Citation: Wei Jin-Qi, Liu Yun, Zhang Xue-Hui, Liang Wei-Wei, Zhou Tuan-Feng, Zhang Hua, Deng Xu-Liang. Enhanced critical-sized bone defect repair efficiency by combining deproteinized antler cancellous bone and autologous BMSCs[J]. Chinese Chemical Letters, ;2017, 28(4): 845-850. doi: 10.1016/j.cclet.2017.01.008 shu

Enhanced critical-sized bone defect repair efficiency by combining deproteinized antler cancellous bone and autologous BMSCs

  • Corresponding author: Zhang Xue-Hui, zhangxuehui914@163.com Deng Xu-Liang, kqdengxuliang@bjmu.edu.cn
  • 1 These authors contributed equally to this work
  • Received Date: 1 September 2016
    Revised Date: 18 December 2016
    Accepted Date: 21 December 2016
    Available Online: 12 April 2017

Figures(5)

  • Previously we have demonstrated that calcinated antler cancellous bone(CACB)has great potential for bone defect repair, due to its highly similar composition and architecture to natural extracellular bone matrix.This study is aiming at seeking for an optimal strategy of combined application of CACB and bone marrow mesenchymal stem cells(BMSCs)in bone defect repair.In vitro study demonstrated that CACB promoted the adhesion, spreading and viability of BMSCs.Increased extracellular matrix production and expression of osteogenic markers in BMSCs were observed when seeded on CACB scaffolds.The cells ceased to proliferation in the dual effect of CACB and osteogenic induction at the early stage of incubation. Hence synergistic effect of CACB combined with autologous undifferentiated BMSCs in rabbit mandible critical-sized defect repair was further evaluated.Histological analysis results showed that loading the CACB with autologous BMSCs resulted in enhanced new bone formation and angiogenesis when compared with implanted CACB alone.These findings indicate that the combination of CACB and autologous BMSCs should become potential routes to improve bone repair efficiency
  • 加载中
    1. [1]

      H. F. Nasr, M. E. Aichelmann-Reidy, R. A. Yukna, Bone and bone substitutes, Periodontology 19(1999)(2000)74-86.

    2. [2]

      Kon E., Muraglia A., Corsi A.. Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones[J]. J.Biomed.Mater.Res., 2000,49:328-337. doi: 10.1002/(ISSN)1097-4636

    3. [3]

      Bareille R., M.H.Lafage-Proust , Faucheux C.. Various evaluation techniques of newly formed bone in porous hydroxyapatite loaded with human bone marrow cells implanted in an extra-osseous site[J]. Biomaterials, 2000,21:1345-1352. doi: 10.1016/S0142-9612(00)00015-6

    4. [4]

      Gutwald R., Haberstroh J., Kuschnierz J.. Mesenchymal stem cells and inorganic bovine bone mineral in sinus augmentation:comparison with augmentation by autologous bone in adult sheep[J]. Br.J.Oral.Maxillofac.Surg., 2010,48:285-290. doi: 10.1016/j.bjoms.2009.06.226

    5. [5]

      Zhang X., Cai Q., Liu H.. Osteoconductive effectiveness of bone graft derived from antler cancellous bone:an experimental study in the rabbit mandible defect model[J]. Int.J.Oral.Maxillofac.Surg., 2012,41:1330-1337. doi: 10.1016/j.ijom.2012.05.014

    6. [6]

      Zhang X.H., Xu M.M., Song L.. Effects of compatibility of deproteinized antler cancellous bone with various bioactive factors on their osteogenic potential[J]. Biomaterials, 2013,34:9103-9114. doi: 10.1016/j.biomaterials.2013.08.024

    7. [7]

      Wei J.Q., Xu M.M., Zhang X.H.. Enhanced osteogenic behavior of ADSCs produced by deproteinized antler cancellous bone and evidence for involvement of ERK signaling pathway[J]. Tissue Eng.Part A, 2015,21:1810-1821. doi: 10.1089/ten.tea.2014.0395

    8. [8]

      Mizuno H. Adipose-derived stem cells for tissue repair and regeneration:ten years of research and a literature review[J]. J.Nippon Med.Sch., 2009,76:56-66. doi: 10.1272/jnms.76.56

    9. [9]

      Yamada Y., Nakamura S., Ito K.. Injectable tissue-engineered bone using autogenous bone marrow-derived stromal cells for maxillary sinus augmentation:clinical application report from a 2-6-year follow-up[J]. Tissue Eng.A, 2008,14:1699-1707. doi: 10.1089/ten.tea.2007.0189

    10. [10]

      Dallari D., Savarino L., Stagni C.. Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells[J]. J.Bone Jt.Surg.Am., 2007,89:2413-2420.  

    11. [11]

      Gamie Z., Tran G.T., Vyzas G.. Stem cells combined with bone graft substitutes in skeletal tissue engineering[J]. Expert Opin.Biol.Ther., 2012,12:713-729. doi: 10.1517/14712598.2012.679652

    12. [12]

      Karageorgiou V., Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis[J]. Biomaterials, 2005,26:5474-5491. doi: 10.1016/j.biomaterials.2005.02.002

    13. [13]

      Kasten P., Beyen I., Niemeyer P.. Porosity and pore size of b-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells:an in vitro and in vivo study[J]. Acta Biomater., 2008,4:1904-1915. doi: 10.1016/j.actbio.2008.05.017

    14. [14]

      Müller P., Bulnheim U., Bulnheim A.. Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells[J]. J.Cell.Mol. Med., 2008,12:281-291.  

    15. [15]

      Cui L., Liu B., Liu G.P.. Repair of cranial bone defects with adipose derived stem cells and coral scaffold in a canine model[J]. Biomaterials, 2007,28:5477-5486. doi: 10.1016/j.biomaterials.2007.08.042

    16. [16]

      Meng S., Zhang X.H., Xu M.M.. Effects of deer age on the physicochemical properties of deproteinized antler cancellous bone:an approach to optimize osteoconductivity of bone graft[J]. Biomed.Mater., 2015,10035006. doi: 10.1088/1748-6041/10/3/035006

    17. [17]

      Sun H.L., Wu C.T., Dai K.R., Chang J., Tang T.T. Proliferation and osteoblastic differentiation of human bone marrow-derived stromal cells on akermanite-bioactive ceramics[J]. Biomaterials, 2006,27:5651-5657. doi: 10.1016/j.biomaterials.2006.07.027

    18. [18]

      Amaral M., Costa M.A., Lopes M.A.. Si3N4-bioglass composites stimulate the proliferation of MG63 osteoblast-like cells and support the osteogenic differentiation of human bone marrow cells[J]. Biomaterials, 2002,23:4897-4906. doi: 10.1016/S0142-9612(02)00249-1

    19. [19]

      Nair M.B., Bernhardt A., Lode A.. A bioactive triphasic ceramic-coated hydroxyapatite promotes proliferation and osteogenic differentiation of human bone marrow stromal cells[J]. J.Biomed.Mater.Res.A, 2009,90:533-542.  

    20. [20]

      Honda M., Kikushima K., Kawanobe Y.. Enhanced early osteogenic differentiation by silicon-substituted hydroxyapatite ceramics fabricated via ultrasonic spray pyrolysis route[J]. J.Mater.Sci.Mater.Med., 2012,23:2923-2932. doi: 10.1007/s10856-012-4744-x

    21. [21]

      Luo X.M., Barbieri D., Davison N.. Zinc in calcium phosphate mediates bone induction:in vitro and in vivo model[J]. Acta Biomater., 2014,10:477-485. doi: 10.1016/j.actbio.2013.10.011

    22. [22]

      Oh S.A., Kim S.H., Won J.E.. Effects on growth and osteogenic differentiation of mesenchymal stem cells by the zinc-added sol-gel bioactive glass granules[J]. J.Tissue Eng., 2011,2010475260.

    23. [23]

      Dawson J.I., Oreffo R.O.C. Bridging the regeneration gap:stem cells, biomaterials and clinical translation in bone tissue engineering[J]. Arch. Biochem.Biophys., 2008,473:124-131. doi: 10.1016/j.abb.2008.03.024

    24. [24]

      Lu Z.F., S.I.Roohani-Esfahani , Wang G.C., Zreiqat H. Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells[J]. Nanomed.Nanotechnol.Biol.Med., 2012,8:507-515. doi: 10.1016/j.nano.2011.07.012

    25. [25]

      Açil Y., Terheyden H., Dunsche A., Fleiner B., Jepsen S. Three-dimensional cultivation of human osteoblast-like cells on highly porous natural bone mineral[J]. J.Biomed.Mater.Res., 2000,51:703-710. doi: 10.1002/(ISSN)1097-4636

    26. [26]

      Kubler A., Neugebauer J., Oh J.H., Scheer M., Zöller J.E.. Growth and proliferation of human osteoblasts on different bone graft substitutes:an in vitro study[J]. Implant.Dent., 2004,13:171-179. doi: 10.1097/01.ID.0000127522.14067.11

    27. [27]

      Siggers K., Frei H., Fernlund G., Rossi F. Effect of bone graft substitute on marrow stromal cell proliferation and differentiation[J]. J.Biomed.Mater.Res.A, 2010,94:877-885.  

    28. [28]

      Chandra V.S., Baskar G., Suganthi R.V.. Blood compatibility of iron-doped nanosize hydroxyapatite and its drug release[J]. ACS Appl.Mater.Interfaces, 2012,4:1200-1210. doi: 10.1021/am300140q

    29. [29]

      Li H.Y., Xue K., Kong N., Liu K., Chang J. Silicate bioceramics enhanced vascularization and osteogenesis through stimulating interactions between endothelia cells and bone marrow stromal cells[J]. Biomaterials, 2014,35:3803-3818. doi: 10.1016/j.biomaterials.2014.01.039

  • 加载中
    1. [1]

      Xu LuoJinwen XiaoQiming YangXiaolong LuQianjun HuangXiaojun AiBo LiLi SunLong Chen . Biomaterials for surgical repair of osteoporotic bone defects. Chinese Chemical Letters, 2025, 36(1): 109684-. doi: 10.1016/j.cclet.2024.109684

    2. [2]

      Yanjing LiJiayin LiYuqi ChangYunfeng LinLei Sui . Tetrahedral framework nucleic acids promote the proliferation and differentiation potential of diabetic bone marrow mesenchymal stem cell. Chinese Chemical Letters, 2024, 35(9): 109414-. doi: 10.1016/j.cclet.2023.109414

    3. [3]

      Ruijianghan ShiYujie ZhuWeitong LuYuhan ShaoYang ChenMi ZhouYunfeng LinSirong Shi . Tetrahedral framework nucleic acids enhance osteogenic differentiation and prevent apoptosis for dental follicle stem cell therapy in diabetic bone repair. Chinese Chemical Letters, 2025, 36(5): 110241-. doi: 10.1016/j.cclet.2024.110241

    4. [4]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    5. [5]

      Jielin WangHan YeBozhuang ZhouZhen PanYucai LiZhenyuan WeiBin ChaiYizhou GaoXiaojian YeJiangming Yu . Biomimetic nanofibrillar/hyaluronic acid hydrogels remodel the neuromodulatory microenvironment for enhanced bone regeneration. Chinese Chemical Letters, 2025, 36(5): 110133-. doi: 10.1016/j.cclet.2024.110133

    6. [6]

      Yang FengYang-Qing TianYong-Qiang ZhaoSheng-Jun ChenBi-Feng Yuan . Dynamic deformylation of 5-formylcytosine and decarboxylation of 5-carboxylcytosine during differentiation of mouse embryonic stem cells into mouse neurons. Chinese Chemical Letters, 2024, 35(11): 109656-. doi: 10.1016/j.cclet.2024.109656

    7. [7]

      Xing TianDi WuWanheng WeiGuifu DaiZhanxian LiBenhua WangMingming Yu . A lipid droplets-targetable fluorescent probe for polarity detection in cells of iron death, inflammation and fatty liver tissue. Chinese Chemical Letters, 2024, 35(6): 108912-. doi: 10.1016/j.cclet.2023.108912

    8. [8]

      Yajie YangMengde ZhaiHaoxin WangCheng ChenZiyang XiaChengyang LiuYi TianMing Cheng . Molecular engineering of dibenzo-heterocyclic core based hole-transporting materials for perovskite solar cells. Chinese Chemical Letters, 2025, 36(5): 110700-. doi: 10.1016/j.cclet.2024.110700

    9. [9]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    10. [10]

      Rui LiuYue YuLu DengMaoxia XuHaorong RenWenjie LuoXudong CaiZhenyu LiJingyu ChenHua Yu . The synergistic effect of A-site cation engineering and phase regulation enables efficient and stable Ruddlesden-Popper perovskite solar cells. Chinese Chemical Letters, 2024, 35(12): 109545-. doi: 10.1016/j.cclet.2024.109545

    11. [11]

      Yu-Qi CaoYing-Jie LuLi ZhangJing ZhangYin-Long Guo . Vacuum promoted on-tissue derivatization strategy: Unravelling spatial distribution of glycerides on tissue. Chinese Chemical Letters, 2024, 35(12): 109788-. doi: 10.1016/j.cclet.2024.109788

    12. [12]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    13. [13]

      Ran WuDongxu JiangHao HuChenyu YangLiang QinLulu ChenZehui HuHualei XuJinrong LiHaiqiang LiuHua GuoJinxiang FuQichen HaoYijun ZhouJinchao FengQiang WangXiaodong Wang . 4-Aminoazobenzene: A novel negative ion matrix for enhanced MALDI tissue imaging of metabolites. Chinese Chemical Letters, 2024, 35(11): 109624-. doi: 10.1016/j.cclet.2024.109624

    14. [14]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    15. [15]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    16. [16]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    17. [17]

      Qihang WuHui WenWenhai LinTingting SunZhigang Xie . Alkyl chain engineering of boron dipyrromethenes for efficient photodynamic antibacterial treatment. Chinese Chemical Letters, 2024, 35(12): 109692-. doi: 10.1016/j.cclet.2024.109692

    18. [18]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    19. [19]

      Yujie ZhuRuijianghan ShiWeitong LuYang ChenYunfeng LinSirong Shi . Tetrahedral framework nucleic acids prevent epithelial-mesenchymal transition-mediated diabetic fibrosis by targeting the Wnt/β-catenin signaling pathway. Chinese Chemical Letters, 2025, 36(5): 110140-. doi: 10.1016/j.cclet.2024.110140

    20. [20]

      Chengcheng XieChengyi XiaoHongshuo NiuGuitao FengWeiwei Li . Mesoporous organic solar cells. Chinese Chemical Letters, 2024, 35(11): 109849-. doi: 10.1016/j.cclet.2024.109849

Metrics
  • PDF Downloads(0)
  • Abstract views(832)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return