Citation: Wei Guo. Base mediated direct C-H amination for pyrimidines synthesis from amidines and cinnamaldehydes using oxygen as green oxidants[J]. Chinese Chemical Letters, ;2016, 27(01): 47-50. doi: 10.1016/j.cclet.2015.09.012 shu

Base mediated direct C-H amination for pyrimidines synthesis from amidines and cinnamaldehydes using oxygen as green oxidants

  • Corresponding author: Wei Guo, 
  • Received Date: 4 August 2015
    Available Online: 26 August 2015

    Fund Project: We are grateful to the China Postdoctoral Science Foundation Funded Project(No. 2014M562165) (No. 2014M562165)

  • A direct metal-free C-H amination reaction of cinnamaldehydes and amidines to realize the synthesis of polysubstituted pyrimidines was developed in the presence of base. This greener synthetic methodology provides a straightforward approach to the synthesis of a variety of pyrimidine derivatives under mild reaction condition using oxygen as sole oxidants.
  • 
    1. [1]

      [1] M.W. Martin, J. Newcomb, J.J. Nunes, et al., Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of lck:synthesis, SAR, and in vivo antiinflammatory activity, J. Med. Chem. 49(2006) 4981-4991.

    2. [2]

      [2](a) S. Lee, D. Lim, E. Lee, et al., Discovery of carbohybrid-based 2-aminopyrimidine analogues as a new class of rapid-acting antimalarial agents using imagebased cytological profiling assay, J. Med. Chem. 57(2014) 7425-7434;(b) F. Arioli, S. Borrelli, F. Colombo, et al., N-[2-Methyl-5-(triazol-1-yl)phenyl]-pyrimidin-2-amine as a scaffold for the synthesis of inhibitors of Bcr-Abl, ChemMedChem 6(2011) 2009-2018.

    3. [3]

      [3](a) H. Huang, W. Guo, W. Wu, et al., Copper-catalyzed oxidative C(sp3)-H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-trizaines from amidines, Org. Lett. 17(2015) 2894-2897;(b) W. Guo, K. Huang, F. Ji, et al., A facile approach to synthesize 3,5-disubstituted-1,2,4-oxadiazoles via copper-catalyzed-cascade annulations of amidines and methylarenes, Chem. Commun. 51(2015) 8857-8860.

    4. [4]

      [4] K.S. Vadagaonkar, H.P. Kalmode, S. Prakash, et al., Greener[3+3] tandem annulation-oxidation approach towards the synthesis of substituted pyrimidines, New J. Chem. 39(2015) 3639-3645.

    5. [5]

      [5] M.C. Bagley, Z. Lin, S.J.A. Pope, Barium manganate in microwave-assisted oxidation reactions:synthesis of solvatochromic 2,4,6-triarylpyrimidines, Tetrahedron Lett. 50(2009) 6818-6823.

    6. [6]

      [6] M. Lin, Q.Z. Chen, Y. Zhu, Copper(Ⅱ)-catalyzed synthesis of pyrimidines from propargylic alcohols and amidine:a propargylation-cyclization-oxidation tandem reaction, Synlett 8(2011) 1179-1183.

    7. [7]

      [7] A. Guirado, E. Alarcón, Y. Vicente, et al., A new improved method for the synthesis of 2,4-diarylpyrimidines starting from 2,2,2-trichloroethylideneacetophenones, Tetrahedron Lett. 54(2013) 5115-5117.

    8. [8]

      [8] J. Chen, R. Properzi, D.P. Uccello, et al., One-pot oxidation and rearrangement of propargylamines and in situ pyrazole synthesis, Org. Lett. 16(2014) 4146-4149.

    9. [9]

      [9] R.M. de Figueiredo, Transition-metal-catalyzed diamination of olefins, Angew. Chem. Int. Ed. 48(2009) 1190-1193.

    10. [10]

      [10](a) Y. Zhu, R.G. Cornwal, H. Du, et al., Catalytic diamination of olefins via N-N bond activation, Acc. Chem. Res. 47(2014) 3665-3678;(b) D. Chen, H.J. Mo, D.B. Chen, Direct C-H amination for indole synthesis from N-Ts-2-styrylaniline derivatives catalyzed by copper salt, Chin. Chem. Lett. 26(2015) 969-972;(c) Q. Cai, M.C. Liu, B.M. Mao, et al., Direct one-pot synthesis of zolimidine pharmaceutical drug and imidazo[1,2-a]pyridine derivatives via I2/CuO-promoted tandem strategy, Chin. Chem. Lett. 26(2015) 881-884.

    11. [11]

      [11] Z. Shi, C. Zhang, C. Tang, et al., Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant, Chem. Soc. Rev. 41(2012) 3381-3430.

    12. [12]

      [12] W. Wu, H. Jiang, Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen, Acc. Chem. Res. 45(2012) 1736-1748.

    13. [13]

      [13] R.J. Altenbach, R.M. Adair, B.M. Bettencourt, et al., Structure-activity studies on a series of a 2-aminopyridimidine-containing histamine H4 receptor ligands, J. Med. Chem. 51(2008) 6571-6580.

    14. [14]

      [14] L. Li, Y.L. Zhao, Q. Wang, Base-promoted oxidative C-H functionalization of α-amino carbonyl compounds under mild metal-free conditions:using molecular oxygen as the oxidant, Org. Lett. 17(2015) 370-373.

    1. [1]

      [1] M.W. Martin, J. Newcomb, J.J. Nunes, et al., Novel 2-aminopyrimidine carbamates as potent and orally active inhibitors of lck:synthesis, SAR, and in vivo antiinflammatory activity, J. Med. Chem. 49(2006) 4981-4991.

    2. [2]

      [2](a) S. Lee, D. Lim, E. Lee, et al., Discovery of carbohybrid-based 2-aminopyrimidine analogues as a new class of rapid-acting antimalarial agents using imagebased cytological profiling assay, J. Med. Chem. 57(2014) 7425-7434;(b) F. Arioli, S. Borrelli, F. Colombo, et al., N-[2-Methyl-5-(triazol-1-yl)phenyl]-pyrimidin-2-amine as a scaffold for the synthesis of inhibitors of Bcr-Abl, ChemMedChem 6(2011) 2009-2018.

    3. [3]

      [3](a) H. Huang, W. Guo, W. Wu, et al., Copper-catalyzed oxidative C(sp3)-H functionalization for facile synthesis of 1,2,4-triazoles and 1,3,5-trizaines from amidines, Org. Lett. 17(2015) 2894-2897;(b) W. Guo, K. Huang, F. Ji, et al., A facile approach to synthesize 3,5-disubstituted-1,2,4-oxadiazoles via copper-catalyzed-cascade annulations of amidines and methylarenes, Chem. Commun. 51(2015) 8857-8860.

    4. [4]

      [4] K.S. Vadagaonkar, H.P. Kalmode, S. Prakash, et al., Greener[3+3] tandem annulation-oxidation approach towards the synthesis of substituted pyrimidines, New J. Chem. 39(2015) 3639-3645.

    5. [5]

      [5] M.C. Bagley, Z. Lin, S.J.A. Pope, Barium manganate in microwave-assisted oxidation reactions:synthesis of solvatochromic 2,4,6-triarylpyrimidines, Tetrahedron Lett. 50(2009) 6818-6823.

    6. [6]

      [6] M. Lin, Q.Z. Chen, Y. Zhu, Copper(Ⅱ)-catalyzed synthesis of pyrimidines from propargylic alcohols and amidine:a propargylation-cyclization-oxidation tandem reaction, Synlett 8(2011) 1179-1183.

    7. [7]

      [7] A. Guirado, E. Alarcón, Y. Vicente, et al., A new improved method for the synthesis of 2,4-diarylpyrimidines starting from 2,2,2-trichloroethylideneacetophenones, Tetrahedron Lett. 54(2013) 5115-5117.

    8. [8]

      [8] J. Chen, R. Properzi, D.P. Uccello, et al., One-pot oxidation and rearrangement of propargylamines and in situ pyrazole synthesis, Org. Lett. 16(2014) 4146-4149.

    9. [9]

      [9] R.M. de Figueiredo, Transition-metal-catalyzed diamination of olefins, Angew. Chem. Int. Ed. 48(2009) 1190-1193.

    10. [10]

      [10](a) Y. Zhu, R.G. Cornwal, H. Du, et al., Catalytic diamination of olefins via N-N bond activation, Acc. Chem. Res. 47(2014) 3665-3678;(b) D. Chen, H.J. Mo, D.B. Chen, Direct C-H amination for indole synthesis from N-Ts-2-styrylaniline derivatives catalyzed by copper salt, Chin. Chem. Lett. 26(2015) 969-972;(c) Q. Cai, M.C. Liu, B.M. Mao, et al., Direct one-pot synthesis of zolimidine pharmaceutical drug and imidazo[1,2-a]pyridine derivatives via I2/CuO-promoted tandem strategy, Chin. Chem. Lett. 26(2015) 881-884.

    11. [11]

      [11] Z. Shi, C. Zhang, C. Tang, et al., Recent advances in transition-metal catalyzed reactions using molecular oxygen as the oxidant, Chem. Soc. Rev. 41(2012) 3381-3430.

    12. [12]

      [12] W. Wu, H. Jiang, Palladium-catalyzed oxidation of unsaturated hydrocarbons using molecular oxygen, Acc. Chem. Res. 45(2012) 1736-1748.

    13. [13]

      [13] R.J. Altenbach, R.M. Adair, B.M. Bettencourt, et al., Structure-activity studies on a series of a 2-aminopyridimidine-containing histamine H4 receptor ligands, J. Med. Chem. 51(2008) 6571-6580.

    14. [14]

      [14] L. Li, Y.L. Zhao, Q. Wang, Base-promoted oxidative C-H functionalization of α-amino carbonyl compounds under mild metal-free conditions:using molecular oxygen as the oxidant, Org. Lett. 17(2015) 370-373.

  • 加载中
    1. [1]

      Wei-Bin LiXiao-Chao HuangPei LiuJie KongGuo-Ping Yang . Recent advances in directing group assisted transition metal catalyzed para-selective C-H functionalization. Chinese Chemical Letters, 2025, 36(6): 110543-. doi: 10.1016/j.cclet.2024.110543

    2. [2]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    3. [3]

      Jiayu Huang Kuan Chang Qi Liu Yameng Xie Zhijia Song Zhiping Zheng Qin Kuang . Fe-N-C nanostick derived from 1D Fe-ZIFs for Electrocatalytic oxygen reduction. Chinese Journal of Structural Chemistry, 2023, 42(10): 100097-100097. doi: 10.1016/j.cjsc.2023.100097

    4. [4]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    5. [5]

      Wen-Tao OuyangJun JiangYan-Fang JiangTing LiYuan-Yuan LiuHong-Tao JiLi-Juan OuWei-Min He . Sono-photocatalytic amination of quinoxalin-2(1H)-ones with aliphatic amines. Chinese Chemical Letters, 2024, 35(10): 110038-. doi: 10.1016/j.cclet.2024.110038

    6. [6]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    7. [7]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics. Chinese Chemical Letters, 2024, 35(12): 109761-. doi: 10.1016/j.cclet.2024.109761

    8. [8]

      Shuai TangZian WangMengyi ZhuXinyun ZhaoXiaoyun HuHua Zhang . Synthesis of organoboron compounds via heterogeneous C–H and C–X borylation. Chinese Chemical Letters, 2025, 36(5): 110503-. doi: 10.1016/j.cclet.2024.110503

    9. [9]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    10. [10]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

    11. [11]

      Bei Li Zhaoke Zheng . In situ monitoring of the spatial distribution of oxygen vacancies at the single-particle level. Chinese Journal of Structural Chemistry, 2024, 43(10): 100331-100331. doi: 10.1016/j.cjsc.2024.100331

    12. [12]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    13. [13]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    14. [14]

      Juhong Zhou Hui Zhao Ping Han Ziyue Wang Yan Zhang Xiaoxia Mao Konglin Wu Shengjue Deng Wenxiang He Binbin Jiang . Strategic modulation of CoFe sites for advanced bifunctional oxygen electrocatalyst. Chinese Journal of Structural Chemistry, 2025, 44(1): 100470-100470. doi: 10.1016/j.cjsc.2024.100470

    15. [15]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    16. [16]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    17. [17]

      Shengtao JiangMengjiao XieLimin JinYifan RenWentian ZhengSiping JiYanbiao Liu . New insights into electrocatalytic singlet oxygen generation for effective and selective water decontamination. Chinese Chemical Letters, 2025, 36(5): 110293-. doi: 10.1016/j.cclet.2024.110293

    18. [18]

      Shenghui TuAnru LiuHongxiang ZhangLu SunMinghui LuoShan HuangTing HuangHonggen Peng . Corrigendum to “Oxygen vacancy regulating transition mode of MIL-125 to facilitate singlet oxygen generation for photocatalytic degradation of antibiotics” [Chinese Chemical Letters 35 (2024) 109761]. Chinese Chemical Letters, 2025, 36(6): 110868-. doi: 10.1016/j.cclet.2025.110868

    19. [19]

      Xin LiJia-Min LuBo LiChen ZhaoBei-Bei YangLi Li . Chiroptical sensing for remote chiral amines via a C–H activation reaction. Chinese Chemical Letters, 2025, 36(5): 110310-. doi: 10.1016/j.cclet.2024.110310

    20. [20]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

Metrics
  • PDF Downloads(0)
  • Abstract views(810)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return