Citation: Pan Yi, Li Zhi-Ang, Zhou Xin, Wang Wei-Kang, Wang Xing, Fang Zheng, Zheng Cheng-Bin. A system consisted of flame ionization detector and sulfur chemiluminescence detector for interference free determination of total sulfur in natural gas[J]. Chinese Chemical Letters, ;2017, 28(8): 1670-1674. doi: 10.1016/j.cclet.2017.04.014 shu

A system consisted of flame ionization detector and sulfur chemiluminescence detector for interference free determination of total sulfur in natural gas

  • Corresponding author: Fang Zheng, fz_nimtt@126.com Zheng Cheng-Bin, abinscu@scu.edu.cn
  • Received Date: 24 January 2017
    Revised Date: 21 March 2017
    Accepted Date: 23 March 2017
    Available Online: 21 August 2017

Figures(4)

  • A new detection system consisted of a flame ionization detector (FID) and a sulfur chemiluminescence detector (SCD) was developed for sensitive and interference free determination of total sulfur in natural gas by non-separation gas chromatography. In this system, sulfur containing compounds and hydrocarbons were firstly burned in the FID using oxygen rich flame and converted to SO2, CO2 and H2O, respectively. The products from FID were transported into the SCD with hydrogen rich atmosphere wherein only SO2 could be reduced to SO and reacted with O3 to produce characteristic chemiluminescence. Therefore, the chemiluminescence of CO found in conventional SCD were eliminated because CO2 could not be reduced to CO under these conditions. The experimental parameters were systematically investigated. Limit of detection obtained by the proposed system is better than 0.5 μmol/mol for total sulfur and superior to those previously reported. The proposed method not only retains the advantages of the conventional SCD but also provides several unique advantages including no hydrocarbon interference, better stability, and easier calculation. The utility of this technique was demonstrated by the determination of total sulfur in real samples and two certified reference materials (GBW 06332 and GBW (E) 061320).
  • 加载中
    1. [1]

      Medina D.S., Liu Y.D., Wang L.M., Zhang J.S.. Detection of sulfur dioxide by cavity ring-down spectroscopy[J]. Environ. Sci. Technol., 2011,45:1926-1931. doi: 10.1021/es103739r

    2. [2]

      Yan X.. Detection by ozone-induced chemiluminescence in chromatography[J]. J. Chromatogr. A, 1999,842:267-308. doi: 10.1016/S0021-9673(99)00177-6

    3. [3]

      Tan Q.Y., Lv H.M., Liu H.M.. Research and evaluation of test methods of trace quantities of sulfur in light liquid petroleum products[J]. China Meas. Technol., 2007,33:57-60.  

    4. [4]

      Barendrecht E., Martens W.. Completely automatic, coulometric titration apparatus for process use. Determination of sulfur dioxide in gases with concentrations ranging from 0.1 to 100% by volume[J]. Anal. Chem, 1962,34:138-142. doi: 10.1021/ac60181a042

    5. [5]

      Šprta V., Knob B., Janoš P.. X-ray fluorescence determination of total sulfur in fly ash[J]. Fresenius' J. Anal. Chem., 1999,364:705-708. doi: 10.1007/s002160051418

    6. [6]

      Santelli R.E., Oliveira E.P., Bezerra M.A.. Total sulfur determination in gasoline, kerosene and diesel fuel using inductively coupled plasma optical emission spectrometry after direct sample introduction as detergent emulsions[J]. Spectrochim. Acta Part B, 2008,63:800-804. doi: 10.1016/j.sab.2008.04.020

    7. [7]

      Christopher S.J., Vetter T.W.. Application of microwave-induced combustion and isotope dilution strategies for quantification of sulfur in coals via sectorfield inductively coupled plasma mass spectrometry[J]. Anal. Chem., 2016,88:4635-4643. doi: 10.1021/acs.analchem.5b03981

    8. [8]

      López García C. , Becchi M., Grenier-Loustalot M.F., Païsse O., Szymanski R.. Analysis of aromatic sulfur compounds in gas oils using GC with sulfur chemiluminescence detection and high-resolution MS[J]. Anal. Chem., 2002,74:3849-3857. doi: 10.1021/ac011190e

    9. [9]

      Tsikas D., Chobanyan K., rgens -Jü. Quantification of carbonate by gas chromatography-mass spectrometry[J]. Anal. Chem., 2010,82:7897-7905. doi: 10.1021/ac1007688

    10. [10]

      Goode K.A.. Gas chromatographic determination of sulphur compounds in north sea natural gases by a flame-photometric detector[J]. J. Inst. Petrol, 1970,5633.

    11. [11]

      Hua R.X., Li Y.Y., Liu W.. Determination of sulfur-containing compounds in diesel oils by comprehensive two-dimensional gas chromatography with a sulfur chemiluminescence detector[J]. J. Chromatogr. A, 2003,1019:101-109. doi: 10.1016/j.chroma.2003.08.048

    12. [12]

      Shearer R.L.. Development of flameless sulfur chemiluminescence detection:application to gas chromatography[J]. Anal. Chem., 1992,64:2192-2196. doi: 10.1021/ac00042a030

    13. [13]

      Nagahata T., Kajiwara H., Ohira S., Toda K.. Simple field device for measurement of dimethyl sulfide and dimethylsulfoniopropionate in natural waters, based on vapor generation and chemiluminescence detection[J]. Anal. Chem., 2013,85:4461-4467. doi: 10.1021/ac303803w

    14. [14]

      Benner R.L., Stedman D.H.. Universal sulfur detection by chemiluminescence[J]. Anal. Chem., 1989,61:1268-1271. doi: 10.1021/ac00186a018

    15. [15]

      Benner R.L., Stedman D.H.. Field evaluation of the sulfur chemiluminescence detector[J]. Environ. Sci. Technol., 1990,24:1592-1596. doi: 10.1021/es00080a021

    16. [16]

      Burrow P.L., Birks J.W.. Flow tube kinetics investigation of the mechanism of detection in the sulfur chemiluminescence detector[J]. Anal. Chem., 1997,69:1299-1306. doi: 10.1021/ac960937b

    17. [17]

      Li M., Yuan D.X., Li Q.L., Jin X.Y.. Sequential analysis of dimethyl sulfur compounds in seawater[J]. Chin. Chem. Lett., 2007,18:99-102. doi: 10.1016/j.cclet.2006.11.005

    18. [18]

      Chang H.C.K., Taylor L.T.. Sulfur-selective chemiluminescence detection after packed-capillary-column high-performance liquid chromatography[J]. Anal. Chem., 1991,63:486-490. doi: 10.1021/ac00005a020

    19. [19]

      Chen S., Chen Z.J., Ren W., Ai H.W.. Reaction-based genetically encoded fluorescent hydrogen sulfide sensors[J]. J. Am. Chem. Soc., 2012,134:9589-9592. doi: 10.1021/ja303261d

    20. [20]

      Matsukami T., Machino A., Sugimoto H.. Determination of the total sulfur content using a sulfur chemiluminescence detector[J]. Anal. Sci., 1994,10:453-456. doi: 10.2116/analsci.10.453

    21. [21]

      Yuan M.L., Jiang T.Y., Du L.P., Li M.Y.. Luminescence of coelenterazine derivatives with C-8 extended electronic conjugation[J]. Chin. Chem. Lett., 2016,27:550-554. doi: 10.1016/j.cclet.2016.02.011

    22. [22]

      Shi H., Taylor L.T., Fujinari E.M., Yan X.. Sulfur-selective chemiluminescence detection with packed column supercritical fluid chromatography[J]. J. Chromatogr. A, 1997,779:307-313. doi: 10.1016/S0021-9673(97)00455-X

    23. [23]

      Huang M.D., Becker H., Ross -, Florek S.. Determination of sulfur forms in wine including free and total sulfur dioxide based on molecular absorption of carbon monosulfide in the air-acetylene flame[J]. Anal. Bioanal. Chem., 2008,390:361-367. doi: 10.1007/s00216-007-1669-1

    24. [24]

      Vitvitsky V., Banerjee R.. H2S analysis in biological samples using gas chromatography with sulfur chemiluminescence detection[J]. Methods Enzymol., 2015,554:111-123. doi: 10.1016/bs.mie.2014.11.013

    25. [25]

      Clay D.A., Rogers C.H., Jungers R.H.. Determination of total sulfur in gasoline by gas chromatography with a flame photometric detector[J]. Anal. Chem., 1977,49:126-128. doi: 10.1021/ac50009a039

    26. [26]

      Rath H.J., Wimmer J.. Gas chromatographic analysis of traces of hydrogen sulfide in hydrogen[J]. Chromatography, 1980,13:513-514. doi: 10.1007/BF02261623

  • 加载中
    1. [1]

      Xuan SongTeng FuYajie YangYahan KuangXiuli WangYu-Zhong Wang . Spatial-confinement combustion strategy enabling free radicals chemiluminescence direct-measurement in flame-retardant mechanism. Chinese Chemical Letters, 2025, 36(5): 110699-. doi: 10.1016/j.cclet.2024.110699

    2. [2]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    3. [3]

      Dan ZhouLiangjin BaoHaoqi LongDuo ZhouYuwei XuBo WangChuanqin XiaLiang XianChengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093

    4. [4]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    5. [5]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    6. [6]

      Qihou LiJiamin LiuFulu ChuJinwei ZhouJieshuangyang ChenZengqiang GuanXiyun YangJie LeiFeixiang Wu . Coordinating lithium polysulfides to inhibit intrinsic clustering behavior and facilitate sulfur redox conversion in lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(5): 110306-. doi: 10.1016/j.cclet.2024.110306

    7. [7]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    8. [8]

      Minjun YinYuhui LinManli ZhuangWei XiaoJie Wu . Photoredox-catalyzed synthesis of α,α-difluoromethyl-β-alkoxysulfones from sulfur dioxide. Chinese Chemical Letters, 2025, 36(3): 109926-. doi: 10.1016/j.cclet.2024.109926

    9. [9]

      Jiayi GuoLiangxiong LingQinwei LuYi ZhouXubiao LuoYanbo Zhou . Degradation of chloroxylenol by CoSx activated peroxomonosulfate: Role of cobalt-sulfur ratio. Chinese Chemical Letters, 2025, 36(4): 110380-. doi: 10.1016/j.cclet.2024.110380

    10. [10]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    11. [11]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    12. [12]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    13. [13]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    14. [14]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    15. [15]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    16. [16]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    17. [17]

      Tengfei YangJingshuai XiaoXiao SunYan SongChaozheng He . Facilitating the polysulfides conversion kinetics by porous LaOCl nanofibers towards long-cycling lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 109691-. doi: 10.1016/j.cclet.2024.109691

    18. [18]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    19. [19]

      Xiaoli DengXiangchao LuYang CaoQianjin Chen . Electrochemical imaging uncovers the heterogeneity of HER activity by sulfur vacancies in molybdenum disulfide monolayer. Chinese Chemical Letters, 2025, 36(3): 110379-. doi: 10.1016/j.cclet.2024.110379

    20. [20]

      Hui ZhangRong FengWanyi YuHongbei WeiTianhong WuPeng ZhangWenhai BianXin LiDi GaoGuojun WengZhe YangTony D. JamesXiaolong Sun . Evaluating the global thiols redox state in living cells using a reducing sulfur species responsive fluorescence switching platform. Chinese Chemical Letters, 2025, 36(4): 110528-. doi: 10.1016/j.cclet.2024.110528

Metrics
  • PDF Downloads(2)
  • Abstract views(997)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return