Citation: Xu Shi-Chao, Zhu Shou-Ji, Bi Liang-Wu, Chen Yu-Xiang, Wang Jing, Lu Yan-Ju, Gu Yan, Zhao Zhen-Dong. Solvent and additive-free selective aerobic allylic hydroxylation of β-pinene catalyzed by metalloporphyrins[J]. Chinese Chemical Letters, ;2017, 28(3): 575-578. doi: 10.1016/j.cclet.2016.11.020 shu

Solvent and additive-free selective aerobic allylic hydroxylation of β-pinene catalyzed by metalloporphyrins

  • Corresponding author: Zhao Zhen-Dong, zdzhao@189.cn
  • Received Date: 10 October 2016
    Revised Date: 7 November 2016
    Accepted Date: 8 November 2016
    Available Online: 18 March 2016

Figures(6)

  • Metallodeuteroporphyrins (MDPs) were employed as the catalysts for aerobic oxidation of β-pinene in absence of solvents and additives. Allylic hydroxylation products were found to be the main products from this protocol. The catalytic activity of MDPs with different metal nuclei and the influences of technological conditions on this reaction were investigated. This catalytic system has bright application prospect since only eco-friendly and readily available dioxygen were needed.
    1. [1]

      Carari D.M., da Silva M.J.. Fe (NO3)3-catalyzed monoterpene oxidation by hydrogen peroxide:an inexpensive and environmentally benign oxidative process[J]. Catal. Lett., 2014,144:615-622. doi: 10.1007/s10562-013-1189-x

    2. [2]

      Fang C., Dai J., Xu H., Guo Q., Fu Y.. Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air:a facile synthesis of 2, 5-diformylfuran at room temperature[J]. Chin. Chem. Lett., 2015,26:1265-1268. doi: 10.1016/j.cclet.2015.07.001

    3. [3]

      Rachwalik R., Hunger M., Sulikowski B.. Transformations of monoterpene hydrocarbons on ferrierite type zeolites[J]. Appl. Catal. A, 2012,427:98-105.  

    4. [4]

      Neuenschwander U., Meier E., Hermans I.. Peculiarities of b-pinene autoxidation[J]. ChemSusChem, 2011,4:1613-1621. doi: 10.1002/cssc.v4.11

    5. [5]

      de Paula F.G.F., Berllini L., da Silva M.J.. A novel Fe (Ⅲ) salt-catalyzed monoterpene aerobic oxidation in methyl alcohol[J]. Catal. Commun., 2013,42:129-133. doi: 10.1016/j.catcom.2013.08.018

    6. [6]

      da Silva M.J., Robles-Dutenhefner P., Menini L., Gusevskaya E.V.. Cobalt catalyzed autoxidation of monoterpenes in acetic acid and acetonitrile solutions[J]. J. Mol. Catal. A, 2003,201:71-77. doi: 10.1016/S1381-1169(03)00180-8

    7. [7]

      Jadhav S.V., Jinka K.M., Bajaj H.C.. Nanosized sulfated zinc ferrite as catalyst forthe synthesis of nopol and other fine chemicals[J]. Catal. Today, 2012,198:98-105. doi: 10.1016/j.cattod.2012.01.028

    8. [8]

      Skočibušić M., Bezić N., Dunkić V.. Phytochemical composition and antimicrobial activities of the essential oils from Satureja subspicata Vis. growing in Croatia[J]. Food Chem., 2006,96:20-28. doi: 10.1016/j.foodchem.2005.01.051

    9. [9]

      Bakkali F., Averbeck S., Averbeck D., Idaomar M.. Biological effects of essential oils-a review[J]. Food Chem. Toxicol., 2008,46:446-475. doi: 10.1016/j.fct.2007.09.106

    10. [10]

      Joshel L.M., Palkin S.. The oxidation of & pinene with selenium dioxide[J]. J. Am. Chem. Soc., 1942,64:1008-1009. doi: 10.1021/ja01256a503

    11. [11]

      Menini L., da Silva M.J., Lelis M.F.F.. Novel solvent free liquid-phase oxidation of b-pinene over heterogeneous catalysts based on Fe3-XMXO4(M=Co and Mn)[J]. Appl. Catal. A, 2004,269:117-121. doi: 10.1016/j.apcata.2004.04.005

    12. [12]

      Jin J., Shen M.. Progress in oxidation of b-pinene[J]. Guangzhou Chem., 2006,31:51-56.

    13. [13]

      Yi S., Li M., Hu X., Mo W., Shen Z.. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tertbutyl nitrite[J]. Chin. Chem. Lett., 2016,27:1505-1508. doi: 10.1016/j.cclet.2016.03.016

    14. [14]

      Thao N.T., Trung H.H.. Selective oxidation of styrene over Mg-Co-Al hydrotalcite like-catalysts using air as oxidant[J]. Catal. Commun., 2014,45:153-157. doi: 10.1016/j.catcom.2013.11.004

    15. [15]

      Meunier B.. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage[J]. Chem. Rev., 1992,92:1411-1456. doi: 10.1021/cr00014a008

    16. [16]

      Che C.M., Lo V.K.Y., Zhou C.Y., Huang J.S.. Selective functionalisation of saturated C H bonds with metalloporphyrin catalysts[J]. Chem. Soc. Rev., 2011,40:1950-1975. doi: 10.1039/c0cs00142b

    17. [17]

      Li X.D., Zhu Y.C., Yang L.J.. Crown ether-appended Fe (Ⅲ) porphyrin:synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen[J]. Chin. Chem. Lett., 2012,23:375-378. doi: 10.1016/j.cclet.2011.12.011

    18. [18]

      Liu Q., Guo C.C.. Theoretical studies and industrial applications of oxidative activation of inert C-H bond by metalloporphyrin-based biomimetic catalysis[J]. Sci. China Ser. B Chem., 2012,55:2036-2053. doi: 10.1007/s11426-012-4739-y

    19. [19]

      Xu S.C., Zhao Z.D., Bi L.W.. Selective aerobic hydroxylation of p-menthane to dihydroterpineols catalyzed by metallopor-phyrins in solvent and additive free system[J]. Catal. Commun., 2015,59:26-29. doi: 10.1016/j.catcom.2014.09.039

    20. [20]

      Zhou W.Y., Hu B.C., Liu Z.L.. Metallo-deuteroporphyrin complexes derived from heme:a homogeneous catalyst for cyclohexane oxidation[J]. Appl. Catal. A, 2009,358:136-140. doi: 10.1016/j.apcata.2009.02.003

    21. [21]

      Guo C.C., Yang W.J., Miao Y.L.. Selectively aerobic oxidation of C=C and allylic C-H bonds in (a-pinene over simple metalloporphyrins[J]. J. Mol. Catal. A, 2005,226:279-284. doi: 10.1016/j.molcata.2004.10.049

    22. [22]

      Neuenschwander U., Guignard F., Hermans I.. Mechanism of the aerobic oxidation of a-pinene[J]. ChemSusChem, 2010,3:75-84. doi: 10.1002/cssc.v3:1

    23. [23]

      Bach R.D., Dmitrenko O.. The somersault mechanism for the P-450 hydroxylation of hydrocarbons The intervention of transient inverted metastable hydroperoxides[J]. J. Am. Chem. Soc., 2006,128:1474-1488. doi: 10.1021/ja052111+

    24. [24]

      Xu S.C., Liu W.W., Hu B.C., Cao W., Liu Z.L.. Biomimetic enhanced chemiluminescence of luminol-H2O2 system by manganese (Ⅲ) deuteroporphyrin and its application in flow injection determination of phenol at trace level[J]. J. Photochem. Photobiol. A Chem., 2012,227:32-37. doi: 10.1016/j.jphotochem.2011.10.021

    25. [25]

      Sun C.G., Zhou W.Y., Hu B.C., Xu S.C., Liu Z.L.. A facile synthesis of 2, 7, 12, 18-tetramethyl-13, 17-di (3-hydroxypropyl) porphyrin[J]. Fine Chem., 2009,26:919-922, 927.

    1. [1]

      Carari D.M., da Silva M.J.. Fe (NO3)3-catalyzed monoterpene oxidation by hydrogen peroxide:an inexpensive and environmentally benign oxidative process[J]. Catal. Lett., 2014,144:615-622. doi: 10.1007/s10562-013-1189-x

    2. [2]

      Fang C., Dai J., Xu H., Guo Q., Fu Y.. Iron-catalyzed selective oxidation of 5-hydroxylmethylfurfural in air:a facile synthesis of 2, 5-diformylfuran at room temperature[J]. Chin. Chem. Lett., 2015,26:1265-1268. doi: 10.1016/j.cclet.2015.07.001

    3. [3]

      Rachwalik R., Hunger M., Sulikowski B.. Transformations of monoterpene hydrocarbons on ferrierite type zeolites[J]. Appl. Catal. A, 2012,427:98-105.  

    4. [4]

      Neuenschwander U., Meier E., Hermans I.. Peculiarities of b-pinene autoxidation[J]. ChemSusChem, 2011,4:1613-1621. doi: 10.1002/cssc.v4.11

    5. [5]

      de Paula F.G.F., Berllini L., da Silva M.J.. A novel Fe (Ⅲ) salt-catalyzed monoterpene aerobic oxidation in methyl alcohol[J]. Catal. Commun., 2013,42:129-133. doi: 10.1016/j.catcom.2013.08.018

    6. [6]

      da Silva M.J., Robles-Dutenhefner P., Menini L., Gusevskaya E.V.. Cobalt catalyzed autoxidation of monoterpenes in acetic acid and acetonitrile solutions[J]. J. Mol. Catal. A, 2003,201:71-77. doi: 10.1016/S1381-1169(03)00180-8

    7. [7]

      Jadhav S.V., Jinka K.M., Bajaj H.C.. Nanosized sulfated zinc ferrite as catalyst forthe synthesis of nopol and other fine chemicals[J]. Catal. Today, 2012,198:98-105. doi: 10.1016/j.cattod.2012.01.028

    8. [8]

      Skočibušić M., Bezić N., Dunkić V.. Phytochemical composition and antimicrobial activities of the essential oils from Satureja subspicata Vis. growing in Croatia[J]. Food Chem., 2006,96:20-28. doi: 10.1016/j.foodchem.2005.01.051

    9. [9]

      Bakkali F., Averbeck S., Averbeck D., Idaomar M.. Biological effects of essential oils-a review[J]. Food Chem. Toxicol., 2008,46:446-475. doi: 10.1016/j.fct.2007.09.106

    10. [10]

      Joshel L.M., Palkin S.. The oxidation of & pinene with selenium dioxide[J]. J. Am. Chem. Soc., 1942,64:1008-1009. doi: 10.1021/ja01256a503

    11. [11]

      Menini L., da Silva M.J., Lelis M.F.F.. Novel solvent free liquid-phase oxidation of b-pinene over heterogeneous catalysts based on Fe3-XMXO4(M=Co and Mn)[J]. Appl. Catal. A, 2004,269:117-121. doi: 10.1016/j.apcata.2004.04.005

    12. [12]

      Jin J., Shen M.. Progress in oxidation of b-pinene[J]. Guangzhou Chem., 2006,31:51-56.

    13. [13]

      Yi S., Li M., Hu X., Mo W., Shen Z.. An efficient and convenient method for the preparation of disulfides from thiols using oxygen as oxidant catalyzed by tertbutyl nitrite[J]. Chin. Chem. Lett., 2016,27:1505-1508. doi: 10.1016/j.cclet.2016.03.016

    14. [14]

      Thao N.T., Trung H.H.. Selective oxidation of styrene over Mg-Co-Al hydrotalcite like-catalysts using air as oxidant[J]. Catal. Commun., 2014,45:153-157. doi: 10.1016/j.catcom.2013.11.004

    15. [15]

      Meunier B.. Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage[J]. Chem. Rev., 1992,92:1411-1456. doi: 10.1021/cr00014a008

    16. [16]

      Che C.M., Lo V.K.Y., Zhou C.Y., Huang J.S.. Selective functionalisation of saturated C H bonds with metalloporphyrin catalysts[J]. Chem. Soc. Rev., 2011,40:1950-1975. doi: 10.1039/c0cs00142b

    17. [17]

      Li X.D., Zhu Y.C., Yang L.J.. Crown ether-appended Fe (Ⅲ) porphyrin:synthesis, characterization and catalytic oxidation of cyclohexene with molecular oxygen[J]. Chin. Chem. Lett., 2012,23:375-378. doi: 10.1016/j.cclet.2011.12.011

    18. [18]

      Liu Q., Guo C.C.. Theoretical studies and industrial applications of oxidative activation of inert C-H bond by metalloporphyrin-based biomimetic catalysis[J]. Sci. China Ser. B Chem., 2012,55:2036-2053. doi: 10.1007/s11426-012-4739-y

    19. [19]

      Xu S.C., Zhao Z.D., Bi L.W.. Selective aerobic hydroxylation of p-menthane to dihydroterpineols catalyzed by metallopor-phyrins in solvent and additive free system[J]. Catal. Commun., 2015,59:26-29. doi: 10.1016/j.catcom.2014.09.039

    20. [20]

      Zhou W.Y., Hu B.C., Liu Z.L.. Metallo-deuteroporphyrin complexes derived from heme:a homogeneous catalyst for cyclohexane oxidation[J]. Appl. Catal. A, 2009,358:136-140. doi: 10.1016/j.apcata.2009.02.003

    21. [21]

      Guo C.C., Yang W.J., Miao Y.L.. Selectively aerobic oxidation of C=C and allylic C-H bonds in (a-pinene over simple metalloporphyrins[J]. J. Mol. Catal. A, 2005,226:279-284. doi: 10.1016/j.molcata.2004.10.049

    22. [22]

      Neuenschwander U., Guignard F., Hermans I.. Mechanism of the aerobic oxidation of a-pinene[J]. ChemSusChem, 2010,3:75-84. doi: 10.1002/cssc.v3:1

    23. [23]

      Bach R.D., Dmitrenko O.. The somersault mechanism for the P-450 hydroxylation of hydrocarbons The intervention of transient inverted metastable hydroperoxides[J]. J. Am. Chem. Soc., 2006,128:1474-1488. doi: 10.1021/ja052111+

    24. [24]

      Xu S.C., Liu W.W., Hu B.C., Cao W., Liu Z.L.. Biomimetic enhanced chemiluminescence of luminol-H2O2 system by manganese (Ⅲ) deuteroporphyrin and its application in flow injection determination of phenol at trace level[J]. J. Photochem. Photobiol. A Chem., 2012,227:32-37. doi: 10.1016/j.jphotochem.2011.10.021

    25. [25]

      Sun C.G., Zhou W.Y., Hu B.C., Xu S.C., Liu Z.L.. A facile synthesis of 2, 7, 12, 18-tetramethyl-13, 17-di (3-hydroxypropyl) porphyrin[J]. Fine Chem., 2009,26:919-922, 927.

  • 加载中
    1. [1]

      Yingtao ZhongZiwen QiuYanmei LiJiaqi HuangZhenming LuRenjiang KongNi YanHong Cheng . Nutrients deprivation of biomimetic nanozymes for cascade catalysis triggered and oxidative damage induced tumor eradication. Chinese Chemical Letters, 2025, 36(3): 109846-. doi: 10.1016/j.cclet.2024.109846

    2. [2]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    3. [3]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    4. [4]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    5. [5]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    6. [6]

      Lin Zhang Chaoran Li Thongthai Witoon Xingda An Le He . Nano-thermometry in photothermal catalysis. Chinese Journal of Structural Chemistry, 2025, 44(4): 100456-100456. doi: 10.1016/j.cjsc.2024.100456

    7. [7]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    8. [8]

      Yin-Hang Chai Li-Long Dang . New structural breakthrough and topological transformation of homogeneous metalla[4]catenane compounds. Chinese Journal of Structural Chemistry, 2024, 43(10): 100322-100322. doi: 10.1016/j.cjsc.2024.100322

    9. [9]

      Pan-Pan HuaHui-Jun FengShu-Ning LanFrancisco AznarezLi-Fang Zhang . Post-modification-induced supramolecular transformation of Hopf link to macrocycle. Chinese Chemical Letters, 2025, 36(6): 110684-. doi: 10.1016/j.cclet.2024.110684

    10. [10]

      Yu PengYue WangTian-Jiao ChenJing-Jing ChenJin-Ling YangTing GongPing Zhu . A fungal CYP from Beauveria bassiana with promiscuous steroid hydroxylation capabilities. Chinese Chemical Letters, 2024, 35(5): 108818-. doi: 10.1016/j.cclet.2023.108818

    11. [11]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    12. [12]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    13. [13]

      Jiaqi JiaKathiravan MurugesanChen ZhuHuifeng YueShao-Chi LeeMagnus Rueping . Multiphoton photoredox catalysis enables selective hydrodefluorinations. Chinese Chemical Letters, 2025, 36(2): 109866-. doi: 10.1016/j.cclet.2024.109866

    14. [14]

      Jinshuai ZhengJunfeng NiuCrispin HalsallYadi GuoPeng ZhangLinke Ge . New insights into transformation mechanisms for sulfate and chlorine radical-mediated degradation of sulfonamide and fluoroquinolone antibiotics. Chinese Chemical Letters, 2025, 36(5): 110202-. doi: 10.1016/j.cclet.2024.110202

    15. [15]

      Guang XuCuiju ZhuXiang LiKexin ZhuHao Xu . Copper-catalyzed asymmetric [4+1] annulation of yne–allylic esters with pyrazolones. Chinese Chemical Letters, 2025, 36(4): 110114-. doi: 10.1016/j.cclet.2024.110114

    16. [16]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    17. [17]

      Wenbin ZhouYafei GaoXinyu FengYanqing ZhangCong YangLanxi HeFenghe ZhangXiaoguang LiQing Li . Biomimetic nanoplatform integrates FRET-enhanced photodynamic therapy and chemotherapy for cascaded revitalization of the tumor immune microenvironment in OSCC. Chinese Chemical Letters, 2025, 36(1): 109763-. doi: 10.1016/j.cclet.2024.109763

    18. [18]

      Xixian SunShengke LiRuibing WangLeyong Wang . Functional macrocyclic arenes with active binding sites inside cavity for biomimetic molecular recognition. Chinese Chemical Letters, 2025, 36(4): 110806-. doi: 10.1016/j.cclet.2024.110806

    19. [19]

      Yunyan LiZimin CaiZhicheng WangSifeng ZhuWendian LiuCheng Wang . Construction of biomimetic hybrid nanovesicles based on M1 macrophage-derived exosomes for therapy of cancer. Chinese Chemical Letters, 2025, 36(4): 109942-. doi: 10.1016/j.cclet.2024.109942

    20. [20]

      Jielin WangHan YeBozhuang ZhouZhen PanYucai LiZhenyuan WeiBin ChaiYizhou GaoXiaojian YeJiangming Yu . Biomimetic nanofibrillar/hyaluronic acid hydrogels remodel the neuromodulatory microenvironment for enhanced bone regeneration. Chinese Chemical Letters, 2025, 36(5): 110133-. doi: 10.1016/j.cclet.2024.110133

Metrics
  • PDF Downloads(0)
  • Abstract views(950)
  • HTML views(56)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return