Citation: Si-Min Xia, Hui-Ming Yuan, Zheng Liang, Li-Hua Zhang, Yu-Kui Zhang. Particulate capillary precolumns with double-end polymer monolithic frits for on-line peptide trapping and preconcentration[J]. Chinese Chemical Letters, ;2015, 26(9): 1068-1072. doi: 10.1016/j.cclet.2015.05.042 shu

Particulate capillary precolumns with double-end polymer monolithic frits for on-line peptide trapping and preconcentration

  • Corresponding author: Li-Hua Zhang, 
  • Received Date: 7 January 2015
    Available Online: 16 April 2015

    Fund Project: The authors are grateful for the financial support from National Basic Research Program of China (No. 2012CB910604) (No. 2012CB910604) National Natural Science Foundation of China (No. 20935004) (No. 20935004) the Creative Research Group Project by NSFC (No. 21321064) (No. 21321064)

  • In this work, a novel kind of particulate capillary precolumns with double-end polymer monolithic frits has been developed. Firstly, the polymer monolithic frit at one end was prepared via photo-initiated polymerization of a mixture of lauryl methacrylate and ethyleneglycol dimethacrylate with 1-propanol and 1,4-butanediol as porogens and 2,2-dimethoxy-2-phenylacetophenone as a photo-initiator in UV transparent coating capillary (100 μm i.d.). Subsequently, C18 particles (5 μm, 100Å) were packed into the capillary, and sealed with the polymer monolithic frit at another end. To prevent the reaction of monomers and C18 particles, the packed C18 particles were masked during UV exposure. The loading capacity of such a precolumn was determined to be about 9 μg by frontal analysis with a synthetic peptide APGDRIYVHPF as amodel sample. Furthermore, two parallel precolumns were incorporated into a two-dimensional nano-liquid chromatography (2D nano-LC) system with dual capillary trap columns for peptide trapping and concentration. Compared to 2D nano-LC system with a single trap column, such two dimensional separations could be operated simultaneously to improve the analysis throughput. All these results demonstrated that such capillary precolumns with double frits would be promising for high-throughput proteome analysis.
  • 加载中
    1. [1]

      [1] A.J. Link, J. Eng, D.M. Schieltz, et al., Direct analysis of protein complexes using mass spectrometry, Nat. Biotechnol. 17(1999) 676-682.

    2. [2]

      [2] W.M. Winnik, Continuous pH/salt gradient and peptide score for strong cation exchange chromatography in 2D-nano-LC/MS/MS peptide identification for proteomics, Anal. Chem. 77(2005) 4991-4998.

    3. [3]

      [3] S.H. Shin, J. Kim, S.C. Heo, et al., Proteomic identification of betaig-h3 as a lysophosphatidic acid-induced secreted protein of human mesenchymal stem cells:paracrine activation of A549 lung adenocarcinoma cells by betaig-h3, Mol. Cell. Proteomics 11(2012), M111.012385.

    4. [4]

      [4] T.K. Sigdel, N. Salomonis, C.D. Nicora, et al., The identification of novel potential injury mechanisms and candidate biomarkers in renal allograft rejection by quantitative proteomics, Mol. Cell. Proteomics 13(2014) 621-631.

    5. [5]

      [5] X. Gu, Y. Wang, X.M. Zhang, Large-bore particle-entrapped monolithic precolumns prepared by a sol-gel method for on-line peptides trapping and preconcentration in multidimensional liquid chromatography system for proteome analysis, J. Chromatogr. A 1072(2005) 223-232.

    6. [6]

      [6] Y.Y. Qu, S.M. Xia, H.M. Yuan, et al., Integrated sample pretreatment system for Nlinked glycosylation site profiling with combination of hydrophilic interaction chromatography and PNGase F immobilized enzymatic reactor via a strong cation exchange precolumn, Anal. Chem. 83(2011) 7457-7463.

    7. [7]

      [7] E. Nä gele, M. Vollmer, P. Hörth, Improved 2D nano-LC/MS for proteomics applications:a comparative analysis using yeast proteome, J. Biomol. Tech. 15(2004) 134-143.

    8. [8]

      [8] P. Horvatovich, B. Hoekman, N. Govorukhina, R. Bischoff, Multidimensional chromatography coupled to mass spectrometry in analysing complex proteomics samples, J. Sep. Sci. 33(2010) 1421-1437.

    9. [9]

      [9] M.A. Strausbauch, J.P. Landers, P.J. Wettstein, Mechanism of peptide separations by solid phase extraction capillary electrophoresis at low pH, Anal. Chem. 68(1996) 306-314.

    10. [10]

      [10] L.L. Sun, D.Y. Tao, B. Han, et al., Ionic liquid 1-butyl-3-methyl imidazolium tetrafluoroborate for shotgun membrane proteomics, Anal. Bioanal. Chem. 399(2011) 3387-3397.

    11. [11]

      [11] J.L. Peterson, G. Lin, M. Ho, Y. Chen, R.E. Gaensslen, The feasibility of external blind DNA proficiency testing. II. Experience with actual blind tests, J. Forensic Sci. 48(2003) 32-40.

    12. [12]

      [12] H.W. Zhang, K. Li, Z.X. Liang, F.Y. Wang, Q.W. Lu, Development of a monolithic polymer pipette for solid-phase extraction of liquiritigenin in rat plasma, Chin. Chem. Lett. 23(2012) 723-726.

    13. [13]

      [13] A.I. Nepomuceno, R.J. Gibson, S.M. Randall, D.C. Muddiman, Accurate identification of deamidated peptides in global proteomics using a quadrupole orbitrap mass spectrometer, J. Proteome Res. 13(2014) 777-785.

    14. [14]

      [14] C. Meriaux, J. Franck, D.B. Park, et al., Human temporal lobe epilepsy analyses by tissue proteomics, Hippocampus 24(2014) 628-642.

    15. [15]

      [15] L.C. Wang, C.Y. Okitsu, H. Kochounian, et al., A simple and inexpensive on-column frit fabrication method for fused-silica capillaries for increased capacity and versatility in LC-MS/MS applications, Proteomics 8(2008) 1758-1761.

    16. [16]

      [16] D.Y. Tao, X.Q. Qiao, L.L. Sun, et al., Development of a highly efficient 2-D system with a serially coupled long column and its application in identification of rat brain integral membrane proteins with ionic liquids-assisted solubilization and digestion, J. Proteome Res. 10(2011) 732-738.

    17. [17]

      [17] K. Sandra, M. Moshir, F. D'hondt, et al., Highly efficient peptide separations in proteomics:Part 2:bi- and multidimensional liquid-based separation techniques, J. Chromatogr. B 877(2009) 1019-1039.

    18. [18]

      [18] J. Rozenbrand, W.P. van Bennekom, Silica-based and organic monolithic capillary columns for LC:recent trends in proteomics, J. Sep. Sci. 34(2011) 1934-1944.

    19. [19]

      [19] F. Wei, Y.Q. Feng, Methods of sample preparation for determination of veterinary residues in food matrices by porous monolith microextraction-based techniques, Anal. Methods 3(2011) 1246-1256.

    20. [20]

      [20] A. Végvári, A. Földesi, C. Heté nyi, et al., A new easy-to-prepare homogeneous continuous electrochromatographic bed for enantiomer recognition, Electrophoresis 21(2000) 3116-3125.

    21. [21]

      [21] G. D'Orazio, S. Fanali, C18 silica packed capillary columns with monolithic frits prepared with UV light emitting diode:usefulness in nano-liquid chromatography and capillary electrochromatography, J. Chromatogr. A 1232(2012) 176-182.

    22. [22]

      [22] C.J. Chen, W.Y. Chen, M.C. Tseng, Y.R. Chen, Tunnel frit:a nonmetallic in-capillary frit for nanoflow ultra high-performance liquid chromatography-mass spectrometry applications, Anal. Chem. 84(2012) 297-303.

    23. [23]

      [23] R. Wu, H. Zou, M. Ye, Z. Lei, J. Ni, Separation of basic, acidic and neutral compounds by capillary electrochromatography using uncharged monolithic capillary columns modified with anionic and cationic surfactants, Electrophoresis 22(2001) 544-551.

    24. [24]

      [24] F.J. Wang, J. Dong, X.G. Jiang, M.L. Ye, H.F. Zou, Capillary trap column with strong cation-exchange monolith for automated shotgun proteome analysis, Anal. Chem. 79(2007) 6599-6606.

    25. [25]

      [25] D.Q. Li, Y. Fu, R.X. Sun, et al., pFind:a novel database-searching software system for automated peptide and protein identification via tandem mass spectrometry, Bioinformatics 21(2005) 3049-3050.

  • 加载中
    1. [1]

      Mohamed Saber LassouedFaizan AhmadYanzhen Zheng . Film thickness effect on 2D lead-free hybrid double perovskite properties: Band gap, photocurrent and stability. Chinese Chemical Letters, 2025, 36(4): 110477-. doi: 10.1016/j.cclet.2024.110477

    2. [2]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    3. [3]

      Liyong DingZhenhua PanQian Wang . 2D photocatalysts for hydrogen peroxide synthesis. Chinese Chemical Letters, 2024, 35(12): 110125-. doi: 10.1016/j.cclet.2024.110125

    4. [4]

      Li LiXue KeShan WangZhuo JiangYuzheng GuoChunguang Kuai . Antioxidative strategies of 2D MXenes in aqueous energy storage system. Chinese Chemical Letters, 2025, 36(5): 110423-. doi: 10.1016/j.cclet.2024.110423

    5. [5]

      Yuan TengZichun ZhouJinghua ChenSiying HuangHongyan ChenDaibin Kuang . Dual atom-bridge effect promoting interfacial charge transfer in 2D/2D Cs3Bi2Br9/BiOBr epitaxial heterojunction for efficient photocatalysis. Chinese Chemical Letters, 2025, 36(2): 110430-. doi: 10.1016/j.cclet.2024.110430

    6. [6]

      Chaozheng HeJia WangLing FuWei Wei . Nitric oxide assists nitrogen reduction reaction on 2D MBene: A theoretical study. Chinese Chemical Letters, 2024, 35(5): 109037-. doi: 10.1016/j.cclet.2023.109037

    7. [7]

      Jaeyong AhnZhenping LiZhiwei WangKe GaoHuagui ZhuoWanuk ChoiGang ChangXiaobo ShangJoon Hak Oh . Surface doping effect on the optoelectronic performance of 2D organic crystals based on cyano-substituted perylene diimides. Chinese Chemical Letters, 2024, 35(9): 109777-. doi: 10.1016/j.cclet.2024.109777

    8. [8]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    9. [9]

      Jinwei Zhang Lipiao Bao Xing Lu . Synthesis methodologies of conductive 2D conjugated metal-organic frameworks. Chinese Journal of Structural Chemistry, 2025, 44(4): 100459-100459. doi: 10.1016/j.cjsc.2024.100459

    10. [10]

      Zongyi HuangCheng GuoQuanxing ZhengHongliang LuPengfei MaZhengzhong FangPengfei SunXiaodong YiZhou Chen . Efficient photocatalytic biomass-alcohol conversion with simultaneous hydrogen evolution over ultrathin 2D NiS/Ni-CdS photocatalyst. Chinese Chemical Letters, 2024, 35(7): 109580-. doi: 10.1016/j.cclet.2024.109580

    11. [11]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    12. [12]

      Dan ZhouLiangjin BaoHaoqi LongDuo ZhouYuwei XuBo WangChuanqin XiaLiang XianChengbin Zheng . Capillary electrophoresis as sample introduction system for highly sensitive and interference-free determination of 99Tc by ICP-MS. Chinese Chemical Letters, 2025, 36(4): 110093-. doi: 10.1016/j.cclet.2024.110093

    13. [13]

      Weiyu ChenZenghui LiChenguang ZhaoLisha ZhaJunfeng ShiDan Yuan . Enzyme-modulate conformational changes in amphiphile peptide for selectively cell delivery. Chinese Chemical Letters, 2024, 35(12): 109628-. doi: 10.1016/j.cclet.2024.109628

    14. [14]

      Xiaofang LuoYe WuXiaokun ZhangMin TangFeiye JuZuodong QinGregory J DunsWei-Dong ZhangJiang-Jiang QinXin Luan . Peptide-based strategies for overcoming multidrug-resistance in cancer therapy. Chinese Chemical Letters, 2025, 36(1): 109724-. doi: 10.1016/j.cclet.2024.109724

    15. [15]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    16. [16]

      Yu-Yao LiXiao-Hui LiZhi-Xuan AnYang ChuXiu-Li Wang . Room-temperature olefin epoxidation reaction by two 2D cobalt metal-organic complexes under O2 atmosphere: Coordination and structural regulation. Chinese Chemical Letters, 2025, 36(4): 109716-. doi: 10.1016/j.cclet.2024.109716

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    19. [19]

      Jieqiong QinZhi YangJiaxin MaLiangzhu ZhangFeifei XingHongtao ZhangShuxia TianShuanghao ZhengZhong-Shuai Wu . Interfacial assembly of 2D polydopamine/graphene heterostructures with well-defined mesopore and tunable thickness for high-energy planar micro-supercapacitors. Chinese Chemical Letters, 2024, 35(7): 108845-. doi: 10.1016/j.cclet.2023.108845

    20. [20]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

Metrics
  • PDF Downloads(0)
  • Abstract views(764)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return