electrochem.Soc.128(1981) 1651-1654.  doi: 10.1149/1.2127704

    24. [24]

      D.MacInnes, M.A.Druy, P.J.Nigrey, D.P.Nairns, A.G.MacDiarmid, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1981) 317-319.

    25. [25]

      B.Häupler, A.Wild, U.S.Schubert, Adv.Energy Mater.5(2015) 1402034.  doi: 10.1002/aenm.201402034

    26. [26]

      Y.Wu, R.Zeng, J.Nan, et al., Adv.Energy Mater.(2017) 1700278.
       

    27. [27]

      H.Nishide, K.Oyaizu, Science 319(2008) 737-738.  doi: 10.1126/science.1151831

    28. [28]

      C.Wang, Y.Fang, Y.Xu, et al., Adv.Funct.Mater.26(2016) 1777-1786.  doi: 10.1002/adfm.v26.11

    29. [29]

      C.Wang, C.Jiang, Y.Xu, et al., Adv.Mater.28(2016) 9182-9187.  doi: 10.1002/adma.201603240

    30. [30]

      C.Luo, J.Wang, X.Fan, et al., Nano Energy 13(2015) 537-545.  doi: 10.1016/j.nanoen.2015.03.041

    31. [31]

      D.Monti, E.Jónsson, M.R.Palacín, P.Johansson, J.Power Sources 245(2014) 630-636.  doi: 10.1016/j.jpowsour.2013.06.153

    32. [32]

      Z.Zhu, M.Hong, D.Guo, et al., J.Am.Chem.Soc.136(2014) 16461-16464.  doi: 10.1021/ja507852t

    33. [33]

      H.Shirakawa, E.J.Louis, A.G.MacDiarmid, C.K.Chiang, A.J.Heeger, J.Chem.Soc.Chem.Commun.(1977) 578-580.
       

    34. [34]

      C.Chiang, Polymer 22(1981) 1454-1456.  doi: 10.1016/0032-3861(81)90309-8

    35. [35]

      G.C.Farrington, R.Huq, J.Power Sources 14(1985) 3-9.  doi: 10.1016/0378-7753(85)88002-2

    36. [36]

      T.Nagatomo, C.Ichikawa, O.Omoto, J.Electrochem.Soc.134(1987) 305-308.  doi: 10.1149/1.2100451

    37. [37]

      L.Zhu, A.Lei, Y.Cao, X.Ai, H.Yang, Chem.Commun.49(2013) 567-569.  doi: 10.1039/C2CC36622C

    38. [38]

      M.Dubois, A.Naji, D.Billaud, Electrochim.Acta 46(2001) 4301-4307.  doi: 10.1016/S0013-4686(01)00663-6

    39. [39]

      N.Ravet, C.Michot, M.Armand, Mater.Res.Soc.Symp.Proc.496(1997) 263.  doi: 10.1557/PROC-496-263

    40. [40]

      X.Guo, M.D.Watson, Macromolecules 44(2011) 6711-6716.  doi: 10.1021/ma2009063

    41. [41]

      K.Cua See, H.E.Zatz, Transparent Electronics, John Wiley & Sons Ltd., 2010, pp.403-415.
       

    42. [42]

      Z.Wang, C.Kim, A.Facchetti, T.J.Marks, J.Am.Chem.Soc.129(2007) 13362-13363.  doi: 10.1021/ja073306f

    43. [43]

      C.Huang, S.Barlow, S.R.Marder, J.Org.Chem.76(2011) 2386-2407.  doi: 10.1021/jo2001963

    44. [44]

      D.W.Leedy, D.L.Muck, J.Am.Chem.Soc.93(1971) 4264-4270.  doi: 10.1021/ja00746a029

    45. [45]

      K.Oyaizu, A.Hatemata, W.Choi, H.Nishide, J.Mater.Chem.20(2010) 5404-5410.  doi: 10.1039/c0jm00042f

    46. [46]

      Z.Song, H.Zhan, Y.Zhou, Angew.Chem.122(2010) 8622-8626.  doi: 10.1002/ange.201002439

    47. [47]

      P.Sharma, D.Damien, K.Nagarajan, M.M.Shaijumon, M.Hariharan, J.Phys.Chem.Lett.4(2013) 3192-3197.  doi: 10.1021/jz4017359

    48. [48]

      D.Tian, H.Z.Zhang, D.S.Zhang, et al., RSC Adv.4(2014) 7506-7510.  doi: 10.1039/c3ra45563g

    49. [49]

      H.Wu, Q.Yang, Q.Meng, et al., J.Mater.Chem.A 4(2016) 2115-2121.  doi: 10.1039/C5TA07246H

    50. [50]

      C.Wang, H.Dong, W.Hu, Y.Liu, D.Zhu, Chem.Rev.112(2011) 2208-2267.

    51. [51]

      Z.Song, T.Xu, M.L.Gordin, et al., Nano Lett.12(2012) 2205-2211.  doi: 10.1021/nl2039666

    52. [52]

      H.Wu, K.Wang, Y.Meng, K.Lu, Z.Wei, J.Mater.Chem.A 1(2013) 6366-6372.  doi: 10.1039/c3ta10473g

    53. [53]

      H.Wu, Q.Meng, Q.Yang, et al., Adv.Mater.27(2015) 6504-6510.  doi: 10.1002/adma.201502241

    54. [54]

      H.Wu, S.A.Shevlin, Q.Meng, et al., Adv.Mater.26(2014) 3338-3343.  doi: 10.1002/adma.v26.20

    55. [55]

      Y.Meng, H.Wu, Y.Zhang, Z.Wei, J.Mater.Chem.A 2(2014) 10842-10846.  doi: 10.1039/C4TA00364K

    56. [56]

      C.Guo, K.Zhang, Q.Zhao, L.Pei, J.Chen, Chem.Commun.51(2015) 10244-10247.  doi: 10.1039/C5CC02251G

    57. [57]

      Z.Zhu, J.Chen, J.Electrochem.Soc.162(2015) A2393-A2405.  doi: 10.1149/2.0031514jes

    58. [58]

      P.Bu, S.Liu, Y.Lu, et al., Int.J.Electrochem.Sci 7(2012) 4617-4624.
       

    59. [59]

      S.Muench, A.Wild, C.Friebe, et al., Chem.Rev.116(2016) 9438-9484.  doi: 10.1021/acs.chemrev.6b00070

    60. [60]

      Z.Song, Y.Qian, M.Otani, H.Zhou, Adv.Energy Mater.6(2016) 1501780.  doi: 10.1002/aenm.201501780

    61. [61]

      D.Williams, J.Byrne, J.Driscoll, J.Electrochem.Soc.116(1969) 2-4.  doi: 10.1149/1.2411755

    62. [62]

      J.Foos, S.Erker, L.Rembetsy, J.Electrochem.Soc.133(1986) 836-841.  doi: 10.1149/1.2108689

    63. [63]

      Z.Song, H.Zhan, Y.Zhou, Chem.Commun.(2009) 448-450.
       

    64. [64]

      W.Xu, A.Read, P.K.Koech, et al., J.Mater.Chem.22(2012) 4032-4039.  doi: 10.1039/c2jm15764k

    65. [65]

      D.Häringer, P.Novák, O.Haas, B.Piro, M.C.Pham, J.Electrochem.Soc.146(1999) 2393-2396.  doi: 10.1149/1.1391947

    66. [66]

      L.Zhao, W.Wang, A.Wang, et al., J.Power Sources 233(2013) 23-27.  doi: 10.1016/j.jpowsour.2013.01.103

    67. [67]

      Z.Song, Y.Qian, M.L.Gordin, et al., Angew.Chem.Int.Ed.54(2015) 13947-13951.  doi: 10.1002/anie.201506673

    68. [68]

      Z.Song, Y.Qian, X.Liu, et al., Energy Environ.Sci.7(2014) 4077-4086.  doi: 10.1039/C4EE02575J

    69. [69]

      Z.Song, Y.Qian, T.Zhang, M.Otani, H.Zhou, Adv.Sci.2(2015) 1500124.  doi: 10.1002/advs.201500124

    70. [70]

      B.Häupler, T.Hagemann, C.Friebe, A.Wild, U.S.Schubert, ACS Appl.Mater.Inter.7(2015) 3473-3479.  doi: 10.1021/am5060959

    71. [71]

      J.Xie, Z.Wang, P.Gu, et al., Sci.China Mater.59(2016) 6-11.  doi: 10.1007/s40843-016-0112-3

    72. [72]

      T.Nokami, T.Matsuo, Y.Inatomi, et al., J.Am.Chem.Soc.134(2012) 19694-19700.  doi: 10.1021/ja306663g

    73. [73]

      P.Krishnan, S.G.Advani, A.K.Prasad, J.Power Sources 196(2011) 7755-7759.  doi: 10.1016/j.jpowsour.2011.04.048

    74. [74]

      H.Qin, Z.Song, H.Zhan, Y.Zhou, J.Power Sources 249(2014) 367-372.  doi: 10.1016/j.jpowsour.2013.10.091

    75. [75]

      Z.Guo, L.Chen, Y.Wang, C.Wang, Y.Xia, ACS Sustain.Chem.Eng.5(2017) 1503-1508.  doi: 10.1021/acssuschemeng.6b02127

    76. [76]

      K.Oyaizu, W.Choi, H.Nishide, Polym.Adv.Technol.22(2011) 1242-1247.  doi: 10.1002/pat.v22.8

    77. [77]

      Y. Liang, Y. Jing, S. Gheytani, et al., Nat. Mater. (2017)http://dx.doi.org/10.1038/nmat4919.

    78. [78]

      J.Wu, X.Rui, C.Wang, et al., Adv.Energy Mater.5(2015) 1402189.  doi: 10.1002/aenm.201402189

    79. [79]

      Q.Liao, H.Hou, J.Duan, et al., J.Appl.Polym.Sci.134(2017) 44935.
       

    80. [80]

      J.B.Goodenough, Y.Kim, Chem.Mater.22(2010) 587-603.  doi: 10.1021/cm901452z

    81. [81]

      N.Yabuuchi, K.Kubota, M.Dahbi, S.Komaba, Chem.Rev.114(2014) 11636-11682.  doi: 10.1021/cr500192f

    82. [82]

      V.Palomares, P.Serras, I.Villaluenga, et al., Energ Environ.Sci.5(2012) 5884-5901.  doi: 10.1039/c2ee02781j

    83. [83]

      Y.Liang, Z.Tao, J.Chen, Adv.Energy Mater.2(2012) 742-769.  doi: 10.1002/aenm.201100795

    84. [84]

      L.Chen, W.Li, Y.Wang, C.Wang, Y.Xia, RSC Adv.4(2014) 25369-25373.  doi: 10.1039/C4RA03473B

    85. [85]

      H.Wang, S.Yuan, D.Ma, et al., Adv.Energy Mater.4(2014) 1301651.  doi: 10.1002/aenm.201301651

    86. [86]

      F.Xu, J.Xia, W.Shi, Electrochem.Commun.60(2015) 117-120.  doi: 10.1016/j.elecom.2015.08.027

    87. [87]

      F.Xu, H.Wang, J.Lin, et al., J.Mater Chem.A 4(2016) 11491-11497.  doi: 10.1039/C6TA03956A

    88. [88]

      F.Xu, J.Xia, W.Shi, S.A.Cao, Mater.Chem.Phys.169(2016) 192-197.  doi: 10.1016/j.matchemphys.2015.12.004

    89. [89]

      H.Banda, D.Damien, K.Nagarajan, M.Hariharan, M.M.Shaijumon, J.Mater.Chem.A 3(2015) 10453-10458.  doi: 10.1039/C5TA02043C

    90. [90]

      W.Deng, X.Liang, X.Wu, et al., Sci.Rep.3(2013) 2671.  doi: 10.1038/srep02671

    91. [91]

      T.Sun, Z.Li, H.G.Wang, et al., Angew.Chem.128(2016) 10820-10824.  doi: 10.1002/ange.201604519

    92. [92]

      T.Liu, K.C.Kim, B.Lee, et al., Energ Environ.Sci.10(2017) 205-215.  doi: 10.1039/C6EE02641A

    93. [93]

      C.Wang, Y.Xu, Y.Fang, et al., J.Am.Chem.Soc.137(2015) 3124-3130.  doi: 10.1021/jacs.5b00336

    94. [94]

      E.Castillo-Martínez, J.Carretero-González, M.Armand, Angew.Chem.Int.Ed.53(2014) 5341-5345.  doi: 10.1002/anie.v53.21

    95. [95]

      B.Pan, D.Zhou, J.Huang, et al., J.Electrochem.Soc.163(2016) A580-A583.  doi: 10.1149/2.0021605jes

    96. [96]

      Y.NuLi, Z.Guo, H.Liu, J.Yang, Electrochem.Commun.9(2007) 1913-1917.  doi: 10.1016/j.elecom.2007.05.009

    97. [97]

      J.Bitenc, K.Pirnat, T.Banci 9 c, et al., ChemSusChem 8(2015) 41289-4132.

    98. [98]

      B.Pan, J.Huang, Z.Feng, et al., Adv.Energy Mater.6(2016) 1600140.  doi: 10.1002/aenm.201600140

    99. [99]

      Y.Zhang, J.Wang, S.N.Riduan, J.Mater.Chem.A 4(2016) 14902-14914.  doi: 10.1039/C6TA05231B

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    3. [3]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    4. [4]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    5. [5]

      Shuangliang XieYuyue ChenQing HeLiang ChenJikun YangShiqing DengYimei ZhuHe Qi . Relaxor antiferroelectric-relaxor ferroelectric crossover in NaNbO3-based lead-free ceramics for high-efficiency large-capacitive energy storage. Chinese Chemical Letters, 2024, 35(7): 108871-. doi: 10.1016/j.cclet.2023.108871

    6. [6]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    7. [7]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    8. [8]

      Xiangyue LiDexin ZhuKunmin PanXiaoye ZhouJiaming ZhuYingxue WangYongpeng RenHong-Hui Wu . Identifying key determinants of discharge capacity in ternary cathode materials of lithium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 109870-. doi: 10.1016/j.cclet.2024.109870

    9. [9]

      Xin LiLing ZhangYunyan FanShaojing LinYong LinYongsheng YingMeijiao HuHaiying GaoXianri XuZhongbiao XiaXinchuan LinJunjie LuXiang Han . Carbon interconnected microsized Si film toward high energy room temperature solid-state lithium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109776-. doi: 10.1016/j.cclet.2024.109776

    10. [10]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309

    11. [11]

      Guihuang FangYing LiuYangyang FengYing PanHongwei YangYongchuan LiuMaoxiang Wu . Tuning the ion-dipole interactions between fluoro and carbonyl (EC) by electrolyte design for stable lithium metal batteries. Chinese Chemical Letters, 2025, 36(1): 110385-. doi: 10.1016/j.cclet.2024.110385

    12. [12]

      Yanxue WuXijun XuShanshan ShiFangkun LiShaomin JiJingwei ZhaoJun LiuYanping Huo . Facile construction of Cu2-xSe@C nanobelts as anode for superior sodium-ion storage. Chinese Chemical Letters, 2025, 36(6): 110062-. doi: 10.1016/j.cclet.2024.110062

    13. [13]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    14. [14]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    15. [15]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Yang LIULijun WANGHongyu WANGZhidong CHENLin SUN . Surface and interface modification of porous silicon anodes in lithium-ion batteries by the introduction of heterogeneous atoms and hybrid encapsulation. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 773-785. doi: 10.11862/CJIC.20250015

    18. [18]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    19. [19]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

    20. [20]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

Metrics
  • PDF Downloads(1)
  • Abstract views(930)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return