Citation: Feng Yu, Ming-Yuan Zhu, Fei-Hong Ouyang, Bin Dai, Jian-Ming Dan. Hydrochlorination of acetylene using expanded multilayered vermiculite (EML-VMT)-supported catalysts[J]. Chinese Chemical Letters, ;2015, 26(9): 1101-1104. doi: 10.1016/j.cclet.2015.05.020 shu

Hydrochlorination of acetylene using expanded multilayered vermiculite (EML-VMT)-supported catalysts

  • Corresponding author: Feng Yu,  Jian-Ming Dan, 
  • Received Date: 27 March 2015
    Available Online: 5 May 2015

    Fund Project: This work was financially supported by National Natural Science Foundation of China (Nos. 21163015, 21366027) (Nos. 21163015, 21366027) the Doctor Foundation of Bingtuan (No. 2014BB004) (No. 2014BB004) the National Basic Research Program of China (973Program, No. 2012CB720300) (973Program, No. 2012CB720300) the Program for Changjiang Scholars, Innovative Research Team in University (No. IRT1161) (No. IRT1161)

  • Catalyst supports have very important effects on catalyst performance. A novel expanded multilayered vermiculite (EML-VMT) is successfully used as the catalyst support for the acetylene hydrochlorination. By mixing carbon on the surface of EML-VMT (i.e., EML-VMT-C), the HgCl2/EML-VMT-C achieved a high acetylene conversion of 97.3%, a vinyl chloride selectivity of 100% and a turn over frequency (TOF) value of 8.83×10-3 s-1 at a temperature of 140℃, an acetylene gas hourly space velocity (GHSV) of 108 h-1, and a feed volume ratio V(HCl)/V(C2H2) of 1.15. Moreover, the HgCl2/EML-VMT-C shows good stability. The EML-VMT also shows potential in the preparation of other EML-VMT-supported catalysts.
  • 加载中
    1. [1]

      [1] X.Y. Li, M.Y. Zhu, B. Dai, AuCl3 on polypyrrole-modified carbon nanotubes as acetylene hydrochlorination catalysts, Appl. Catal. B:Environ. 142-143(2013) 234-240.

    2. [2]

      [2] J.L. Zhang, N. Liu, W. Li, B. Dai, Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts, Front. Chem. Sci. Eng. 5(2011) 514-520.

    3. [3]

      [3] K. Zhou, B. Li, Q. Zhang, et al., The catalytic pathways of hydrohalogenation over metal-free nitrogen-doped carbon nanotubes, ChemSusChem 7(2014) 723-728.

    4. [4]

      [4] K. Zhou, J.C. Jia, X.G. Li, et al., Continuous vinyl chloride monomer production by acetylene hydrochlorination on Hg-free bismuth catalyst:from lab-scale catalyst characterization, catalytic evaluation to a pilot-scale trial by circulating regeneration in coupled fluidized beds, Fuel Process. Technol. 108(2013) 12-18.

    5. [5]

      [5] H. Bremer, H. Lieske, Kinetics of the hydrochlorination of acetylene on HgCl2/active carbon catalysts, Appl. Catal. 18(1985) 191-203.

    6. [6]

      [6] C.Y. Hou, L.R. Feng, F.L. Qiu, Highly active catalyst for vinyl acetate synthesis by modified activated carbon, Chin. Chem. Lett. 20(2009) 865-868.

    7. [7]

      [7] X.Y. Li, X.L. Pan, X.H. Bao, Nitrogen doped carbon catalyzing acetylene conversion to vinyl chloride, J. Energy Chem. 23(2014) 131-135.

    8. [8]

      [8] J.H. Xu, J. Zhao, J.T. Xu, et al., Influence of surface chemistry of activated carbon on the activity of gold/activated carbon catalyst in acetylene hydrochlorination, Ind. Eng. Chem. Res. 53(2014) 14272-14281.

    9. [9]

      [9] K. Zhou, J.C. Jia, C.H. Li, et al., A low content Au-based catalyst for hydrochlorination of C2H2 and its industrial scale-up for future PVC processes, Green Chem. 17(2015) 356-364.

    10. [10]

      [10] K. Zhou, J.K. Si, J.C. Jia, et al., Reactivity enhancement of N-CNTs in green catalysis of C2H2 hydrochlorination by a Cu catalyst, RSC Adv. 4(2014) 7766-7769.

    11. [11]

      [11] X.Y. Li, X.L. Pan, L. Yu, et al., Silicon carbide-derived carbon nanocomposite as a substitute for mercury in the catalytic hydrochlorination of acetylene, Nat. Commun. 5(2014) 3688.

    12. [12]

      [12] J. Zhang, T.Y. Liu, R. Chen, X.H. Liu, Vermiculite as a natural silicate crystal for hydrogen generation from photocatalytic splitting of water under visible light, RSC Adv. 4(2014) 406-408.

    13. [13]

      [13] F.H. do Nascimento, J.C. Masini, Influence of humic acid on adsorption of Hg(II) by vermiculite, J. Environ. Manag. 143(2014) 1-7.

    14. [14]

      [14] Y.F. Liu, Z.H. He, L. Zhou, Z.S. Hou, W.M.J. Eli, Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts, Catal. Commun. 42(2013) 40-44.

    15. [15]

      [15] L.C.R. Machado, C.B. Torchia, R.M. Lago, Floating photocatalysts based on TiO2 supported on high surface area exfoliated vermiculite for water decontamination, Catal. Commun. 7(2006) 538-541.

    16. [16]

      [16] Y. Sun, L. Liu, D.Z. Jia, J.H. Liu, Preparation and properties of vermiculite supported TiO2 photocatalyst, Chin. J. Inorg. Chem. 27(2011) 40-46.

    17. [17]

      [17] X.G. Wang, B. Dai, Y. Wang, F. Yu, Nitrogen-doped pitch-based spherical active carbon as a nonmetal catalyst for acetylene hydrochlorination, ChemCatChem 6(2014) 2339-2344.

    18. [18]

      [18] H.Y. Zhang, B. Dai, W. Li, et al., Non-mercury catalytic acetylene hydrochlorination over spherical activated-carbon-supported Au-Co (III)-Cu (II) catalysts, J. Catal. 316(2014) 141-148.

    19. [19]

      [19] M.Y. Zhu, L.H. Kang, Y. Su, S.Z. Zhang, B. Dai, MClx (M=Hg, Au, Ru; x=2, 3) catalyzed hydrochlorination of acetylene-A density functional theory study, Can. J. Chem. 91(2013) 120-125.

    20. [20]

      [20] F. Yu, L.L. Zhang, M.Y. Zhu, et al., Overwhelming microwave irradiation assisted synthesis of olivine-structured LiMPO4(M=Fe, Mn, Co and Ni) for Li-ion batteries, Nano Energy 3(2014) 64-79.

    21. [21]

      [21] F. Yu, S.H. Lim, Y.D. Zhen, Y.X. An, J.Y. Lin, Optimized electrochemical performance of three-dimensional porous LiFePO4/C microspheres via microwave irradiation assisted synthesis, J. Power Sources 271(2014) 223-230.

    22. [22]

      [22] Y.-H. Ma, G. Wu, N. Jiang, et al., Microwave-assisted, facile, rapid and solvent-free one pot two-component synthesis of some special acylals, Chin. Chem. Lett. 26(2015) 81-84.

    23. [23]

      [23] S. Ittu, N. Constantin, Some characteristics of vermiculite mineral, Metal. Int. 18(2013) 73-76.

    24. [24]

      [24] S. Hillier, E.M.M. Marwa, C.M. Rice, On the mechanism of exfoliation of 'Vermiculite', Clay Miner. 48(2013) 563-582.

    25. [25]

      [25] X.X. Huo, L.M. Wu, L.B. Liao, Z.G. Xia, L.J. Wang, The effect of interlayer cations on the expansion of vermiculite, Powder Technol. 224(2012) 241-246.

    26. [26]

      [26] L.L. Xu, X.G. Wang, H.Y. Zhang, et al., Application of a novel carbon carrier in acetylene hydrochlorination, Chem. Ind. Eng. Prog. 30(2011) 536-541.

  • 加载中
    1. [1]

      Yongsheng XuLisha YaoJian LiYanzhao DongDongyang XieMiaomiao ZhangFeng LiYunsheng DaiJinli ZhangHaiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318

    2. [2]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    3. [3]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    4. [4]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    5. [5]

      Chunxiu YuZelin WuHongle ShiLingyun GuKexin ChenChuan-Shu HeYang LiuHeng ZhangPeng ZhouZhaokun XiongBo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334

    6. [6]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    7. [7]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    8. [8]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    9. [9]

      Dong SuiJiayi Liu . Constriction-susceptible lithium support for fast cycling of solid-state lithium metal battery. Chinese Chemical Letters, 2025, 36(2): 110417-. doi: 10.1016/j.cclet.2024.110417

    10. [10]

      Yunxia LiuGuandong WuLin LiYiming NiuBingsen ZhangBotao QiaoJunhu Wang . Construction of sintering-resistant gold catalysts via ascorbic-acid inducing strong metal-support interactions. Chinese Chemical Letters, 2025, 36(4): 110608-. doi: 10.1016/j.cclet.2024.110608

    11. [11]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    12. [12]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    13. [13]

      Xingxing JiangYuxin ZhaoYan KongJianju SunShangzhao FengXin LuQi HuHengpan YangChuanxin He . Support effect and confinement effect of porous carbon loaded tin dioxide nanoparticles in high-performance CO2 electroreduction towards formate. Chinese Chemical Letters, 2025, 36(1): 109555-. doi: 10.1016/j.cclet.2024.109555

    14. [14]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    15. [15]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    16. [16]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    17. [17]

      Huipeng Zhao Xiaoqiang Du . Polyoxometalates as the redox anolyte for efficient conversion of biomass to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(2): 100246-100246. doi: 10.1016/j.cjsc.2024.100246

    18. [18]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    19. [19]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    20. [20]

      Guilong LiWenbo MaJialing ZhouCaiqin WuChenling YaoHuan ZengJian Wang . A composite hydrogel with porous and homogeneous structure for efficient osmotic energy conversion. Chinese Chemical Letters, 2025, 36(2): 110449-. doi: 10.1016/j.cclet.2024.110449

Metrics
  • PDF Downloads(0)
  • Abstract views(984)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return