Citation: Yan Deng, Liang Qiao, Natalia Gasilova, Xin-Xiang Zhang, Hubert H. Girault. Open channel-based microchip electrophoresis interfaced with mass spectrometry via electrostatic spray ionization[J]. Chinese Chemical Letters, ;2016, 27(01): 85-87. doi: 10.1016/j.cclet.2015.09.017 shu

Open channel-based microchip electrophoresis interfaced with mass spectrometry via electrostatic spray ionization

  • Corresponding author: Xin-Xiang Zhang,  Hubert H. Girault, 
  • Received Date: 22 April 2015
    Available Online: 2 June 2015

  • The coupling between open channel-based microchip electrophoresis and mass spectrometry via electrostatic spray ionization is proposed for in situ detection of fractionated analytes. Electrophoretic separation is performed in an open channel fabricated in a plastic substrate. The solvent of background electrolyte is evaporated from the open channel because of Joule heating during electrophoresis, leaving the dried electrophoretic bands to be directly analyzed by mass spectrometry via scanning electrostatic spray ionization. Proof-of-concept results are obtained with fluorescent dyes and antibiotics as the test samples, demonstrating an efficient on-chip detection platform based on the electrophoresis and electrostatic spray ionization mass spectrometry.
    1. [1]

      [1] J. Ji, L. Nie, L. Qiao, et al., Proteolysis in microfluidic droplets:an approach to interface protein separation and peptide mass spectrometry, Lab Chip 12(2012) 2625-2629.

    2. [2]

      [2] J. Ji, L. Nie, Y.X. Li, P.Y. Yang, B.H. Liu, Simultaneous online enrichment and identification of trace species based on microfluidic droplets, Anal. Chem. 85(2013) 9617-9622.

    3. [3]

      [3] A.G. Chambers, J.S. Mellors, W.H. Henley, J.M. Ramsey, Monolithic integration of two-dimensional liquid chromatography-capillary electrophoresis and electrospray ionization on a microfluidic device, Anal. Chem. 83(2011) 842-849.

    4. [4]

      [4] H.K. Musyimi, J. Guy, D.A. Narcisse, S.A. Soper, K.K. Murray, Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet, Electrophoresis 26(2005) 4703-4710.

    5. [5]

      [5] M. Brivio, N.R. Tas, M.H. Goedbloed, H.J. Gardeniers, W. Verboom, A. van den Berg, D.N. Reinhoudt, A MALDI-chip integrated system with a monitoring window, Lab Chip 5(2005) 378-381.

    6. [6]

      [6] J. Liu, K. Tseng, B. Garcia, et al., Electrophoresis separation in open microchannels. A method for coupling electrophoresis with MALDI-MS, Anal. Chem. 73(2001) 2147-2151.

    7. [7]

      [7] J. Jacksen, T. Frisk, T. Redeby, et al., Off-line integration of CE and MALDI-MS using a closed-open-closed microchannel system, Electrophoresis 28(2007) 2458-2465.

    8. [8]

      [8] M.L.S. Mok, L. Hua, J.B.C.Phua, M.K.T. Wee, N.S.K. Sze, Capillary isoelectric focusing in pseudo-closed channel coupled to matrix assisted laser desorption/ionization mass spectrometry for protein analysis, Analyst 129(2004) 109-110.

    9. [9]

      [9] L. Qiao, R. Sartor, N. Gasilova, et al., Electrostatic-spray ionization mass spectrometry, Anal. Chem. 84(2012) 7422-7430.

    10. [10]

      [10] L. Qiao, E. Tobolkina, B. Liu, H.H. Girault, Coupling isoelectric focusing gel electrophoresis to mass spectrometry by electrostatic spray ionization, Anal. Chem. 85(2013) 4745-4752.

    1. [1]

      [1] J. Ji, L. Nie, L. Qiao, et al., Proteolysis in microfluidic droplets:an approach to interface protein separation and peptide mass spectrometry, Lab Chip 12(2012) 2625-2629.

    2. [2]

      [2] J. Ji, L. Nie, Y.X. Li, P.Y. Yang, B.H. Liu, Simultaneous online enrichment and identification of trace species based on microfluidic droplets, Anal. Chem. 85(2013) 9617-9622.

    3. [3]

      [3] A.G. Chambers, J.S. Mellors, W.H. Henley, J.M. Ramsey, Monolithic integration of two-dimensional liquid chromatography-capillary electrophoresis and electrospray ionization on a microfluidic device, Anal. Chem. 83(2011) 842-849.

    4. [4]

      [4] H.K. Musyimi, J. Guy, D.A. Narcisse, S.A. Soper, K.K. Murray, Direct coupling of polymer-based microchip electrophoresis to online MALDI-MS using a rotating ball inlet, Electrophoresis 26(2005) 4703-4710.

    5. [5]

      [5] M. Brivio, N.R. Tas, M.H. Goedbloed, H.J. Gardeniers, W. Verboom, A. van den Berg, D.N. Reinhoudt, A MALDI-chip integrated system with a monitoring window, Lab Chip 5(2005) 378-381.

    6. [6]

      [6] J. Liu, K. Tseng, B. Garcia, et al., Electrophoresis separation in open microchannels. A method for coupling electrophoresis with MALDI-MS, Anal. Chem. 73(2001) 2147-2151.

    7. [7]

      [7] J. Jacksen, T. Frisk, T. Redeby, et al., Off-line integration of CE and MALDI-MS using a closed-open-closed microchannel system, Electrophoresis 28(2007) 2458-2465.

    8. [8]

      [8] M.L.S. Mok, L. Hua, J.B.C.Phua, M.K.T. Wee, N.S.K. Sze, Capillary isoelectric focusing in pseudo-closed channel coupled to matrix assisted laser desorption/ionization mass spectrometry for protein analysis, Analyst 129(2004) 109-110.

    9. [9]

      [9] L. Qiao, R. Sartor, N. Gasilova, et al., Electrostatic-spray ionization mass spectrometry, Anal. Chem. 84(2012) 7422-7430.

    10. [10]

      [10] L. Qiao, E. Tobolkina, B. Liu, H.H. Girault, Coupling isoelectric focusing gel electrophoresis to mass spectrometry by electrostatic spray ionization, Anal. Chem. 85(2013) 4745-4752.

  • 加载中
    1. [1]

      Lu HuangJiang WangHong JiangLanfang ChenHuanwen Chen . On-line determination of selenium compounds in tea infusion by extractive electrospray ionization mass spectrometry combined with a heating reaction device. Chinese Chemical Letters, 2025, 36(1): 109896-. doi: 10.1016/j.cclet.2024.109896

    2. [2]

      Haiyan LuJiayue YeYiping WeiHua ZhangKonstantin ChinginVladimir FrankevichHuanwen Chen . Tracing molecular margins of lung cancer by internal extractive electrospray ionization mass spectrometry. Chinese Chemical Letters, 2025, 36(2): 110077-. doi: 10.1016/j.cclet.2024.110077

    3. [3]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    4. [4]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    5. [5]

      Cheng GuoXiaoxiao ZhangXiujuan HongYiqiu HuLingna MaoKezhi Jiang . Graphene as adsorbent for highly efficient extraction of modified nucleosides in urine prior to liquid chromatography-tandem mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(4): 108867-. doi: 10.1016/j.cclet.2023.108867

    6. [6]

      Junmeng LuoQiongqiong WanSuming Chen . Chemistry-driven mass spectrometry for structural lipidomics at the C=C bond isomer level. Chinese Chemical Letters, 2025, 36(1): 109836-. doi: 10.1016/j.cclet.2024.109836

    7. [7]

      Yanhua ChenXian DingJun ZhouZhaoying WangYunhai BoYing HuQingce ZangJing XuRuiping ZhangJiuming HeFen YangZeper Abliz . Plasma metabolomics combined with mass spectrometry imaging reveals crosstalk between tumor and plasma in gastric cancer genesis and metastasis. Chinese Chemical Letters, 2025, 36(1): 110351-. doi: 10.1016/j.cclet.2024.110351

    8. [8]

      Keqiang ShiXiujuan HongDongyan XuTao PanHuiwen WangHongru FengCheng GuoYuanjiang Pan . Analysis of RNA modifications in peripheral white blood cells from breast cancer patients by mass spectrometry. Chinese Chemical Letters, 2025, 36(3): 110079-. doi: 10.1016/j.cclet.2024.110079

    9. [9]

      Feng-Qing HuangYu WangJi-Wen WangDai YangShi-Lei WangYuan-Ming FanRaphael N. AlolgaLian-Wen Qi . Chemical isotope labeling-assisted liquid chromatography-mass spectrometry enables sensitive and accurate determination of dipeptides and tripeptides in complex biological samples. Chinese Chemical Letters, 2024, 35(11): 109670-. doi: 10.1016/j.cclet.2024.109670

    10. [10]

      Wenjing Dai Lan Luo Zhen Yin . Interface reconstruction of hybrid oxide electrocatalysts for seawater oxidation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100442-100442. doi: 10.1016/j.cjsc.2024.100442

    11. [11]

      Ze LiuXiaochen ZhangJinlong LuoYingjian Yu . Application of metal-organic frameworks to the anode interface in metal batteries. Chinese Chemical Letters, 2024, 35(11): 109500-. doi: 10.1016/j.cclet.2024.109500

    12. [12]

      Jing ChenPeisi XiePengfei WuYu HeZian LinZongwei Cai . MALDI coupled with laser-postionization and trapped ion mobility spectrometry contribute to the enhanced detection of lipids in cancer cell spheroids. Chinese Chemical Letters, 2024, 35(4): 108895-. doi: 10.1016/j.cclet.2023.108895

    13. [13]

      Shengdong Sun Cheng Wang Shikuo Li . Interfacial channel design on the charge migration for photoelectrochemical applications. Chinese Journal of Structural Chemistry, 2024, 43(12): 100398-100398. doi: 10.1016/j.cjsc.2024.100398

    14. [14]

      Caixia LiYi QiuYufeng ZhaoWuliang Feng . Self assembled electron blocking and lithiophilic interface towards dendrite-free solid-state lithium battery. Chinese Chemical Letters, 2024, 35(4): 108846-. doi: 10.1016/j.cclet.2023.108846

    15. [15]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    16. [16]

      Changyuan BaoYunpeng JiangHaoyin ZhongHuaizheng RenJunhui WangBinbin LiuQi ZhaoFan JinYan Meng ChongJianguo SunFei WangBo WangXimeng LiuDianlong WangJohn Wang . Synergizing 3D-printed structure and sodiophilic interface enables highly efficient sodium metal anodes. Chinese Chemical Letters, 2024, 35(11): 109353-. doi: 10.1016/j.cclet.2023.109353

    17. [17]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    18. [18]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    19. [19]

      Yuchen Wang Zhenhao Xu Kai Yan . Rational design of metal-metal hydroxide interface for efficient electrocatalytic oxidation of biomass-derived platform molecules. Chinese Journal of Structural Chemistry, 2025, 44(1): 100418-100418. doi: 10.1016/j.cjsc.2024.100418

    20. [20]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

Metrics
  • PDF Downloads(0)
  • Abstract views(880)
  • HTML views(23)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return